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1. INTRODUCTION

In a recent paper [5], we described a generalization to univariate time series models of the hy-

pothesis testing procedure of Vuong [13] for comparing incorrect statistical models for inde-
pendent data. The focus of [5] was on model selection criteria related to one-step-ahead fore-
casting performance. We suggested there that when p-step-ahead prediction is the goal, with
p > 1, then different test statistics should be used for each choice of p. To 1dentify appropri-
ate test statistics and determine their asymptouc distribution, information 1s needed about the
rate at which predictors based on n observations converge as n — oo. This note provides
some of the needed convergence and distributional resuits, also for the case of r-dimensional
vector time series. Our approach rests on generalizations of the finite-section inequality and
related convergence results of Baxter [1], [2] for one-step-ahead predictors of scalar time se-
rics. To make our results accessible to a larger circle of readers, we will not formulate them
in the Banach algebra framework utilized by Hirschman [9], but it will be clear to the mathe-
matical reader that this level of generality is attainable and natural.

2. BAXTER’S INEQUALITY (MATRIX FORM)

For any complex-valued matrix C, let CT denote its transpose and C* = 5T its complex
conjugate, or Hermitian, transpose. If C* = C, then C 1s said to be Hermitian symmetric.
Let f(@) denote a continuous, positive definite Hermitian symmetric, r x r matrix function
on [ —m,xw] satisfying f(—80) = f(0)7. It is well known, see [6, p. 160] or [7], that such an
f(60) has factorizations of the form

(2.1) f(0) = A () A* ()
and
(22) f(g)zB* (Eiﬂ)B(Eiﬂ)!
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where A(2) and B(z) are non-singular-matrix-valued analytic functions on {|z| < 1},

A(z) = i ajzj

j=0

B(2) = E bjzj
=0

whose coefficient matrices, a s bj, have real entries. We shall impose magnitude restric-

tions on these coefficients with the aid of an increasing sequence of weights v(j) > 1,
7=0,1,..., suchthat v(j) < v(k)v(|j —k|) forany j, k > 0. This last condition insures

that the norm defined for matrix functions C(8) = 3°72_ c,e"® by means of
1CO) [I= ) vliDlgl,

with |c,| equal to the square root of the largest eigenvalue of cjc,, see [11, pp. 265-6], has the

property that || C(0) D(8) ||<|| C(8) |||| D(6) ||. Let C, denote the set of all continuous
r X r-matrix-valued functions C( &) for which || C(8) ||< oo, and let C; (respectively C; )
denote the subset whose j-th Fourier coefficient ¢; is O forall j < 0 (respectively, j > 0).
It follows from the preceding norm inequality that f(8) € C, if A(e') in (2.1) belongs to
C: (which implies that A*(e*®) € C;7). Since A(z) is nonsingular for all |z] < 1, it follows
from an argument like that given in [3, p. 78] that A~ (&) belongsto C} if A(e*) does,and
then A*(e')~! € C, . For us, the important choices of v(j) are v(j) =1, v(j) = 2%+ ;“
(>0 andv()=p7 (0<p< ).

We present now our matrix-function version of the inequality of [2]. Our proof is an

adaptation of Baxter’s, see also [9]. For the reader’s convenience, the complete proof will be
given.

Proposition 2.1. Assume that the factors A(e*) and B(e*) of f(0) in (2.1) and (2.2)
belong to C), . Then there exist a positive integer n, and a constant M, depending only on
these functions, with the following property: if n > ny, then for any given r x r matrices

gj,{} < jJ < mn-—1, the matrix polynomial h(8) = E::é hke“‘& which satisfies

(2.3) '/ﬂr e™'h(0) f(6)d0 = g;

"
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for 7 =0,...,n— 1 will also satisfy the v-norm inequality
(2.4) | B(0) ||[< M [ g(0) |,

where g(6) = Y725 g;e"°.
Proof. Some additional notation will be helpful. If C € C, is such that C(#) is nonsingular

for all #, we will sometimes use C to denote the function C(6)~'. Also, for any positive
integer m, we define two useful additive components of C':

o0 -— TN
_ ij0 _ ijo
Comy = ) _c€”", Ciimy = ) "
j=m j=—o0

Observe that || Gy II<I1 C |-
Using this notation, set G = (hf) _;, and H = (hf), . Then from (2.3),

(2.5) hf=G+g+ H.

