Note di Matematica Vol. XI, 135-143 (1991)

A STRICT TOPOLOGY FOR SOME WEIGHTED SPACES OF
CONTINUOUS FUNCTIONS

BRUNO ERNST

Dedicated to the memory of Professor Gottfried Kothe

In the classical case the strict topology B introduced by Buck [2] on the space C°(X) of
bounded continuous scalar valued functions on the locally compact Hausdorff space X 1is
given by the system W of all weights on X that vanish at infinity. The g-bounded subsets
of C*(X) are exactly the norm bounded subsets, and 3 is the finest locally convex topology
which coincides on the norm bounded subsets with the compact open topology (cf. Dorroh
[4]). Especially we have that C?(X) = CW(X) = CW,(X) holds algebraically.

In this note we want to describe for an arbitrary system of weights V' an associated system
of weights W such that at least in many cases, including the classical one, the connection
between CV(X) and CW,(X) is the same as in the classical case.

Notation. X will always denote a locally compact Hausdorff space, C(X) the space of
all continuous real or complex valued functions on X . An upper semicontinuous (u.s.c.)
function v : X — R™ iscalleda weight. Aset V of weights on X is called a Nachbin family
or a system of weights iff (N1)Vz € Xdv € V such that v(z) > 0 and (N2)VA > 0O,
vy,vy € V3duy; € V such tht A max (vy,v,) < vy. The weighted space CV(X) 1s then
defined by CV(X) = {f € C(X)|p,(f) = sup,cx |f(z)|v(z) <00 Vv € V}. CV(X)
is endowed with the topology 7y, generated by the seminorms p,,v € V (cf. Nachbin [10]).

CVy(X) = {f € CV(X)|v|f| vanishes at infinity Vv € V'} is a subspace of CV(X)
always endowed with the restriction of 7, .

If 1 denotes the function identical 1 on X then V = {X-1|X > 0} is asystem of weights
and C*(X) = CV(X) topologically. The set K of all positive multiples of characteristic
functions of compact subsets of X is also a system of weights and CK(X) 1s the space
C(X) with the compact open topology.

If V and V' are systems of weightson X wesay V < V' if Vv € V3v' € V' such that
v<v'.Vand V' aresaidtobe equivalent (V=V)Yif V<V and V' <V. IV 1sa
system of weights sois V' = {dv|x > 0,v € V} and both are equivalent. So we will often
assume that A\v € VV\ > 0, v € V. For properties of weighted spaces see for example
Nachbin [10], Bierstedt, Meise, Summers [1] and Ernst, Schnettler [6].

All other notations not introduced here are taken from Koéthe [9], Jarchow [7], Emst,
Schnettler [6].

If v is an arbitrary weight on X we denote by W, the set of weights w % 0 such that

(i) w < v and (i1) ¥ vanishes at infinity. Here and in the sequel we put <<% =0».If Visa
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system of weights on X we define the associated system of weights W, by W\, = U ., W, .
If no confusion occurs we simply write W instead of W, .

Remark. Systems of weights similar to W have been considered previously in the literature
(cf. Napalkov [11], Korobeinik [8]).

In the first lemmas we want to establish some properties of W .

Lemma 1. If v# O we have W _# ¢, and if V is a system of weights W is also a system of
weights.

Proof. If v(zy) > 0 put w(zy) = v(zy) and w(z) = 0 for z# z,. Then w € W,,.

If we W thereis v € V such that w € W,. For A > 0 take v/ € V such that
Av < v'. Then Aw € W, hence Aw € W. For w,,w, € W choose v,,v,,v € V such
that w, EW{, i=1,2 and v, <v,1=12.Put w=max(w,,w,). Then w € W, and

W satisfies (N2).
Finally, if z, € X choose v € V such that v(z,) > 0. Then the function w from the
first part of the proof shows that W also satisfies (N1). B

Remark. By definition we always have W < V. If in addition X < V there is for A >
> 0 and any compact set K C X a weight v € V such that AH < v (xx denotes the

characteristic function of K'). Hence A, € W, and K < W'.

Lemma 2. Let v#0 be any weight on X . Then for any w € W, there is a continuous
Junction p on X such that the following holds: (1) 0 < p < 1, () w € W, and
(i) pve W,.

