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1. INTRODUCTION

In this article we study a C*-comparison algebra in the sense of [C2] with generators related
to the ordinary differential expression A on the full real line R where, with constants o > 0

BeER,

O

(1.1) H=-3,(1+22)78,+ (1+7%)%  z€R.

More precisely, the algebra, called A | is generated by the multiplications a( M) : u(z) —
— a(z)u(z), by tunctions a(z) € C([—o00,+00]) and the (singular integral) operators
So = (1+ 222 A, 1S, = (1+ x*)P/29_A, and their adjoints. Here A = H~!/? the in-
verse positive square root of the unique self-adjoint realization H of the expression (1.1), in
the Hilbert space H = L%(R ). (We use the same notation for both, (1.1) and its realization.)

The case of B < a+ 1 was discussed earlier in [Tgl1], even for all n-dimensional problem.
The commutators are compact and the Fredholm properties of operators in A are determined
by a complex-valued symbol on a symbol space homeomorphic to that of the usual Laplace
comparison algebraon R ", although the symbol itself is calculated by different formulas.

The algebra, perhaps, is of interest because the singular Sturm-Liouville expression H of
(1.1) suggests the existence of a «boundary» at +o00, insofar as only finitely many powers
H™ are in the limit point case of Weyl - 1.€., have a unique self-adjoint realization. Actually,
it was shown in [C2], V, Theorem 4.4 that for 8 < 1 all powers of the minimal operator are
essentially self-adjoint, while for large 8 only H itself has a unique self-adjoint realization
(cf. also [CA], Theorem 1.6).

Here we focus on the case 8 > a+ 1. Inthe special case § = 1, a = 0 the algebra proves
to be identical with a well known algebra of [CH] (Theorem 2.1). For allother 8 > a+ 1
we prove the following result:

Theorem 1.1. The algebra A contains theideal K (H) of compact operators. Commutators
in A are compact; we have AV = A /K commutative.

Moreover, AY = C(M), where the space IM is a rectangle with sides I__ = {—o0 <
<t< oo}, I ={-0c0<t<o0}, I, ={-c0<z< 00}, I_={~00< z< oo}, with
endpoints identified as in Fig. 1.1.
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Fig. 1.1

The symbol (i.e., themap o : A — AY — C(M)) of the generators is given as follows.
For a € C([ —o00, 00]),

(1.2) Ogpmy =a(z)yon I, UT_,

continuous constant = a(+oo0) on I, .
Incasecof =3 —-1 >0 we get

(1) 14+ 18—t
(1.3) og, = %:T g, = f ~(t) on I,

I

continuous constant on _ , where the function y(t) € C*(R)NCO(R) isexplicitly given
by

sinh9r

2 o0 o o0
) = — d cnsh(l+‘t—-)/ dr )
() \/;ﬁ Teosh \U+075) o smne (o 7 1)

o] 1
with qmz{ﬁ_l\/(z;&ﬁl)2+4—l}.

(1.4)

Incaseof 0 < < -1 weget

t—1

'T(t) on Ii{}(}!

continuous constant on [, with the function ~(¢) of (1.4), where now ¢ of the second line
of (1.4) must be substituted by

1. s 1
q_2;3—-1_2(1+ﬂ)'

(1.6)
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In each case the symbols o, are the complex conjugates of the symbols o .
J 1

We shall discuss the proof of Theorem 1.1 in section 4, after extensive preparations. The
funcuon ~(t) of (1.4) really is the Mellin transform of a certain limit of the integral kernel of
the Sturm-Liouville transformed operator S, . The appearance of the Mellin transform instead
of the Fourier transform indeced seems to parallel the fact that boundary conditions are needed
al +00.

