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SCALARIZATION OF VECTORIAL RELATIONS
APPLIED TO CERTAIN OPTIMIZATION PROBLEMS

BRUNQO BROSOWSKI (*), ANTONIO R. DA SILVA (**)
Dedicated to the memory of Professor Gottfried Kothe

Abstract. In this paper we consider certain optimization problems which are described by
inequalities in partially ordered vector spaces. Using the scalarization procedure developed
in [6, 7] we derive optimality conditions for optimization problems of maximum type and for
vector optimization problems. As applications we obtain various optimality conditions in-
cluding an alternation theorem for the Chebyshev approximation with certain side-conditions
and a scalarization for vector optimization problems where efficiency is defined by a cone.

1. INTRODUCTION

An 1mportant tool for the investigation of optimization problems with inequalities as side-
conditions is the concept of an active inequality provided the set of feasible points of the
problem is described by scalar inequalities. One of us developed a procedure for transforming
a general vector inequality into an equivalent system of scalar inequalities, i.e. which describe
the same feasible set, compare [6, 7). As an application characterization and stability theorems
were derived for optimization problems, for best approximation in normed and in certain
metric vector spaces. In its simplest form, which will be used in this paper, the method consists
of the following:

Let X be a locally R -vector space partially ordered by a closed convex cone K such
thatint ( K) # @ . Then the dual cone K* has a o( X*, X )-compact basis B* and the set of
extreme points of B*

E* := ext (B*)

is non-empty. Then an element z € X is contained in K if and only if

vV €(z) 20.

e*cl

In this paper, we use this method for the investigation of optimization problems of max-
imum ftype, i.e. where the maximum of a set of objective functions is minimized, and for
the reformulation of vector optimization problems, which are defined by a cone, by objective
functions and their scalarization. In more detail we consider the following problems:
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(**) Partially supported by CNPq Grant 300344/87.
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Let X be a locally convex R -vector space partially ordered by a closed convex cone
K C X such thatint( K)# @ . Further let Y be a locally convex R -vector space and let
o:=(A,n,b), where

(1) A:Y — X isacontinuous linear mapping,

(ii) v isanelementin K \ {0},

(u1) b i1sancelementin X .

For each parameter o consider the minimization problem

MP (o). Minimize the function p: Y x R — R defined by p(v, z) := z subject to the
side-condition

A, —yz—be —K.

Using the method described in [6, 7] the minimization problem MP( o) can be replaced
by the equivalent minimization problem with scalar side-conditions:

MPS (o). Minimize the function p : Y x R — R defined by p(v, 2) := z subject 10
the side-conditions |

vV e (Au) — ze* () < e*(b).
e‘ck*

These optimization problems are equivalent in the sense that they have the same objective
function and the same feasible set. They are called of maximum type since, under certain
assumptions, they can be represented as:

Minimize on Y the function

[e* (A4, — b)
e*(7)

Y(v) = max <

eR|e'EE‘*}.

.,

We introduce some notation: we denote by 3 the set of all parameters o. Foreacho €
and u = (v, 2) In A(Y) x R, we define the sef of active incqualities by

B,,:={e" € E*|—-e"(v)e*'(7)z=¢"(b) }.
Further we define the set
Lo = {z* € B*|z*(v) —z*(y)z=¢€"(b) },

which is equal to
con (@)

It is easy to see, that Z_  is an extremal, compact and convex subset of B*. Thus, we

have

u

®,,:= ext (8,,)=%,,NE"
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For each 0 €  we define the set

Z, = ﬂ {(v,z) eY xRle* (Au) —e'(7y)z< e'(b)} ,
e*cE"’

which is called feasible set. Further we introduce the minimum value
E, :=inf {z € R|(v,2) € Z,}.
The set of all solutions of MP( o) in Z_ is denoted by
P :={(v,2) €Z,z=E_,}.

Further, we introduce the set

M:={ceP|Z,#0}.

We say, that the parameter o satisfies the Siater condition, if the set

Z: = m {(u,z) €Y x Rle* (Au) —ze'(y) < e*(b)}

e'ck"

1S non-empty; we denote by
Ay ={c€ep|Z;#0}

the set of all these parameters.

In § 2 we derive for the minimization problem MP (o) two characterization theorems for
a minimal solution which generalize the Kolmogoroff-Theorem (Theorem 2.2) and the Kuhn-
Tucker-Theorem (Theorems 2.4 and 2.5) to the more general situation considered here. These
criteria can be applied to Chebyshev-approximation with side-conditions. How this can be
done 1s shown exemplarily in § 4 for the cases of one-sided approximation, restricted range
approximation and for the approximation of a function and its derivative. For these particu-
lar cases various characterization theorems for a best Chebyshev-approximation are derived
including a general alternation theorem, which seems to be not known, compare Theorem 4.6.

Further we characterize a set of minimal points of MP (o) . This result will be used in a
forthcoming paper, to obtain conditions for the unique solvability of problem MP (o) .

In § 3 we investigate linear vector optimization problems as follows: As before let X
be a locally convex R -vector space partially ordered by a closed convex cone K such that
int( K) # @ . Further let be given an element b € X, a locally convex R -vector space Y
and a continuous linear mapping

A:Y - X.
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We denote by 3 , the set of all parameters o = (A, b) . For each parameter o € 3, we
define the feasible set

Z,:={veY|A,—be-K}.