Proof. Choose a sequence ( K ) of compact subsets of X such that %f-ﬂ < 515 forz ¢ K.

) —

We may assume K, C K_,¥n € N. Choose ¢, € C(X) suchthat 0 < ¢, < 1,

S—ma

p,(z) =1Vz € K _, andsuppp, C K_,,Vne€ N .Put y = E:‘;l ;—,fpﬂ. Then p € C(X)
and (i) is satisfied. For z ¢ U2, K we have u(z) =w(z) =0.Forx € K_,, \ K, we

|

o < 7 = 3w

pl{z)v(z)

have 57 < p(z) < 5or, w(z) < 5mv(z) < p(z)v(z), and hence

Thus (i1) 1s satisfied. (1ii) is obvious. =

Remark. Lemma 2 has some nice implications: (i) Wy, = Wy, i) W= Cy(X) -V

where Cy (X) denotes the positive continuous functions on X vanishing at infinity. Hence
in the classical case W, exactly generates the strict topology. and (iii) V' C C(X) implies
W= (WnC(X)), ie. in this case we can assume the functions in W to be continuous.

Next we prove a technical lemma which will be useful 1n the sequel.
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Lemma 3. Let v be aweighton X and . X — R7" any function which is bounded on

the compact subsets of X . If v is unbounded on X there is w € W, such that wp is
unbounded on X .

Proof. Since vf 1s unbounded choose a sequence (z,) C X such that v(z, ) B(z,) >

>wVne N.PutY = {z_|n€ N}. Then Y and any of its subsets are closed. To prove
thistake M C Y and z, € X \ M. If U is a compact neighbourhood of z, theset U N M

i1s finite (or empty) since B and v hence Bv are bounded on U. Hence X \ M is open.
Now define a function w : X — R" by

" v(z,)
w(z) = 4 n
L0 for zeX\Y.

for =1

Obviously 0 < w < v and forany € > 0 the set {z € X|% > g} is finite hence

compact. Since for ¢ > 0 the sets {z € X|w(z) > €} are contained in Y they are closed

and hence w 1su.s.c. and w € W, . By construction 8(z_)w(z,) > nand Sw is unbounded
on X. B

Now we can prove a connection between CV(X) and CW,(X).

Proposition 1. If V is a system of weights on X then the identities CW,(X) = CW(X) =
= CV(X) hold algebraically.

Proof. First we show CV(X) C CWy(X). If fe CV(X) and w € W choose v € V
such that w € W,. Put M = sup_ | f(z) |v(z). Then |f(z)|w(z) = |f(z)|v(z) L2 <

— v(x)

< & Vz € X\ K. Then |f(x)|w(z) < e Vz € X\ K and |f(z)|w(x) is bounded on
K. Hence f € CWy(X).

Since CW,(X) Cc CW(X) itsuffices to show CW(X) C CV(X).If f € C(X) \
CV(X) thereis v € V such that | f|v 1s unbounded on X, but |f|v is bounded on compact
subsets of X . By Lemma 3 there is w € W such that |f|{w is unbounded. Hence f ¢
¢ CW(X) and the proof is complete. o

< M¥2Z yr € X. For e > 0 choose a compact subset K C X such that %—E]l <

Next we want to prove a connection between the topologies 7, and the restriction of 7,
o CW,(X), which will again be denoted by 7. .

Proposition 2. If K < V the following holds:
a) The bounded sets in CV{(X) and CW,(X) are the same and
b) m and Ty, induce the same topology on T, -bounded sels.
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Proof. a) Since 7, < 7, we only have to show that each 7,-bounded subset B is also

Ty-bounded. Since K < V we have 7. < 7, by the remark following Lemma 1. Put

p(zx) = sup,.pl|f(z)|. The boundedness of B with respect to 7, is equivalent to the

boundedness of v3 forall v € V (put 0 - oo = 0). Since B is also 7.-bounded S is
bounded on the compact subsets of X . Assume B is not 7, -bounded. Then choose v € V
such that v# is unbounded. Then by Lemma 3 there is w € W such that wf is unbounded.
Hence B is not 7,-bounded which 1s a contradiction.

b) By awell known lemma due to Grothendieck it suffices to show that the two topologies
induce the same neighbourhoods of zero on the absolutely convex 7, -bounded subsets. Let
B be an absolutely convex 7,,-bounded set and put S(z) = sup ;.p |f(z)|. First we want

to show that Sw vanishes at infinity forall w € W. If w € W take v € V such that
w € W,. B is 1,-bounded by Proposition 1, hence M = sup, 5 B(zx)v(z) is finite. Since
pw = pve < M2 the function Sw vanishes at infinity.