We note the series of results of Sohrab [Sr] concerned with similar C*-algebras of sin-
gular Sturm-Liouville or Schroedinger operators, where normally the condition Vg = o(q)
1s imposed on the potential g. In case of 8 < a+ 1, discussed in [Tgl], our algebra trans-
forms into an algebra of this type, even for higher dimensions. Qur present case seems to be
different. Especially, we expect noncompact commutators and an operator-valued symbol as
1n the algebras discussed by Arsenovic [Ar], Melo [M1], Plamenewski [Plj], Rabinovic [Rb].
For discussion of other C*-algebras and more general Banach algebras of similar nature see
also [Go], [GK]], [Du], [Pw].

Our proof will be accomplished by relating the algebra A to the algebras of [Tg2] and
[CA] on L? of the half-line R, by a Sturm-Liouville transform, a perturbation of the com-
parison expression, and a technique of [C2], VIII, called algebra surgery.

Surgery is used to «take apart» a comparison algebra, and examine the closed ideals cor-
responding to different endpoints of the interval separately; also relate such ideals between
algebras living on different manifolds. This was used extensively in [C2], and also in [CDg]
and [Tg1]. In all cases 1t amounts to a standard procedure, repeating the same conclusions.

The perturbation technique also was introduced in [C2] and used in [CDg]. However, In
the present case this technique seems possible only by a rather delicate argument, discussed
In section 3.

In section 2 we perform a Sturm-Liouville transform, for a modified algebra § | relating
this algebra to an algebra on the half-line. In section 4 the half-line algebra is related to the
algebras of [Tgl] and [CA], using the perturbation of section 3. Finally, a surgery argument
leads to the full description of the structure of A . Also, the case 8 > a+ 1 is reduced to
B=a+ 1.

2. STURM-LIOUVILLE TRANSFORM

We first assume « = 3+ 1. Instead of focusing on the expression H of (1.1) we first will
deal with a modified expression M . Both, A and M aredefinedon R. Fora=6—-1=0
weset M = H. Fora > 0 welet M = H onlyforz > 0. Forz < —1 we set

M= %H = 3(1 - 8,(z)*d,), with the standard abbreviation (z) = V1+ z2. In the
interval (—1,0) we let M interpolate between both expressions. For example, we set

4
(2.) M=-8,p(2)8,+4(x), p=gw (o) +w (0, g=cu_+w, (27
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withw, € C°(R), 0 €w, <1, w, +w_=1, w, =1 near (0,00) and (—o0,—1),
resp.

In H = L?(R) again we generate a C*-algebra S, using the same multiplication as in
section 1, but replacing Sj, respectively, by
(2.2)

Uy = (tw_+w,(z)*) M7 U, = —i(tw_{z) + w, (z)’) o M 1=—"—2

Our point is that the algebras A and S «coincide» over the subinterval (0, 00) of R,
by algebra surgery of [C2], VIII. Similarly, for reason of symmetry, A «coincides» with
S S§SS over (—o0,0), where §_u(z) = u(z). Thus our task is reduced to the discussion
of the structure of the algebra §, only «over the interval (0, oco) ». We will work out details
in section 4.

Generally, for a Sturm-Liouville expression of the form (2.1) one may change both depen-
dent and independent variable by setting

> dt
(2.3) wu=qu, y=p M/ s(z)= .
« Vp(t)

This change (from u and = to v and s, resp.) is meaningful only if the integral exists.
For our expression we have p = (z)?7, # = (x)7P, as z > 0. The latter is integrable at oo
if #=a—1 > 0. For the left- overcase 8 =1, a = 0 we replace the integral in (2.3) by
fo -

For 8 > 1 the function s( x) is decreasing from +oco 100, as —oo < x < 00. Its inverse
function decreases from oo to —oo, providing a diffeomorphism (—o00,00) « (0, 00).
Then (2.3) provides a unitary map Uu = v, where U : H — H, = L*(R,), by v(s) =
= u(z(8))/~(z(s)) . Indeed, we have [;°|v(s)|*ds = [ |u(z)[*dz, by an integral
substitution.

For 8 = 1 we explicitly get s(z) =log(z + (z)), a diffeomorphism R < R, and U,
defined as above, is a unitary map H — H . In either case executing the Sturm-Liouville
transform amounts to conjugating all bounded or unbounded operators involved by U*.