Let K, be a line-free closed convex cone contained in Y such that int( Ky)#@ . In
vector optimization one tries to determine efficient or weakly efficient points in the feasible
set Z, (with respect to the cone K ). The precise definition is as follows:

Definition 1.1. (i) A point v in Z_ is called K ,-efficient if and only if

('U — Kﬂ) M Z-‘J — {'U'}
(ii) A point v in Z_ is called weakly K , -efficient if and only if

(v — int (KU)) NZ #0.

In § 3 we replace these definitions by scalar conditions. In this way we can reformulate
the notions of efficient and weakly efficient points in terms of objective functions which is
mostly used in the application, compare Theorems 3.1 and 3.2. Using these formulations we
derive necessary and sufficient conditions for a point to be weakly efficient. This gencralize
results of Brosowski [1], who considered the case of dim Y < oo, a finite number of ob-
jective functions and the space C[{T'] with its natural order. These results are used in § 4 10
extend the scalarization of Brosowski, Conci [2, 3] to the more general situation considered
here. It should be mentioned that even in the case considered by Brosowski, Conci [3] our
scalarization is more general since each objective function can be weighted and the space of
the scalarization parameters can be chosen of dimension at most

min (N —1,#E* —1).

This will reduce the computational efforts for the determination of suitable efficient points
by interactive methods.

2. OPTIMIZATION PROBLEMS OF MAXIMUM TYPE

Lemma2.l. If u= (v,E)) in Z_ isa solution of MP( o), then the set of active inequalities
® , , is non-empty.

Proof. If ® , = @, then we have

v e (Au) —e'(7E, —€e*(b) <0,

e*ck*
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which implies
v z° (Au) -z (E, —z*(b) < -6<0,

e*celB’
with a suitable number 6 > 0. Let
C = max {|z*(7)| € R|z* € B*}

and choose 0 < € < §/2C. Then we have

o

VB z" (Au) —z*() (E, —€) —z*(b) < =6+ |z*(7)]|e < ) < 0,
E-E »
i.e. the element (v, E_ — €) is also contained in Z_, which is a contradiction. ]

Theorem 2.2. Let o in B ). Then we have: an element uy = (vy, 2y) in Z_ is a solution
of MP(a) if and only if

vV min e (A

) 0.
vEY erc® .50

v —

Proof. (<«). Assume (v,,2,) 1s not a solution of MP( o). Then there exists an element

(v,2) in Z,_ such that z < 2. Since Z< = Z_ (compare [6, Satz 3.10]), we can assume
(v,2) € Z5. Thus, we have

:'EE‘ e’ (Au) —e(yz<e(b) =¢€ (Aﬂn) — e () z,

which implies

v 0<e(9) (zn — z) <e' (A%_u) .

e’ E@ 2,50

Since v, — v € Y we have a contradiction
(=). Assume there exists an element v € Y such that

Y € (Au) >0.

e'c® o,80

Then we have also
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with a suitable real number « > 0. Define the open set
74 {*EB*I*(A):}&}
=4z T —
L4 § v 2

which contains 2 | . Thus, there exists a real number 8 > 0 such that

v oz (A,,u) _ () E, — (b)) < -6 < 0.
*e€B*\W,

Define the real numbers

Cy = max {|z*(v)| € R|z* € B*},

¢, = max {|=* (4, )| € Rz € B},

and choose a real number p > 0 such that

< min @ 0 1
g 20012(00‘*01)’ |

Then we have

I.Ew r* (Al.-'u—-pu> _ :L.*(,T) (z{} . 92) . m#(b) —

=z (Avn) —z*(7) 2 — 2°(b) — pz* (4,) + z*(7)p*

I\

gpl—§+pcﬂ] <0

and
v (Auﬂ_pu) ~z*(7) (29 — p*) — z*°(b) =
= 7 (Auﬂ) — 2% () 2y — 2°(b) — pz° (A,) + T (7) 0% <
< —6—pz* (A,) +z(Mp° <
< —5+p(cﬂ +Cl) < 5

i.e. the element (v, — pv, 2z, — p*) is contained in Z,. Thus, (vy, zy) 1S not a solution of
MP (o), which is a contradiction. a
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Remark. For the second part of the proof we did not use the Slater condition,

Corollary 2.3. Let o in 8. If uy = (vy, E,) in Z_ is a solution of MP (o), then there

exists an element e* in ® ou, SUChthat e*(y) > 0.

Proof. Assume e*(«) = 0 for each e in & ;. Choose a Slater element (v,2) in Z_ .

Then we have for each e* in & ,

e’ (4,,) —€'(b) =0
and
e’ (Au) —e'(b) <0,
which implies
e’ (Auﬂ_u) > 0.
By Theorem 2.2 (v, , E_) does not solve MP( o), which is a contradiction. a

Theorem 2.4. Let o in MM . Then we have: an element uy, = (v,,2,) in Z_ is a solution

of MP (o) if and only if there exists an element x=* in Eu,uﬂ such that

(1) z"(7y) >0,

(1) Vv z*(4,) =0.