Since 1 < Ty, it suffices to show that for each 7, -neighbourhood of zero U, = {f €
€ CWy(X)|sup,ex |f(2)]w(z) < 1} there is a 1 neighbourhood of zero U such that
UNB C U,. By the first part of the proof there 1s a compact subset K C X such that
B(z)w(z) <1 Ve X\ K.Put R=sup,,w(z) and U = {f € CWy(X) || f(z)]| <
< lﬁ‘v’z € K}. Then R is finite and U is a 7--neighbourhood of zero. It f € BNU we
have

1 forz € X \ K

w(z)|f(z)] < {RR*—I forxr € K

Hence UNB CU,. !

From Proposition 2 naturally the question arises, whether 7, is the finest locally convex
topology on CV ( X') which coincides on the 7, -bounded subsets with 7,- . Unfortunately we
do not know the exact anwer. However, in [3] Cook shows (by completely different methods)
that the finest locally convex topology on C(X) which coincides on the order intervalls of
C(X) with 7 is again a weighted topology. This may give a hint that, at least in some cases,
the finest locally convex topology that coincides on 7,-bounded sets with 7 1s a weighted
topology, hopefully 7y;, . However our situation is different from Cook’s: first CV(X) 18 in
general a proper subspace of C(X), and secondly the order intervalls are bounded but the
converse is not true in general. It is true if and only if CV(X) has a fundamental system
B of bounded sets (i.e. each bounded set is contained in a member of I3) such that 8(z) =
= SUPsep | f(z)| is continuous VB € B. At the end of this note we give an example which
(among other things) shows that even in good situations one can not expect the bounded sets
to be contained in order intervalls.

If CV{(X) has a countable fundamental system of bounded sets, i.e. a fundamental
sequence B = (B,_) of bounded sets, the situation is much better since we can apply re-
sults from [6]. Since X is locally compact CV(X) satisfies condition (*) from [6] say-
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ing, Vz € X3f € CV(X) such that f(z)#0. Let K denote C!(X). Then K is a

—

system of weights and we have £ = K and 7, = 7. In this situation we know from

[6] that the finest locally convex topology 'rE which coincides on each B, with 7,- 1s a
weighted topology. A system of weights for this topology can be described in terms of

the functions g, (z) = Sup,.p | f(z)] and the weights in K. If (p,) 1s any sequence in
K put s'(x) infnem(ﬁﬂ(:n) + 5 }I)), where By, = {0} and B, = 0 .Then the sets

Uy = {f € CV(X)|f] < &'} form a basis of 7E-neighbouhoods of zero as () runs

through all sequences in K. A system of weights describing this topology is given by the
weights u~!, where u(z) = sup sey, | f(D)].

Since K and K are equivalent the topology TE can also be constructed from the functions

s(z) = inf o (B,(z) + 1_}“2 =), Where A, >0 Vn € N, and (K,) is any sequence

of compact subsets of X suchthat K, C K,,;, Vn€ NA, K, = @. To prove 7, = e
we need a further condition on V and the 8 s. V is said to satisfy condition ( g), if for any

sequence (K ) of compact subsets of X suchthat K. C K,_,, Vne N, thereisv € V
such that for , = ianEKu\ffH v(z)B,(z)(K_, = ¢) holds: (i) v, > 0 Vn€ N and (11)
Vo — 00

If (B,) is a fundamental sequence of bounded sets in CV(X) we can always assume
B, = {0}, 2B..,,and B, = {f € CV(X)|f] < B,}.