The principal feature of (2.3), called Sturm-Liouville transform, is that the differential

expression M above goes Into

(2.4) M* = -8 + ¢*(s), where ¢®(s) = (HY/Y) |zege)>

as confirmed by a calculation ([C2], V, (5.2)). In particular, speaking in terms of self-adjoint
operators, M2 = UMU?* is the closure and the Friedrichs extension of the minimal operator
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of M2 of (2.4), since the minimal domains, self-adjointness and positivity all correspond to
each other, under conjugation by U*.

For 1 < 8 < oo we have p= (z)*# ¢ = (2)*/~2,in 2 > 0, hence

(2.5 ¢*(s(2) = {(2)*P-2 — (z)0, ()"0, (z)*)}, 220

Formulas (2.5) holds for =1 and 8 > 1, but s( z) has different features in either case.
Important for us will be the behaviour of ¢® near the endpoint 0 (for 8 > 0) or co (for
B=0).

In the following let P(t) = 1+ a,t + ... denote any power series in ¢ convergent near
t = 0, and with constant term 1, where we will not distinguish between two such series. For
example,

i B2 gl AN g (1
)P =(1+1") 7" =t 1+ =t7"p| 7 | mear t=co.

Integrating this between x and oo we get(incaseof > 1)

1 1 1
(2.6) s(m)=ﬁ_1:1: P(;i-),
forlarge z. Toinvert this relationlet 2 = 1/z, n = }ﬁ, so that (2.6) yields s = nz!/mP(2?).
Or, n7"s" = 2P(2%), z = n""s"P(z?%). Or,

1
(2.7) z(3) = Es“ﬂp (M), e=(B-1DYFD  0<s<s,,

for small s, .

For the function ¢® of (2.5) we get

i (2() = 282P () — PP () 9, (2P () 3, (s #1P (7)) =

- % (3,52 —2ﬁ+4):{:2'3"’2}:’ (32) ,

(2.8)

where we used the rule of differentiation d_(z? P(2?)) = 0z°~1P(z*), as 6# 0, and that
P(2z%)P(2%) = P(2z*). Thus (2.7) and (2.8) imply

I
-1

2 — 4
3 —-20+ IPSZ“), n =

A —
(2.9 ¢Mo) = 7= 7P

0 <s<sy, a8 B>1.
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Incascof S=a+1=1 we get

(2.10) M2 =H®=-8+¢%(s), ¢*(s)= -i—P (;;(2)2) o Is] > s,

Here elfl = lz](1 + V14 22) = 2[:1:|P(z:2). Or, ]z[P(zZ) = 2e bl e, 2?2 =
= 4e~22P(e~%*). In other words, with a constant b, we get
5

(2.11) M5=Hﬁ=—3f+q’f‘(3), qﬂ(3)=z+be_2’F(e‘2“)¢ 8> 8.

This result at once gives a complete answer, regarding the structure of A | incaseof a = 0,
= 1. A calculation shows that

(2.12) US,U* =A% =H*12 USU*=—i(9,+e(s)) A2,

where e(s) = “‘“%ﬁﬂpz{s} € C([—00,00]). Thus A% = UAU"* is generated by A2,

—19d,A* (and the multipliers in C[—o0, 00] ) as well.

Theorem 2.1. Inthe case a =0, B =1 thealgebra UAU?* is identical with the algebra
of [CH], theorem 36, in the special cse n= 1 (cf. also the problems of IV, section 1, where
the algebra is called B ).

Proof. Cf. [CDg], Theorem 1.1, dealing again with the algebra 8 = B , where it is shown
that, originally generated by a(z) € C([—o00,00]), (1 —8%2)~'/2, 9_(1 — 8%)~'/?, may
also be generated replacing 1 — 32 by a perturbed expression 1 — 92 + r(z) . Perturbations
allowed there include the above as a special case. (We will discuss a similar more sophisticated
result in section 3, below.) Before applying Theorem 1.1, we must conjugate with a suitable

dilation u(z) — u(&x), to make the constant term of the expansion of ¢g® (s) at +oo equal
to 1. Such a dilation leaves the algebra 8 = B invariant.