Proof. (<«). Assume there exists a functional z* in X with the properties (1) and (i1).

Uluﬂ

Choose an arbitrary element (v, z) in Z_. Then we have the estimate

s I*(Au-'b) _ I*(Auu_hb) o2

T*(y) z*( )

which implies (v,, z,) is a solution of MP(¢).
(=). The restriction mapping =* : X* — A(Y) is a weak* continuous linear mapping, if
we endow X* and A(Y)* with the weak* topologies. Thus, the set

5 = (EUIHJ
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is a weak* compact subset of A(Y)*. If the zero functional of A(Y)* is notcontainedin ',
then one can strictly separate the zero functional from the set ', i.e. there exists an element
w= A, in A(Y) such that

vV z°(w) >0

z*el’

which implies also
Y *(w) > 0.
T* EI:—I{EJ)
In particular, we have

V e (w)=¢"(A

)>0.
c'E@ 7,80

v

But this is a contradiction to Theorem 2.2.
We claim that for each functional z* in X such that z*( A(Y')) = 0 we have z*(v) >

U,UD

0. In fact, assume z*(v) = 0. Then we have for all (v, 2) in Z,
" (Au) —x(y)z—-x(b) =0
which contradicts the Slater condition. .

For mappings A : Y — X such that A(Y') has finite dimension, there is a representation
for the zero functional. Choose a basis

Vi, V2,..., Uy
of the linear space A(Y) and define for each z* € X* the vector

G(z%) = (2" (v)) 2" (v2) .-, 2" (vy))-

With this notation we have:

Theorem 2.5. Let o in £, and assume dimA(Y') = N . Then we have: An element u, =
= (vg,2y) in Z_ is a solution MP (o) if and only if

0 € con ({G (e*) e RN |e* € @mﬂ}).

Proof. The mapping G : X* — R " is continuous and linear. Consequently, we have

ext (6 (2,,)) c @ (et (2,,))=c(s,,,).
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Since G(Z,, ) is acompact set in a finite dimensional space, it follows that

G (,,,) = cnG(X,, ).

(<=). AssumeOincon (G(®,, )) = (G(Z,, )). Thus, the set

-1
G(O)Nx,,

contains a functional zj such that zj(A(Y)) = 0. For each such functional we have
z5(v) > 0, compare the end of the proof of Theorem 2.4. By Theorem 2.4, u, is a so-
lution of MP (o).

(=). Assume u, is a solution of MP (o) . By Theorem 2.4, there exists a functional zj €
C Eu'uﬂ such that z5(A(Y)) = 0. Then we have

0 €G(Z,,)=conG(&,,) -

Let o0 € M and a subset U C Z_ be given. Then we define the common set of active
inequalities by

B,p:=()®,.
uel

Theorem 2.6. Let o in Ml ,. Then a subset U C Z, is a set of minimal points for MP (o)
if and only if

v min e*(4,))<0.
veY e c@® oU

Proof. (<=). Foreach u in U we have & su C ® . Thus, we have also

min €' (A ) <O0.
ﬂgye-Eém‘E ( u) o

By Theorem 2.2, u is a solution of MP( ).
(=). Case 1. #U < oo. Then each element in the finite dimensional set con (U) is also
a solution of MP( o) . Choose a point uy = (vy, E,_) inrelint (con U) and let u = (v, E,)
be an arbitrary point in U . Then there exists an element 4, = (v,, E_) incon U and a real
number 0 < p < 1 such that

uy = pu+ (1 —pu,.
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Weclaim ® , , C ®, . Infact, choose e* € ® , , . Then we have

0= (4,) — e (NE, —e'(b) =
=ple* (4,) — e (DE, —€'(b)] +
+(1-p) [e* (4, ) —e(NE, —e' (D) <
<ple'(4,) —€e(NE, —e(D)] <0,
which implies
e* (A,) —e"(7)E, —e*(b) =0,

Le. e* € ® . Thus, we have
®, .06

o.u Oug "

Since
vV min e (4,) < min e (4,) <0,
veY ec® o.u e e® 0,40

the result follows for U finite.
Case 2. #U = oo. Assume there exists an element u = (v, E_) In U such that

v e (4,) >0.

e’ 'E@ o U

Since the set Z_;; := (|,cy L., 18 an extremal subset of B* we have also

This inequality implies
0 =%,,n{z" €B'a*(4,) <0} =

- N (2.0 {=" € BYla" (4,) < 0})

uel/

By compactness of the involved sets there exists a finite subset
Up == {u;,uy,...,u,} CU

such that
Z,u,N{z" € B*|z* (4,) <0} =0,

which 1s impossible by case 1. i
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3. LINEAR VECTOR OPTIMIZATION

Theorem 3.1. Let K be aline-free cone. A point vy in Z_ is K -efficient if and only if

e'EVE; e*(v) < e*(vp) = c'zﬁ,; e*'(v) = e* (vg),

Joreachv € Z,.

Proof. The condition of the theorem is equivalent to

V vy —vE Ky =>v=1,.
VEZ,

(=). Assume vy, is K-efficient. Then one has

(”n — Kn) NZ,={vy}.