Lemma 4. Let V be a system of weights such that CV(X) has a fundamental sequence

B = (B,) of bounded sets and such that 'V satisfies (g). If s = inf . (B, + ,x_ix ),

V. > 0 and (K,) a sequence of compact subsets of X with K, C K_,.Vn€ N, there

are p, >\, such that for the function t = inf . (B, + 5 ;K ) the following holds:

(i) t < s.
(i) Vne Nt(z) = B,(z) 5 forz € K, \ K, ;.

(i) 3v € V such that L vanishes at infinity.

Proof. For the sequence (K ) choose v € V asin (g). v is bounded on the compact
sets K_ \ K

n—1"

hence by v, > 0 we have d, = inf .z f,(z) > 0. Now put

p, = max(h,,3). If z € K, \ K, wehave inf, ., (Bi(z) + u.,x;-:z)) = 00
and ﬁn(m) + mx;(ﬂ < 18,,,(37) + dn < 2/6“(:5) < ﬁml(m) < ﬁnﬂ'(m) + ﬂij(:’mj(I)

Vs € IN. Hence (ii) is satisfied. To prove (iii) note that t(z) = ooVz € X \ U2, K,
and then 1—% = 0 by the convention <<g— =0» Ifz € K, \ K,_; we have t(z)#

#0#v(z) and t(x)v(z) > B, (z)v(z) > 7,, hence (iii). =
With this lemma we can prove
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Proposition 3. If X < V, if CV(X) has a fundamental sequence B = (B_) of bounded
sets, and if V satisfies (g), then Ty, is the finest locally convex topology on CV (X) that
coincides with T on the Ty-bounded sets.

Remark. The proposition says in fact that in this case CW,(X) isa (g DF')-space (cf. [6]).

Proof of Proposition 3. By Proposition 2 we know already 7,;, < 78. It remains to show

2 < Ty . Let U be a 78-neighbourhood of zero. There is a sequence (C.) of compact
1

V
Jih“}%) we have

subsets of X and X, > O such that for the function s’ = inf _ (B, +

U, = {f € CV(X)|f|] <8’} C U. Enlarging the C! s, if necessary, we obtain a sequence
(K,) of compact subsets of X suchthat K, C K_,, and C, C K ,¥n € N,. Hence

s =inf N (B, + 1.:(11" ) < & and U, = {f € CV(X)|f]| < s} is a 7¢-neighbourhood

of zero such that U, C U, C U. Now let ¢t denote the function constructed in Lemma
4. Then U, is a 7¢-neighbourhood of zero and U, C U,. Put p(z) = sup o, [f(2)].
Then UF = U, (cf. [6]), p 1s Ls.c. and g > O by condition (*). By construction we

have u(z) = t(z) = B,(z) + #L forz € K, \ K,_,. If z is in the thin set K, \ K,

L]

u(z) is either B (z) + ”L or B,,(z) + #1—]. Hence li& vanishes at infinity by (iii) of

Lemma 4. Finally putting w = :7 we have shown w € W, forsome A > 0, v € V and
U,={f € CV(X)|sup,ex | f(z)|w(z) < 1} is a 7 -neighbourhood of zero. B

Remark. Proposition 3 obviously already contains the classical result of Dorroh and Sen-
tilles, that C¥(X) with the strict topology is a (gD F')-space.

One may ask now whether condition (g) in Proposition 3 is necessary or completely
superfluous. The answer to both questions 1s no. A hint that some condition on V' 18 necessary
gives the following consideration. If V., V, are systems of weights on X suchthat V, <V, ,
Vi #V,, and CV,(X) and CV,(X) have the same fundamental sequence B of bounded

sets, one would expect 7y, # 7y, . Thus at most 7y, can equal 78 . Hence we have the best

chance for Tf to equal 7y, 1if V' 1S the finest system of weights on X such that CV(X') has
B as fundamental sequence of bounded sets. At the end of this note we give an example for
this situation.

That (g) is not necessary can be seen from the following example. Let V' denote the set
of all weightson R. Then W = V and CW,(R) = CV(R) = C_(R) algebraically.
A fundamental sequence of bounded sets B_ is given by the functions 8, = 2 n-1 X(—nn)

n€ N. By [6] CV(X) isa (gDF)-space and 7, and 7 coincide on the B s. On the
other hand V' does not satisfy (g) for the sequence of K, = [—(n+ 1), n+ 1].