From now on we consider only the case # > 1 (right now, o = 8 — 1). We then have
(2.9) near s = 0. For large s we essentially will get the expression A%, with o = 0,

by our construction of M. In detail, for z < —1 we have s(z) = -fj—,ff dz/{z) + c,,
co = 8(—1) — L 2 dz/(z), T = L. Or, s(z) = ¢y + Llog(|z| + (z)), s < —1. This

function may be inverted as above. A calculation yields (with a constant b )

(2.13) ¢*(8) = 1+ bye 2™~ %) p (¢727(s=%)) a5 5 > s,.

We summarize:
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Proposition 2.2. Let 0 < o= B—1. Thenthealgebra S* = USU* C L(H,) is generated
by all multiplications with functions b(z) € C([0,00]), and the operators

1
(2.14) Vo = (1 + -—) MA-12 vy = g MAT2

T

(and their adjoints), where we call the variable T again and where
(2.15) M* = -8+ ¢*(2), ¢"(2) eC™(R,),

with the asymptotic behaviour of ¢® near 0 and oo determined by (2.9) and (2.13), respec-
tively.

Indeed, we get
US = \s)MA12 ) UL = —i(u(8)0, + v(s)) M*~1/% | with

Tw_{z) + w, ()P

\/le_(m)?- + w, ()%

(2.16)

A(s) = (Tw— tw, (I)ﬁml) I:1:=I(-s]‘ p(s) = — |:r:=:1:(a}‘

v(s) = -—% (Tw_{m>+w+(z)ﬁ) (%) I:::=:.c(a)r p(z) asin (2.1).

Clearly A(s), —u(s) are positiveand C°(R,). Weget u(s) = —1 nearOand p = —1
near co, and A = 7 near oo. On the other hand,

(2.17) U(z)?U* = (2)%),epy = € 0s7P (), &, 0 of (2.7),

applied for 8§ = B — 1, shows that we have A(s) = E—I_TIEP(SZH) for small s. We have
v(s) = —z(z )-’i = ;}i} near z = —oo, S0 v{s) &~ 7 near s = oo. Also, v(s) =
——4(1:)1-((%% :\L:(:i:ﬁ2 EﬁlP(z)——* l; P(o?"), near s = 0. In view

of the fact that all multiplications by functions in C([0, co]) are among the generators, it 18
then evident that we may replace the generators U5 by the operators (2.15).
We will need later that, near z = 0, we have

Ud = (ﬁi 1 +a(1)) GM*‘*”Z),
-(—1+{:~(1))< 0, M%- W) <i§-+r}(1)) GM““Z),

(2.18)
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as was just verified.

We finally indicate the changes to be made in our above discussion, if 0 < a < 8- 1.
Clearly the Sturm-Liouville transform is independent of the choice of «; it only involves 3.
Hence M2 is of the form (2.11) again, on the halfline R , . However, the potential ¢® near
s = 0 now is of the form

(2.19)
. (B-DE1 1 1 o, f-l-a
"= g 2L O gy ) s T
028 L {1e (1 ) P (™),

with constants b, ¢, while there is no change in ¢® near oco.
Also, the generator V|, of (2.14) now must be replaced by

(2.20) Wy = (1+ 271y M2=12 4 of (2.19).

3. APERTURBATION OF THE COMPARISON EXPRESSION

Let us again work in H, = L?(R,) . Consider the two expressions

(3.1) H=—8§+£2+1, K=H+p(z), 0<z< oo,

where p € C*(R,) with p'® (z) = z¢7? %y (x), x, = 0(1), k=1,2,.... Assume that
x > 0 is a given constant, and that the «perturbation» p(x) does not destroy the positivity
property of H . Thatis, we assume that still K > ¢, > 0, or,

(3.2) (u, Ku) > cy(u,u), as uECE’:’(R,,).