Let v bein Z  such that vy — v € K. Then we have v € v, — K, and consequently

vy in (‘Un —Kﬂ) r"IZu= {UD},

L. vV =v,.
(<«<). Now assume
V UG—UEK{}“ZU

VEZ,

Letv bein (vy — Ky)NZ,. Then v in Z and vy —v € K, and, consequently, v = v,
1.e. v, is K -efficient.

Theorem 3.2. A point v, in Z_ is weakly K ,-efficient if and only if

:'gﬂge (v) <e (”u) #l'gﬂae (v) =e (un) ,

foreach v € Z_.
Proof. (=). Assume vy, is weakly K ,-efficient. Then we have
(vo — IN(Ky))NZ, =0,
Let v € Z_ be such that

L < E .
c'EEg e(v)<e (”u)
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Then v — v, ¢ int( K,). By Satz 1.1 of [6], there exists an element ey € E; such that
eo(v—1vy) =0 oreg(v) =ej(vy).
(<=). Now assume v, € Z satisfies the relation of the theorem, and there exists an element
v € Z, such that

v € vy — int(K,) .

Then we have

vV e*(v) <e*(v),
e*€Ey

which contradicts the relation of the theorem. o

Theorem 3.3. Let 0 € M , i.e. o satisfies the Slater-condition. Then a point vy in Z is
weakly K ,-efficient if and only if

v min  e*(v) <0,
VEY eoc® ., UE:

oV

where

H,uﬂ

®° = {e"‘mAEY‘]e* €®,, }

Proof. («). Assume the condition is satisfied and v, is not weakly K ,-efficient. Then, by
Theorem 3.2, there exists an element v € Z_ such that

E':;#E; e’ (v) <ée' (uﬂ) ,

which implies also
VvV z(v) <z*(v,).
€8} ( 0)

By compactness of B, there exists a real number 6 > 0 such that

V z*(v) —z* (1) < -6 <0.

I'eB;

Since Z< = Z_ (compare Satz 3.10 of [6], in each neighborhood of v there exists an
element v in Z$ . Thus, we can assume

¥ * 6
I-EB{;I (V) = 2" (w) < —3 <0
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and consequently,
vV e (V) <e”(vy).
e' €L ( U)
Further we have

V e (v) <e’(b) =¢€ (uﬂ) .
:'E@u |

d','l.lu

Thus, we have
E’ e’ (uﬂ - "ﬁ) >0,
E'E@ o0 UE;

which contradicts the assumed condition of the theorem.
(=). Now assume v, € Z, 1s weakly K, -efficient and suppose, by contradiction, that
there exists an element v € Y such that

Y e*(v) > 0.
E'E@n

LU

These inequalities imply

and

YV z"(v) > 0.
€8,

Since the set Z_ i compact, there exists a real number « > 0 such that

0

v z°(4,) >a>0.

T* Ezﬂ.un

The open set
7% ‘—{ * € BY| *(A =
a' - 1T € L U)}Z}

contains Z_ . Consequently, there exists a real number § > 0 such that

\4 m*(ﬂv—b)g—ﬁr::{).
T EB\W, 0

Define the element v := v, — pv, where p satisfies the inequality

&
O{ﬁ{ﬁ’
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with C := max {|z*(A,)| € R|z* € B*}.
Then we have:

(1) v z%(v) =12x" (”0) —pr*(v) < 1° (uﬂ)

1°€ B}

:"{?W,I (A;) — z*(b) =

(ii) =z (4,,) - pz* (4,) - 2"(B) <

<z (Auﬂ) _2*(b) <0

vV 2*(4;) —z*(b) =

2 €B\W,,
(i) =z (Au,, - b) - pz" (4,) <
< -6+ pC< ; < 0.

These estimates imply that v is contained in Z_ and satisfies for each e* € Ej the in-
equalities
e'(v) <e’ (‘UD) ,

Le. v, 1s not weakly K, -efficient. 3

Remark. For the proof of the necessity the Slater-condition was not used. Since each K ,-ef-
ficient point is also weakly K ,-efficient, we have the

Corollary 34. Let o € M . If vy in Z_ is K,-efficient, then

v min e*(v) <0.
'I'.p'ET"Ir E'E@ oo uEE

Theorem 3.5. Let o € MM . Then a point vy € Z_ is weakly K ,-efficient if and only if the
set

* 0 o
F* := cone (Eu_uﬂ) + By
contains a linear functional x3 such that

(%) zo(B) =0,
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where E;:Uu denotes the weakly compact and convex set

— pr 0
con ® a0 °

Proof. (<=). Assume the set F* contains a functional xj with property (*). Such a func-
tional has a representation
Ty = AT] + V)

such that
r} € L), & X2 0 & v} € B;.

Choose an arbitrary element v € Y . Then we have
0= zy(v) = Azi(v) + v (v),

which implies
Azi(v) <0 orvj(v) <0.

Case 1. vi(v) <O0.
Then the set {z*(v) € R|z* € Bj} is an interval [a, 8] with o < 0. The extreme
point « is the image of an extreme point Bj, 1.e. we have

e’(v) <0

for at least one element of Ej .

Case2. A =0.
Then we have v{(v) = 0 and we can apply case 1.