From (2.5), (2.1) and (2.2) we obtain

(2.6) hA=GA" + gA* + HA"
and
(2.7) hB* =GB+ ¢gB+ HB.

The essence of the proof of {2.4) 1s the verification of

(2.8) | GA* ||< Const. || g ||
and
(2.9) | HB||< Const. || g ||,

with constants independent of g, because, from (2.5),

WA GF 1+ laf~ |+ L HF
<||GA* || A]l+ gl FHI+ ) HBYI Bl
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We start with (2.8): since hA € C}, it follows from (2.5) and (Gﬁ‘)(_” = GA* that

GA* = — (gﬁ*){_” - (Hﬁ*){_l} =

- (gﬁt)(.-n B (HEF‘“‘”)(—U '

Hence
| GA™ ||[<[| gA™ || + || HA{ .1y I

<Wgllll A" |l + [l HB ||| B |[l| A{_p-1y II -

So, for n sufficiently large, we will have

h# Ail 1 =
(2.10) IGAT NI A" [l g Il +5 [ HBI -

With a similar calculation based on the fact that the j-th Fourier coefficient of hB* (re-
spectively, H §) 1s 0 1f 7 > n (respectively, 7 < m), one sees that when n is large enough
that || A° [[[| By 1< & then

~ ~ 1 ~,
(2.11) I HBILI Bl gl[+5 | GA™ ]

From the inequality obtained by adding (2.10) and (2.11), one obtains (2.8) and (2.9) with
the constant equal to 2(|| A |+ | B ||} . This completes the derivation of (2.4).

Remark 2.1. In the univariate case (r = 1), the assumption that A(e'Y) belongs to C)1s
equivalent to the assumption that f(¢) € C,, see the proof of Theorem 3.8.4 of [3]. No
multivanate generalization of this result appears to be known. A partial result for the special
case in which f(0) = F(e'), with F(z) analyticin {p < |z| < p~'} forsome 0 < p < 1,
can be obtained from Thecrems 3.1 and 3.2 of [12], which imply that for such an f(0), the
functions A(z) and B(z) are analytic in {|z]| < p~'/?}.

Remark 2.2. In Hannan and Deistler’s monograph [7, p. 270], a vector generalization of
Baxter’s result is stated with only the assumption that A(e*’) € C! and with no mention of the

factorization (2.2). E.J. Hannan (personal communication) agrees that the condition B(e')
€ C_ is also needed. It is possible that this property follows from the assumed property of

A(e*), but this seems difficult to establish.

Remark 2.3. The derivation of (2.4) does not require our assumption that f(—8) = f(9)7.
This 1s used for convenience of reference in later sections where we wish to maintain the
familiar context wherein the Fourier coefficients of f( ) are real matrices.
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3. CONVERGENCE OF PREDICTOR COEFFICIENTS

Suppose that z, is a mean zero, weakly stationary, r-dimensional vector time serics with
spectral density matrix f(8),

‘E‘zfz?—)'zzﬂff=_/_ E“ijgf(g)dﬁ (j=03::11"')1

with f( @) satisfying the assumptions of section 2. ( E denotes expectation). For any integers

p,n > 1 or n= oo, the optimal linear predictor of Z4p from z,,...,2,_(,_1y 1S given by
n—1
(n) _— (n)
Creplt = E ﬂ.&;n L)y,
k=0

where the coefficient matrices are determined by the property that the error process E:;}rrlf =

7 _ g

trp trplt 1S uncorrelated with z,,...,2,_ . 1y,

- n—1
(3.1) f e~ "9 (e"”’g—zﬂi“)[p]e‘m)f(H)d9=[}, (7=0,....n—1).

It follows that the difference between sz;H and the p-step-ahead predictor based on the

infinite past, 2,7, = ) ¢l ™ [Plz_y, thatis

(n) (00) _ _(00) (n)

zt+p]t o zt+p{t - Et+p1f. o Et+p}t’

is uncorrelated with z,,...,2,_, 4 . Therefore,

- n—1
(3.2) f e’ (E {n (p) = o1 } e*“’) £(0)d0 = g,
with

g; = f Euijﬂ (z ﬂim} [p]E:J:E) f( 0)d o =

(3.3)
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for j =0,...,n— 1. We are assuming that f(8) and its factors A(e*®), B(e'*®) belong to
C, for some weighting sequence v(j) of the sort considered. Since v(j) < v(k)v(k — j)
when 0 < 7 < n-—1 and k£ > n, itis a consequence of (3.3) that

n—1 00 00
(3.4) Y vyl < (2'ﬂ ) v(m) If..ml) Y vk M [pl]

j=0 m=0 k=n

The first factor on the right is finite because f € C,. Theorem 7.3 of [14] shows that the

prediction error transfer function e(°[p](8) = e~ — 332, 7" [p]e**? has the formula
p—1