Denote by T, and T, the comparison algebras, generated as C*-subalgebras of L (H, )
by the multipliers a( M), a € C([0,00]), and the pair of operators L H~1/% —ig H~'/?
(for the algebra Ty ), and LK =1/ —ig K ~'/% (for T ), respectively.

Theorem 3.1. Assume that v* = s+ 5 > 1. Then we have Ty = Ty . Moreover, the
operators S = K2 H-12 and S~ = H'2 K—1/2 are in this algebra T, and are both of
the form 1+ C, C € K(H,).

Proof. Let us first give a survey of this proof. We start with examining the operator K H~! =
= 1+ pH ™', and (i) will show that p~' € K(H,). Itis trivial that

(3.3) | KMV |?= (u, Ku) < c(u,Hu) =c|| H'?u|*, ueCP,
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which implies that S = K!/2 H-1/2 ¢ L(H,). In fact, the well known result of E. Heinz

and K. Loewner (cf. [C2], 1.5) implies that K*H~* € L(H,) forall 0 < s < 7. We

then will show that (ii) K!/2 H~'/? is hermitian mod K (H,), and (iii) ( K1/4 H~1/4)? =
= K12 g-1/2 (mod K ), where K1/ H=1/4 also is hermitian (mod K ), so that the coset
mod K of K'/2H-'/2 is positive hermitian. Finally (iv) we show that 8 = (K!/?
H71/2)2 = KH-! (mod K). All together it then follows that the coset S¥Y = § + K
must be the positive square root of (K H~')V = IV. By uniqueness of the positive square
root it then follows that S = 1+ C, C € K. Next (v) we conclude that S~! exists. Then,
of course, it also must be of the form 1+ C, C € K . However, then it follows that the gen-
erators of T, are contained in T, (and viceversa), since every comparison algebra contains

K(H) andsince 2H-Y/2 = Lgk-128=(LK-1/2)(1+ C), CeK, e. Q.E.D.

To complete this program we start with (v): This follows if the converse of (3.3) can be es-
tablished. However, (3.2) implies (N + 1)(u, Ku) > Ncy(u,u)+ || o |* +

+5 || 2 ||* —(|p|u,w), where we may use the estimate |p| < % + ¢(§), valid for all
§ > 0 with suitable ¢(8), for (N + 1)(u, Ku) > (Ncy —c(r+ 7)) || u|*>|| v ||* for
N=(1+c(r+ %))/cn . Thus,

N 1
O N+1’

(3.4) (u, Hu) < c(u, Ku), forall veCP(R,), ¢

~1/2

and this implies existence of S~! = H!/2 K=1/2 Next we prove (i).

Proposition 3.2. The operators U = EIIH “land V = IEQIH ~1 are bounded. Moreover,
the same is true for = R()\) and >3, R()\) whenever X > 0, where we have set R()\) =

= (H + M) ™', and then we have the estimates

1 1
(3.5) | RO <6, [ 8,RO) [[< e, 0. <A< oo,

with c independent of A .
Also, the operators b(( MYU and b( M)V are compact whenever b € C(R ), b(0) =
= b(o0) = 0.

Proof. We recall from [CA], (3.7), (3.8) that the resolvent R(1) = (H + ))~! is an integral
operator with kernel G (z, y) expressible in terms of Bessel functions, 1.¢.,

(3.6) Gy(z,y) = G\(y,z) = —/zyK (zV1+ X)) [ (yV1+ )), as y <z
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First set A = 0. It suffices to show boundedness of the integral operator with kernel
er;(I,y) in L2((0,1)). Indeed, for any partition 1= x + w, x € C([0,00)), x =1
near 0, write Z = ;er()x) = xZx + wZw + xw’Zw + wZw’x + C, C € K(H), where
ww?® = w, w? = 0 near 0, and where we used Proposition 1.2 to commute (mod K (H))
w® and R()). Only the first term yZyx needs consideration, since all others are trivially
bounded, the functions % or, w’/z* being bounded at 0. Since x has compact support, the

operator yZyx only involves a bounded interval [0, a], where we may assume a = 1.
In 0 < z < 1 we may estimate