Case 3. A > 0 & vi(v) > 0.
Then we have z7(v) < 0 and the set

{I*(u) cER|z* € zjjuﬂ}

is an interval [ o, 8] with a < 0. The extreme point « is the image of an extreme point of

0 "
Eu,uu! i.e. we have

e’(v) <0

for at least one element in @ °

ﬂ,ﬂu *

Thus, we have for an arbitrary element v € V the inequality

min  e*(v) 0.
o >
etc® o UE]
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By Theorem 3.3, v, is weakly K ,-efficient.
(=). Assume v, is weakly K,-efficient and that set F* does not contain an element z;
with the property (*). Then we claim that such a functional is not contained in the compact
set

o,V

D := con (ED n UBE) .

In fact, if z§ is contained in D, then we must have z§ € quﬂ since otherwise zy would

be contained in F*. Choose an element v in ZF. Then we have

0= 25 (¥-vp) = 25(9) — 75 (v) <
< zg5(b) —zp (vy) =0,
which is a contradiction. Hence zj is not contained in D.

The set ) 1s a weak® compact subset of Y*, which does not contain the zero functional.
Consequently there exists an element v in Y such that

v z*(v) > 0.
*el
In particular, we have
vV e*(v) > 0.

ec® ., UE
In view of Theorem 3.3, v, iS not weakly K ,-efficient, which is a contradiction. @

Corollary 3.6. Let o € Ml ). If vy in Z_ is K, -efficient, then there exists a functional z
in

0 *
cone ():g_uﬂ) + By

such that £,(Y) = 0. J

If Y has finite dimension, there is a representation of the functional zj, . Choose a basis

UI,UZ,...,UN

of the linear space Y and define for each z* € Y* the vector

G(z") = (2" (vy),2" (v2) ,..., 3" (vy))

With this notation we have:
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Theorem 3.7. Let o in M and assume dimY = N . Then an element v, in Z_ is weakly
K, -efficient if and only if

0 € cone ({G‘ (e*) e RV |e* € @ﬂ_%}) + con ({G(e*) e RN|e* € E}}).

Proof. The mapping G : Y* — R ¥ is a continuous linear mapping. If C is a compact set
in Y*, then we have

ext (G(O)) Cc G(ext(C)).

Since G(C) isacompactset in a finite-dimensional linear space, the last inclusion implies
G(C) = con G( ext(C))
and also
(%) cone G(C) = cone G( ext(C)).

(<). Assume
0 € cone (G‘ (tﬁ E,uﬂ)) + con (G (Eg)) .

By (*), we have

0 € cone (G‘ (Eﬂ )) + con (G (Bg)) -

E ,uﬂ

Thus, the set
G0N (cone (Eiuu) + Bﬁ)

contains a functional =3 such that z3(Y’) = 0. By Theorem 3.5, v, is weakly K ,-efficient.

(=>). Assume v, is weakly K, -efficient. By Theorem 3.5, there exists a functional z,
such that

7y € cone (L0, )+ B} & zp(Y) = 0.

cone (G (£7,,)) = cone (G (®3,,))

con (G (Bg)) = con (Ey)

By (*), we have

and

which implies
0 € cone (G‘ (lﬁ E_UD)) + con (Ey). o

Theorems 3.5 and 3.7 imply the following corollaries:
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Corollary 3.8. Let o € M . If there exists a functional xj such that
g € By & zo(Y) =0
then each point Z, is weakly K y-efficient.

Corollary 3.9. Leto e MMl ,. If
0 € con ({G(e*) e RY|e* € Ej}),

then each point in Z , is weakly K ,-efficient.

4. SOME EXAMPLES
Let S be a compact Hausdorff space. S# @, and let

[, :={ze€Z|0 <|z| L k}.
Consider the compact Hausdorff space

and assume that the R -vector space X := C[T'] is partially ordered by the cone

K = {I e CITl|l v z(t) > 0} :
teT
Let Y be a linear subspace of C[S]. Consider the parameter o := (A, «, b), where
(i) A:Y — CI[T] is acontinuous linear mapping,
(i) v isanelementof K \ {0},
(iii) b isanelementin C[T].
Then we consider the minimization problem
MP (o). Minimize the function p: Y x R — R defined by p(v, 2) := z subject to the
side-condition
A,—-b—vz€e -K.

To characterize a solution (v, , £_) of MP(co) by using the Theorem 2.2 or 2.5, we have
to determine the set of extreme points E* of a basis of K*. One can choose a basis B* of
K* such that E* consists of the positive evaluation functionals of C[T’], compare Holmes
[5, 80-81]. Thus, we can identify the set &  ,  with

My, = {(1,9) € T4, (n,5) (0,9 E, = b(n,5) }

Using Theorem 2.2 we obtain the following characterization of a solution of MP( o) :
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Theorem 4.1. Assume the parameter o satisfies the Slater-condition. Then an element (v, ,
E) € Y x R is a solution of MP (o) if and only if

min A (n,8) <0.
veY (na)eM, "(n ) S

For finite-dimensional subspaces Y C C[ S] and an injective mapping A we obtain also
a characterization theorem by using Theorem 2.5. Let

Ul.ﬂzi...,‘u”

be a basis of Y . Using the representation of the functionals of ® 0.0, the vectors G(z*) can
be identified with the vectors

H(n,s) = (A, (1,9, 4, (1,9),....,4,,(1,9)).