(3.5) e [pl(0) = | ) v,V PO ) y7(0),
3=0

where ¢(0) = A(e %) A(0)~', from which it follows that e‘>[p](0) € C,. Thus the
second factor on the right in (3.4) is also finite and, applying (2.4), we arrive at the following
gencralization of the filter coefficient inequality (11) of [1],

n— 1 o0
(3.6) Zu( k)|’ni“} [p] — ﬂim]l < M, Eu(k)lﬂim}[p]l < 0.
k=0 k=n

Remark. The inequality given in [1] for the case »r = 1, p = 1, is for weighted versions of
the coefficients 7r;” [1) and #,°> [1] and is not as convenient for our application as (3.6).

Next, we observe that since 1 < v(0) < v(1) < ..., we have
(3.7) 2 mZ R < w7 Y vk m™ [pl] = o( 1/v(m)).
k=n k=n

The result we are after follows from (3.7) and the version of (3.6) associated with v( k) =
=1, 0 < k < o0.

Proposition 3.1. The p-step ahead predictor coefficient matrices associated via (3.1) with a

spectral density matrix f(0) which satisfies the conditions of section 2 will have the property
that

n— 1 o0
(3.8) D 1m” o) = w ()] + 3 DI (1] = o(1/v(m),
k=0 k=n

forany p > 1.
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4. CONVERGENCE OF FINITE PREDICTORS FROM INCORRECT MODELS

Let y,,...,y, denote the observed values of a mean zero, r-dimensional time series y, .
Suppose that a forecast of y_, , 18 desired and that a time series model specifying a spectral

density matrix f( &) has been fit to the observations for the purpose of determining a predictor,

"
Yo [P1 = > m™ [ply, 4,

whose coefficients satisfy (3.1). If the model is incorrect, as is ordinarily the case, then the
prediction error Unsp — ympl [p] will not be uncorrelated with u_,...,y, and the forecast

error process associated with prediction from the infinite past,

(m) — o)
t+p|t —_ yt E “i; [P] yt k»

will not be a process whose autocorrelations at lags greater than p — 1 are zero. The inequal-
ity (3.8) makes it possible to determine a rate of convergence for the finite predictor in this
situation. For a measure of discrepancy, we will use the means square norm, which is defined

for a random vector z by || z || ;= (ExTz)!/? . This has the property that if b is a constant
matrix, then || bz || < |b] || = || g for the matrix norm | -| specified in section 2. The quantity

| f:’; || ¢ is a natural measure of forecast standard error. From (3.6), we obtain

(00) (n) (00) (n) —
| || Eni[n ”E o | r:pfn ”E | <” :;;n o E,:ph ||E—

(oo) (n) (co) (o0)
=|| Ynepin = Ynvpla llES Zm““ [p] = m” [P1] | i Il +le:° [P 1] Yuryj e -

k=n

The convergence result needed for the testing procedure described 1n the next section now
follows from (3.8):

Proposition 4.1. Suppose f()) satisfies the assumptions of section 2 and the time series y,

” E(ﬂ}

(o0) “
ntpjn 1E?

has bounded second moments, sup mpln 1B —

—co<t<oo || Yt “E< 0o. Then ll €

| €petn — €nmpin 12 @14 || Yoot — Ynroys || are all of order o(1/u(m)) .

Remark 4.1. In the univariate case (r = 1), if y, is stationary and f( ) is the correct
spectral density for y,, then the proofs of Theorems 2.3 and 3.1 of [1] for the case p = 1
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can be adapted to show that the order of || EE:)PE“ lig — |l EE::)[“ |2 is o(v(n)~?), for each
p2>1.

Remark 4.2. The approach of Devinatz [4] for obtaining results like those above for one-
step-ahead predictors from correct models, and its multivariate generalization by Pourahmadi
[12], do not seem to lend themselves to obtaining results for incorrect models except under
restrictive assumptions, such as |f (0)| < M,|f(0)] for some constant M,, where f (0)
designates the true spectral density of the series y,, now assumed covariance stationary.