(3.7) K, (z) = o(lz|™), () = o (|z]") ,
hence
1
(3.8 6oz = Yoo (Min {IL1127}).
Thus we get || ﬁfﬂi yGo(z,y)u(y)dy ||L:(w m< el Tyu ||#, with the Mellin con-
volution
(3.9) Tyu(z) = 2\1/_ mgb (E) u(y)—y-, v(t) = +=3/2 Min {tv £~ p}

The function ¢ is L' (R, 7—) as v > 1, since fﬂ ;b(t) fﬂl tv-2dt+ flmt“z"’ <
< oo. Thus we indeed have - H~! = 5 R(0) e L(H), as v > 1.

Remark. It is interesting to note that this operator is no longer bounded for v < 1.

The estimates (3.7) remain true if differentiated, assuming v > 1 again. Therefore the
same conclusion leads to boundedness of the operator 18, H~! .

For general A we conclude a bound independent of A by a scaling argument: For > 0
define the (unitary) dilation operator J, : H, — H, by setting J u(z) = {/mu(nz) . From
(3.1) we conclude that

1
(3.10) JrHI u=n"(H+ \u, d= -1 weCE(0,00)),

and this relation holds for our realization H as well. Forany A > 0 and 5 = 7:71 we thus
get

1 ¥
(3.11) RN = 5=y RO, 320,
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On the other hand, we have J,’;‘EIIJ“ = IJ;T}%" J*lg J = L%BI, so that

1 1 1 .1
(3.12) —R() = ;= RO, ~8,R() = J;-9,R(0)J,

Since J, is unitary and we have proven boundedness of r H~', and 8,/ ~' the uniform
boundedness (3.5) follows.

Finally, regarding compactness of X2 H~! = Y, write Y = b(z)(& H '), where the
second factor is bounded, as just seen, while b(z) vanishes near 0 and oo, hence is uniform
limit of a sequence b;(z) € C§°((0,00)). Notice that b}-(;er‘l) = (b;/z* H™! is

compact, since b, /x* € C,. Also || Y — bj(-I—er‘l) ||— O, so that compactness of ¥’

follows. Similarly one proves compactness of *£.9, H-!. Q.E.D.

Note that (i) i1s proven as well.
We are left with proving (ii), (i1i) and (iv). These involve the operators V, = K°*H™°
and their cosets U, = V, + K(H), for various s, notably s = 3 and s = 7. We need
3

U} = U,, and the semi-group property Uf =U,,, for s = jT and s = %— The first amounts
to compactness of

(313) KSH*—_ H *K®=K°? [HHS,K_E] K*
The second amounts to compactness of
(3.14) K*H"% —K°H°K*H*={K**[H™*,K™*]} (K*H™®).

To control the commutator [ H~° K ~°] we involve the resolvent integrals
(3.15)

H-ﬂ=5‘"’”"f %—;-R(J\), rn:““ﬂ“”f X en), SO =(K+ 3
0 0

i )N

We get

2 00 pOO
(316 [H k)= S [ [ S S0 ROV, KIRO)S ()
0 0

Actually, we first verify (3.15) forall w € D = H, N C*®(R,), noting the fact that D
is dense in H, while f = R(A)S(u)u € D has fedom H=dom K, Hf € dom K =
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dom H, so that the expression [ H, K] f is well defined as an element in D again. The fact
that f = RSu € C* again is a matter of hypo-ellipticity of ( K + p)( H + )\) . It of course
may be proven directly, using the Greens function (36) of H + A (which turns out to be a
parametrix of K + A as well).