Then, Theorem 2.5 implies

Theorem 4.2. Assume the parameter o satisfies the Slater-condition and that

Y = span (v;,vy,...,vy) .

Then, an element (v,, E) in Y x R is a solution of MP( o) if and only if

0 € con ({H(n,s) & R”|(n, 38) € Mu_”n}) .
By suitable choices of the quantities S, A, k, etc. we obtain from the Theorem 4.1 and
4.2 characterizations of best Chebyshev-approximations with various side-conditions.

Example 4.3. Ordinary Chebyshev-approximation.

Choose k£ = 1 and define a mapping

A:CI[S8] - CI[T]

by setting

V x(7n,s) = ny(s),
(n,s)ET

where z := A . Consider the parameter

o= (4,7.4)
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where y(n,s8) = 1 foreach (n,s) € T and f is a given function in C[S]. It is easy to
see that the parameter o satisfies the Slater-condition. Then, (v,, E) 1s a solution of the
minimization problem MP(¢) if and only if v, is a best Chebyshev approximation to the
function f from Y with minimum distance E. The condition

(n,8) € M,
1S equivalent to
vo(s) — f(s) =nE,, i.e.n=sgn(vy(s) — f(s)).
If we introduce the set
M

fuy = {8 € S]|f(s) —vy(s)| = E}

and observe that Y contains with v also —v, we obtain the well-known Kolmogoroff criterion
for best Chebyshev approximation:

Anelement vy € Y is a best Chebyshev approximation to the function f fromY if and
only if

VY min (f(s)—vﬂ(s))u(s)gﬂ.

veEY "EMI—*‘D
If Y = span(v,,v,,...,vy) asimilar consideration shows that the vector H(n,s) can
be represented as
v, (8) \
Uz(ﬂ)
H(n,s) = sgn(f(s) — vy(3))
un(s) /

Thus, we conclude from Theorem 4.2, the well-known zero in the convex hull theorem:

An element v, of a finite-dimensional subspace Y = span(v,,v,,...,vy) IS a best
Chebyshev approximation to the function f fromY if and only if

0 € con ({sgn(f(s) — uﬂ(s)) . € RN|3 € Mf—uu})'
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Example 4.4. One-sided Chebyshev approximation.

Choose k = 1 and define a mapping
A:C[S] - CIT]
by setting

YV  z(n,s) = ny(s)
(n.8)eT

where z := A . Consider the parameter

J = (AI‘TIA)') )

where

1= 1+
Y(m,8) = 5 (r%p-“f('n,s)— 5 )

for each (n,8) € T and f is a given function in C[S]. The Slater condition is not always
fulfilled for MP( o), consider e.g. the case where the function f,v,,v,,...,v, have acom-
mon zero s, € S. For the following we assume that o satisfies the Slater condition. Then,
(v, E) € Y x R is asolution of the minimization problem MP(¢) if and only if v, is a
best one-sided Chebyshev approximation to the function f from the set Z_. Let us consider

the case (7, s) = 52 then the condition (7, s) € M, is equivalent to

.

vo(8) — b(s) = <

\

Now define a function € : S — {—1,0, 1} by setting

—1 if b(s) —ve(s) = E,
g(s) = 1 if b(s) —vy(s) =0

0 otherwise

Then Theorem 4.1 implies the following characterization:

Assume the parameter o satisfies the Slater-condition. Then an element vy € Z 15 a best
one-sided Chebyshev approximation (o the function f from Z_ if and only if

vV min e(s)v(s) <0.
veY e(s)50

If Y is finite-dimensional then one can prove also a zero in the convex hull theorem as in
Example 4.3.
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Example 4.5. A general alternation theorem.

Choose k=1 and § = [, ] with —00 < @ < 8 < oco. Define a mapping
A:Cla,B] — CIT]

by setting

vV z(n,s) = ny(s),
(n,8)€T

where 7 := Au. Further assume that Y C C[ «, A] satisfies the Haar condition, i.e.

et (s, (5,)) #0

for all points o < 8y < 3, < ... < sy < B. Consider the parameter

g = (A,’}‘,Af) ,

where f is a given function in Cl«, 8] and v isa K \ {0}. Assume o satisfies the Slater
condition and the condition

V r}r(lls)i_r]((_l,s) >0
3ES

The last condition implies that
(7?:5) E MD’TU{] = (_7?: 'S) & Mg}uu .