5. APROTOTYPE TEST STATISTIC FOR COMPARING MODELS FOR
PREDICTION

In this section, we assume that y, 1S a mean zero, stationary vector process whose m-th
order cumulants exist and are absolutely summable, for each m = 2,3,... (Assumpton
2.6.1 of [3]). Suppose that p-step-ahead forecasts are desired for some p > 1 and that two
competing ncorrect models for y, are available, specifying spectral density matrices f(6)

and f( g), both of wihch satisfy the assumptions of secton 2 for the weighting sequence

v(j) =212 + 512 Let eif?lt and Eif';)tt denote the error processes of these models arising

from predicting Utsp linearly from Ye_js J 2 O . These are stationary processes satisfying
the same cumulant assumptions as y,, and the same is true of the difference-of-squared-error
process

— (00)T (o0) ~(00)T ~(0c0)
— (o0) =~ 1 z{o0) e s
We define o, =|| €1r ot |g and 5, =] €, ot | - These quantities measure prediction

performance: if o, < 0, the model specifying f(A) can be regarded as better for p-step

prediction than the model specifying f( A) . We would like to have a statistical test for decid-
ing from observed prediction errors whether one of o or EP 1s smaller than the other.

Let f,(&) denote the spectral density function of the process o,  — F(0
that E(§ 2 —G? . Theorem 4.4.1 of [3] shows that N' /2 times the sample mean from
N observations of this process has a limiting normal distribution with mean O and variance

27 fs(0) . This fact can be expressed as

), observing

t+p t+p

t+p) =0

N
(5.2) NS 6, — N2 (02 = 52) —yy N (0,27£,(0))
n=1

This result cannot be used directly to obtain a test of the hypothesis o, = EP, because the

quantities o_, , cannot be calculated when only finitcly many observations of y, arc available.
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This is where Proposition 4.1 plays a useful role. It enables us to show that N=1/2 3 8

can be approximated with sufficient accuracy by N=1/2 37, 6., ., where
5 (nT E(ﬂ} 'é-(n)T -E-(ﬁ)

ntpln = Enepln Enepin wpln “ntpln

Using the Kalman filter, these quantities are easily calculated from the available data, when
the models have ARMA representations.

Proposition 5.1. If the spectral density matrices f(8) and f(ﬂ) satisfy the assumptions of
section 2 with v(j) =22 + j112 ‘andif sup____,_. || ¥, ||z< oo, then

N —co

N N
(5.3) lim N7'2EY 6, — Y Sl =0
n=1 n=1

Proof. The quantity whose limit is under investigation is bounded above by N~1/2 ):f:;l

5 This latter quantity is bounded above by N—1/? times the sum of
| |. q y y

n+p n+p|n

ﬁ — blﬁ(m)T (00) E(ﬂ}T E‘:ﬂ:" |; 1 <n< N

nt pln Cnt pln n+p|n " nt pln

and the analogous quantities associated with f( 0), to which the argument given below also
applies. Toeplitz’s Lemma [10, p. 250] shows that if

(5 .4) A, = o(n~ /%)

holds, then N~1/2 Zle A, — 0. Thus 1t remains to verify (5.4). By the Cauchy-Schwarz
inequality,

(5.5) A, <|l e, — enin llill €io + € 1l -
The first factor on the right is o(n~'/?) by Proposition 4.1. For the second, we have,
since o, =|| e, ||z,
[ | P A i |

The quantities || EE:L"" || converge to o, by Proposition 4.1 again, so the second factor

on the right in (5.5) is bounded, and (5.4) follows. This completes the proof of (5.3).
Mean absolute convergence as in (5.3) implies convergence in probability. Therefore,
from (5.2) and (5.3) we obtain

N
(5.6) N2 e = N2 (02 = 52) g N (0,27£5(0))
n=1

and the following corollary.
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Corollary 3.1. If w, is consistent estimator of (27 f5(0)) 2 andif f s(0) #0, then

4 N
tuts1 = (V) S
n=1

is a test statistic which behaves like a N'(0, 1) variate for large enough N when o, = EP,

and otherwise behaves like N'/?( o, — ), thereby revealing the sign of o, — &, and with

it the preferred model.

We plan to apply such a statistic, for several choices of p, also taking into account the
uncertainties in f(#) and f(€) due to parameter estimation, to compare the pairs of compet-
ing models for the 40 times series considered in [S]. In [5], a statistic which 1s asympotically
equivalentto Z,, [1] was presented and used, as a time series generalization of the test statistic
of [13].
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