Let us look at the commutator

(3.17) [H,K]=[H,(H+p)]=[H,pl=-[82p]=-2p8, —p"

Examining p’ and p", for p = x(z)z*~%, we find that expressions of the form ?%'3- and

ﬁé‘?—@x occur, where y has the properties of y above, but need not be the same function. In
view of Proposition 3.2 it is clear that the expression R(M) [ H, K1R(X) = I()) is not only
bounded, but even compact, asamap H, — H, . For (3.13) and (3.14) we neced compactness
of K°S(u)I(AN)S(p)K?® = X and KZ"S(;L)I(.)\)S(,{L) = Y respectively. Also the func-
uons X (A, u), Y(A, u) should be seen norm continuous and integrable (after division with
(Ap)?).

Clearly S(u) and K°S(u) and K 235( 1) are bounded so that X and Y are compact,
due to compactness of I( A) . Norm continuity of the two functions of A and g is no prob-
lem: write X (X, u) = (K**S(W)(HRO)(H ' [H,K1H Y)Y (HR(N))(K*S(u)) each
of these factors is either bounded and constant or norm continuous, in view of the resolvent
formula HR()\) — HR()') = (M = M) HR()) R(X\). Similarly for Y (X, ).

Regarding integrability of Y'(\,u): weneed only s = 5 and s = 7. For s = 3
write Y = (KS(p))(R(MN[H, KIR(\)R(w)(1+ pR(p)~")~! = F{F, F;. Here F, =
= O(1), and F; = O(1) as well. Indeed, we get || pR(M)u ||= 252y () R(MN) u <
< 0 mg“sz;H“IJﬂu 1= 7557 i J;(ng(nm)frH'lJﬂu < o Il u ][, with
¢

= g/2, hence || pR()\) ||— 0, as A — o0. Or,

(3.18) | pR(N) |1=a((1+;\)—5/2), as 0 <\ < oo.

In particular we get || pR()) ||< 1 for large X so that the inverse (1+ pR(u)) ™" exists
and is bounded for y > u,, for some u,. Thus F; = o(1), since we may restrict the
argument to large . Regarding the factor F, with (3.18) we now get

_ [+ 07 (1+p)~¢
(3.19) FZ—O(Mm{ 7, Te })

One checks easily that ﬁm is integrableon R, x R, .
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For s = ; weget F| = O(1+ p)~'/?) and the same estimates as before for F, and Fj .
It follows that

y 1 (14X (1 + )¢
(320) (Aﬂ)llq _ (}\#)1‘;4 1+“O (Mlﬂ{ 1+“ ) 1 4+ M\ }) 3

which is integrable as well.

Now we write
(3.21)

X =G,G,G,G,G,, with G, =Gs=H*R(p)'/?,
Gy =Gy = R(w)"?S(wR(w)™'*, Gy = R(w)'"* ROV H, KIR(\) R(p) '/*.

Clearly G, = G5 are bounded, and G, = G4 1s bounded as well: combining (3.3) and
B4)weget c(u, Hu) < (u, Ku) < C(u, Hu), whereone mayassume c< 1, C < 1, so
that also

(3.22) c(u, (H+ Mu) < (u,(K+Xu) <C(u,(H+MNu), ueCP(R,).

This implies (H + M) Y2(K + M)~12 = o(1), (K + )2 (H + )\)71/? = o(1), so that
G, = G4 are bounded.

To control Gy wewrite (H + N (H+p) = L* + (2+ X+ )L+ (1+2)(1+p) >
>(L++/(1+XN)(1+p))?, where L= H — 1= -3+ % > 0. It follows that

(3.23) (ROVR(u)? < R(v), where v=+/(1+X)(1+p)—1.