If we introduce the set
Mf"*”ﬂ .= {S e Sl(nls) e Mﬂ'.ﬂn}

and the mapping  : M fovy {—1, 1} we can state the characterization Theorem 4.2 as
follows:

Anelement (vy, E) € Y x R is a solution of MP( o) if and only if

U1(3) \

UQ(S)
(%) 0 € con ({n(s) ‘ e]R”|ser_uﬂ}).
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By Caratheodory’s theorem and by the Haar condition the relation (*) implies that there
exists N + 1 points

a<s)<8 <...5y< B

in M v, such that

N vy (Su)
Eu={]punu =0
Un (Sy)/
po+p+...py=1,and p, >0, v=0,1,..., N. Making the same considerations as in

Cheney (4, 74-75], we can conclude

nyny-#l < 01

v=0,1,...,N — 1. An easy calculation shows that

b (Su) — Yy (Su) = (T"ui Su) Ecri

v=0,1,...,N. Taking into account the inequalities n, 7 ,, < 0 if follows that

b (su) — v, (sy) =g(—1)"" 1y (E(—l)",sp) E_.

v=0,1,..., N with a suitable chosen € € {—1, 1}. Thus, we have the following general-
1zation of the classical alternation theorem.

Theorem 4.6. Assume Y C Cl«, ] isa Haar subspace and o satisfies the Slater-condition
and the condition

vV 4(1,s) +q(-1,5) > 0.
sES

Then, an element (vy, E) € Z_ x R is a best Chebyshev approximation to the function f if
and only if there exists an € € {—1,1} and the set M contains N + 1 points

a<s) <8 <...<s,<b

such that

b(s,) — v, (s,) =e(—1)"""n (e(-1)",s,) E.
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By appropriate choices of 4 we obtain well-known results, €.g. if we choose

v(n,8) =1

then we have
b (Su) — VYo (Su) = E(_I)IHIE!

which is the classical altermation theorem. By choosing

I —n
n,s) = ——
(one-sided best approximation) we obtain
1 — g(—=1)¥
b(s,) = vo (s,) = ——5—E,
v=0,1,..., N, ie. therc must be a sequence of points

ﬂ‘£30<31{..-{3N£ﬂ

in M,_, such that the error function f — v, is alternately zero or attains its maximum value
E.

Example 4.7. Approximation of a function and its derivative.

Choose k=2 and S = [, 8] with —0c0 < a < 8 < 00. Define a mapping

A:C'a,Bl = C[T]

by setting

ny(s) if ne{-1,1}
Y z(m,s) = L ‘ ;
(n,8) €T >ny'(s) if  npe{-2,2}

where z = A . Consider the parameter

o= (A,W,Af) ,

where f is a given function in C'[«, 8] and ~ is a function in K defined by ~4(7,s) = 1.
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Then, the element (v,, E) € Y x R is a solution of MP (o) if and only if v, is a best
approximation to the function f from Y with respect to the norm

| £ lloo:= max (|| £ lloos Il £ lloo)

and E 1s the minimum distance. Since the parameter o satisfies the Slater-condition, we
obtain from Theorem 4.1 the following characterization:

An element vy € Y Is a best approximation to the function f from'Y with minimum
distance E_ if and only if

Ymin | i (/) — (@) o).

—

min (ff(s)—u:](s))v(s) <0.

JEMJ.;_":]

Here M,_, resp. M 'y, denote the sets

My, = {5 € (o, BI| () — v (s)| = E,}

resp.
Mf*-u;] ={s€[aBl]|f(s) —vy(s)|=E.,}.

Analogously as in the previous cases one can obtain a zero in the convex hull theorem.

Example 4.8. Restricted range approximation.

Choose k=2, § = [e,B] with —oo < a < f < oo, and define a mapping
A:Cla,pl — CI[T]

by setting

ny(s) if  ne{-1,1}
V_z(ms) =4 _ :
(ns) €T sny(s) if  ne{-2,2}

where £ = A . Further let be given functions u, [, in C[e, 8] such that

vV [(s) < u(s).
s€la,f]
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For a given function f in Cl«, 8] define a function b in C[T] by sctting

C nf(s) if e {11}
b(m,s) =<4 u(s) — f(s) if n=—2
| —I(s) + f(s) if n=2

Consider the parameter o = ( A, ~,b), where «y is a function in K \ {0} defined by

I f ne{-1,1}

b(n,s) := -
0 if ne{-2,2}

Then, the element (vy, ) € ¥ x R is a solution of MP(¢) if and only if v, is a
restricted range approximation to the function f from Y with minimum distance E, i.e. the
error function f — v, satisfies the side-conditions

V I(s) < f(s) —vp(s) < uls).
s€S

To state characterization theorems for the restricted range approximation we introduce the
set

M;_, = {s €S| |f(s) —vo(s)| = E,
or |£(s) = vo(s)] = I( s)
or £(s) — vo(8)] = u(s))

and the mapping € : § — {—1,0, 1} defined by

—3gn (f(s) - uﬁ(s)) if (sgn (f(s) — uﬂ(s)) ,S) C MU_UD

1 if f(s) — vo(s) = u(s)
e(s8) =
—1 if f(8) —vy(s) =I(s)
0 otherwise

It is easy to see that the mapping € is well-defined. Since o satisfies the Haar condition
we conclude from Theorem 4.1:

Anelement vy in Z 1s a restricted range approximation to the function f if and only if

v min g(s)v(s) <0.

veY e(s)+0
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If Y 1s finite-dimensional then, by Theorem 4.2, we have:

An element v, In Z_ is a restricted range approximation to the function f if and only if

”1(3)\

”2(5)
(%) 0 € con ({g(s) _ e R¥|e(s)#0}).