A stnict topology for some weighted spaces of continuous functions 141

To exhibit further examples where Proposition 3 is applicable we consider a construc-
tion given by Bierstedt, Meise, Summers [1]: let (v, ) denote a sequence of strictly positive
weights on X such that v, > 2v, ., Vn € N. If V is the system of weights containing
all weights v of the form v = inf _p a,v,, ¢, > 0, then CV(X) = U2, Cy, (X) isa
space with a fundamental sequence of bounded sets which can be described by the functions

B, = 2':] ,ie. B, ={f € CV(X)|| f| <B,}. With this notation we can prove

U

Proposition 4. If for each compact subset K C X andeachn € Ninf g v (z) > 0
then V satisfies condition (g) .

Remark. The condition on the sequence (v_) 1s obviously satisfied it all v, are continuous.

Proof of Proposition 4. Let ( K_) be a sequence of compact subsets of X such that K C

C K,., Yn€ N. We have to construct a sequence () of strictly positive numbers such
that v = inf _p «,v, sausfies (g). Put d, = inf €K, v, (z) and M_ = SUP ze k. v, (),

M,..M,
i lor

]

ne N.Hence 0 <d < M, <ooVne N.Nowputa, =1 and o, = M,
n>2.Forany n,k € N and z € K, holds

M. .. M
_ | B n+k—1
&mk”mk("T) > {xmkdmk = M, 3 3 > anvﬂ(:r)
1o Uaik-t

Hence 5(z) = min(a,v,(x),...,a,v,(2)) > v,(z) Vz € K, and B,(z)3(x) >
zﬁn(m)un(m)=2“'l Vz e K, . =

Now assume V is a system of weights on X, K < V and such that CV(X) has a fun-
damental sequence (B, ) of bounded sets given by the functions 8. Then there is a finest
system of weights V, on X such that V < V,, CV(X) = CV,(X) algebraically and that

all B s are bounded in CV,(X). V, is given by the weights u of the form u = inf . 22,

a, >0 Vne N (cf. [6]). Since K <V we have that sup_., £,(z) is finite Vo € N and

any compact subset K C X . If we furthermore have 8, > 0V, . the functions v, = ﬁl—

satisfy the hypothesis in Proposition 4. In this case we have V = V, and hence

Corollary. Let V be a system of weights on X with K < V and assume CV(X) has a
fundamental sequence B = (B,) of bounded sets such that the functions §,(z) = SupP scp_

|f(x)| are strictly positive. Then the finest locally convex topology TE’ on CV(X) that
coincides on the 1,-bounded sets with T is given by the system of weights W, associated

with V.
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This Corollary shows how to find an example where T, # 75 : choose a system of weights
V such that V' is strictly coarser than V;, and hope that W,, will also be strictly coarser than
WV, . This w_ili be done in the following example (cf. [5], [6]):

1 forz € [0,1]
Take X =R* B:R* - R*: = |
€ , B - B(z) {2("2} forr € (n,n+ 1lne N

B={feC(R") || fI<BLV={FeC(RHBLT}, V={2r>0, 7€V}
Then V is a system of strictly positive continuous weightson R*, CV(R*) has (2™ ! B)
as fundamental sequence of bounded sets, V # V,, and B is not contained in any order in-
tervall of CV(R™). Ty, is a normed topology with closed unit ball B. Hence V, = V =

= {3/» >0} and ¢ = Tw,,- By the remark following Lemma 2 we may assume that W,
contains continuous functions only. To prove 7, # T 1L suffices to find a function w € W7

which is not dominated by any function in W, .
1 forz € [0,1] ,

1 = w= g5 €Wy A
f u(x) {ﬂ+1 forz € (nn+ 1] ne N then w 5 € Wy ssume there

. On the other hand
sup, . x w(z)B(z) is finite, hence there is 4 > 0 such that B < -+ . Taking § = max (X, )

I

s w € Wy, such that w < Aw for some A > 0. Then pyg >

Y

w

weobtain 8 < 6 1; < §%up. Since the jumps of 3 increase very rapidly as n tends to infinity,

. . - 2
there is no continuous function between S and 6. Hence 7y, # ...
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