Now we use the same estimates as for F) :

- C((+0(1+ )¢ (1+ XS
53 o [UXNAIHT ae )y

Substituting this we again get convergence of the integral for s = i—, and for s = ﬁ- as

well if we still observe that then G, = G, = O((1+ u) /%)

4. S2 and the half-line algebra; proof of Theorem 1.1

In this section we first will prove
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Theorem 4.1. Forevery 8= a+ 1 > 1 the algebra S® = USU* coincides with the half-
line's Laplace comparison algebra P of [C1],V, 4, i.e., with the algebra C of [Tg2], or with
A of [CA], section 3. Moreover, in the representation of the symbol space M (P) used in
[CA] and described in detail in [C1],V, 7 (fig. 7.5) the symbols of the generators b(x), and
the operators (2.14) are given by

Oy = b(zx) on I; UI,, constant = b(0) on I, = b(oo) on I,;

t—1 .
(4.1) oy, = (1), oy, = ——n(t) on I;, constant continuous on I U I,

sinh 97

2 oo o o0
where ) = —— d o cosh 1+ 1) — d .
(1) \/;3'_[3 7 (( 1)2)./13. Tsinh‘*+1(n+ T)

Here ¢ = \/x + 1/4 — 7 = 3{57V/(28 - 1)* + 4 — 1}. The values of o, at I, are
unimportant in the following (cf. [CA], (5.10)).
The proof of Theorem 4.1 is an immediate consequence of Theorem 3.1, combined with

the statements of [CA], (5.10) concerning symbols. Just note that M2 of section 2 can be
written as

(4.2) M2 =K=-82+—+1+p(z), p(z)=¢(z)—1-—
z? x

28+4

where we let x = 25 5T and where p( ) satisfies the assumptions of (3.1) (we denote

4(B-
s by z again). Indeed, near z = 0 we use (2.9) for p(z) = F{(P(z?") — 1) — 2%} =
= bz?"2 P(z*") — 1, implying the estimates of (3.1) with e =Min{27,2}. Near z = oo we
use (2.13) for p(z) = be=27*=9 P(e~27*=9) — & Thus we again get (3.1), forany € > 0.

Thus the assumptiuns of Theorem 3.1 hold. (Observe that also & + 41 = 44‘3: ﬁ’fﬁ}i >1.)Asa

consequence of Theorem 3.1 and of [CA], Theorem 5.7 (together with the remark at the end
of [CA]) it follows that P equals the algebra with generators £ M4-1/2 —ig M“*~1/% (and

the multipliers). It also follows at once that + M2~1/2 may be replaced by (1+ + M4-1/2,

since the algebra clearly contains (1+ 1) M*~1/2 "and by inspection of symbols. This proves
Theorem 4.1.

The proof of Theorem 1.1 now follows as a straight application of [C2], VIII, Theorem
3.3. Indeed, first of all, if we conjugate S® = P with the unitary map U of section 2 we
get S = U*PU. Both algebras A and S liveon R, in H = L*(R). The generating
differential expressions U,, U, of (2.2) coincides with those of A of section 1 near the
subinterval [0,00) C R . Thus by [C2], VIII, Theorem 3.3 symbol space and symbol of
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both algebras agree over [0, oo) . Similarly for the other interval [ —oo, 0), as indicated in
section 2. This established Theorem 1.1, as far as the case 8 = a+ 1 > 1 is concerned.
In the case f > a + 1 we will follow a similar course. Note first that now the asymptotic
behaviour of ¢g® near z = 0 is slightly different, insofar as the first term at right of (2.5)
now reads (z)** = (x)X@*1-A(1)2h-2 where the exponent f — 1 — « > 0. This term
now 18 of lower order, compared to the other term. This leads to formula (2.19) instead of
(2.13), near 0, accounting for the amended ~(z) of (1.5), (1.6). secondly, we get S, =

(z)e1-P((z)P~' H~'/?), so we must deal with a multiplication (z)*~'=# € C([0, 00)).
As a consequence, the algebra A now is a subalgebra of A with parameters oy, By = ag+1,
where B, 1s chosen such that the factors x in (3.1) coincide. The generators of this sub-

algebra are a( M) : a € C([—o0,0]), S, and (z)*~'-PS, . However, the subalgebra co-

incides with the entire algebra. To see this we require an application of the Stone-Weierstrass
theorem similar to that at the end of [CA] which we will not discuss in detail.
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