'UN(S)/

If Y satsfics also the Haar condition then the relation (¥) implies that there exist N + 1
points
(IES{]“:SI {:¢..{Sﬂgﬁ

in M,_, such that
0

U (Su)
L) (Su)

Evfiﬂpug (Su) . = 0!

Uy (Su) /

potpt...+py=1l,andp, >0, v=0,1,..., N. As in Example 4.5, we can conclude

(s,) € (s,41) <O.

v=20,1,...,N — 1, ie. the error function f — v, alternates between the values min[ E_,
u(s,)] and max[—FE_,l(s, ,,)]. More precisely, this is stated in the following

Theorem 4.9. Assume Y C Cla,f] is a Haar subspace. Then, an element (vy,E)) €
€ Z, X R isarestricted range approximation to the function f if and only if there exists an
e € {—1,1} and the set M,_, contains N + 1 points

a<s5;<8 <...<sy<p

such that
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Example 4.10. Scalarization of vector optimization problems.

Scalarization of a vector optimization problem means to replace this problem by a family
of scalar optimization problems such that a solution of such a scalar problem is weakly effi-
cient and such that each weakly efficient point can be obtained in this way. In the following
we extend the scalarization developed in [2,3] to the more general situation considered in this
paper. For the scalarization we use the equivalent formulation of a weakly efficient point of
Theorem 3.1.

To scalarize a given vector optimization problem choose an element ~ in K, such that

V e (y) >0;
e*c kg

this is always possible since we assume int( K )) # @ . Further choose a functional e, € E},
we can assume ey (~) = 1. Then, define the set of parameter

A={N€Y]eg(A) =0},

which implies ¥ = A + R~. Consider for each A € A the following scalar minimization
problem:
MPS ()). Minimize the function p : ¥ x R — R defined by p(v, 2) := 2 subject to
the side-condition
v—yz— A€ —K,

and
A —-beE—-K.

The second side-condition describes the feasible set. This scalarization has the wanted
properties, as the following theorems show. We denote by P, the set of all minimal points
MPS(X) . Eachelement in P, is a pair (vy,2,) in Z_ x R..

Theorem 4.11. Let v, be a weakly efficient point in Z_. Then there exist a parameter hg €
€ A and a real number z, such that (vy, zy) is a minimal point of MPS () .

Proof. The element v, has a representation v, = p, + ay with 4, € A and o« € R . Then,
define
A =y —ay & 2y = a.

If (vg,2¢) 1s not a minimal point of MPS () then there exists a point v in Z_ and real
number z < z, such that

v—y2z— A € — Ky & A, - b€ —-K.
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Then, 1t follows that
vV e (v) <e' (‘UD) ,
e*E by
which contradicts the weak efficiency of v, . o

Since each efficient point is also weakly efficient we have the

Corollary 4.12. Let v, be an efficient point in Z_. Then there exist a parameter Ay € A
and a real number zy such that (vy,2,) is a minimal point of MPS( ;) .

Theorem 4.13. Let X\ in A be given. Then, each point v € Y with (v, z,) € P, is weakly
efficient.

Proof. Clearly, each v € Y with (v, z,) € P, is contained in Z_. Assume now, there is a
point (v,,25) € P, such that v, is not weakly efficient. Then there exists a point v in Z,

such that
vV e’ (V) < ¢ (“u) ,

E‘EEH'

which implies that there exists a & > 0 such that

(v — < —be’ .
e*gﬂge (u vﬂ) < e" ()

Then it follows that

6
v E*(F) — E*(k) — (20 — —) E*(f]r) =

e* kg 2
¥ f— * * 6 %
=€ (u—u[})-tre (vﬂ)ve ()\) — (zﬂ——-i—)e () <
* 6 * 6 *
< —oe"(y) + 5 € (7) = 5¢€ (7 L0,
1.e. (v, 2y — 6/2) is a betier solution, which 1s a contradiction. =

The set P, has a representation ¢y, x {2, } suchthat Q, C Z_ and 2z, € R..

Theorem 4.14. If the set P, contains an element (v,,2z,) such that vy is efficient with
respect {o the set (Q,, then v, is also efficient with respect to the set Z .

Proof. Choose a point v in Z_ such that

e*gﬂ‘a e (v) <e (UG) .



90 B. Brosowski, A.R. da Silva

Then we have also

e*(v) —e*(N) —e*(Mzy < e (vy) — (X)) — e*(7) 2,

1.e. (v,2y) 1sin P, and so v in @), . Since v, 18 efficient with respect to @, it follows that

vV e'(v) =¢€° (‘UD) ,
e*€Fy

which proves the claim. &

If we choose Y = R then we have the semi infinite-vector optimization problem with
respect to the cone K, . As theorem 4.13 and 4.14 show the scalarization can be carried out
with a linear parameter set of dimension at most N — 1. Inthecaseof e < N — 1 objective
functions the dimension of the parameter space can be reduced to e — 1 as the results of
Brosowski, Conci [2] show. Thus, we have the

Theorem 4.15. Consider the semi-infinite linear vector optimization problem in R N with
respect to a cone K, or with respect to e linear objective functions. Then, the B&C

scalarization can be carried out with a linear parameter space of the dimension at most
min{e— 1, N —1).
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