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QUOJECTIONS AND THE PROBLEM OF
TOPOLOGIES OF GROTHENDIECK

J. BONET, J. TASKINEN
Dedicated to the memory of Professor Gottfried Kothe

Abstract. We show that the problem of topologies of Grothendieck has a negative answer
In the case of quojections: we construct a separable reflexive quojection E such that E@n,lz

does not have property ( BB) in the sense of [T1]. This result implies for example the exis-
tence of a strict ( L B) -space without a local partition of unity in the sense of Hollstein.

1. INTRODUCTION AND PRELIMINARIES

Most of the concrete Fréchet spaces appearing in the analytic applications of Functional anal-
ysis are nuclear Fréchet spaces or Banach spaces. Relevant classes containing the nuclear
spaces are Schwartz spaces and Montel spaces whereas the class of quojections, which has
recenty received much attention (see for example the survey article [M-M]), constitutes a
way to generalize the structure of Banach spaces to a wider setting. During the last few years
the classical problem of topologies of Grothendieck (open question 2 in [G]) has been con-
sidered 1in most of the above mentioned classes of Fréchet spaces (see [T1,2,3]). In this note
we treat the problem 1n the last open case, namely in the setting of quojections.

Recall that by definition, section 5 in [B-Dul], a Fréchet space is a quojectionif it is isomor-
phic to a projective limit of a sequence of surjective operators on Banach spaces. Section 2
contains the main result of this note: there exists a separable quojection E such that E®_L,

does not have property ( BB), 1.e. the bounded sets of E@“IZ are not contained in the

bounded sets of the canonical form I'(B ® C), where B C E and C C [, are bounded and
I" means the absolutely convex hull. As in many of the results of [T1,2,3] the crucial steps
In this construction consist of considerations concerning tensors in finite dimensional Banach
spaces (see section 2).

According to [Bo-M] every quojection is a quotient of a countable product of copies of
[, (I) for a suitable index set I. Consequently, our example shows that a quotient of a count-
able product of Banach spaces need not be an ( F'Ba)-space in the sense of [T3].

We call a Fréchet space FE quasinormable, if an arbitrary 0-neighbourhood U contains
another O-neighbourhood V such that for all A > 0 we can find a bounded set B C E
with V C B + AU. Itis known that all quojections are quasinormable spaces. Using the
preceding result we thus get negative answers to the Grothendieck problem also in the setting
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of quasinormable spaces. In particular, we see that it is impossible to generalize the proof of
Proposition 2.2.2 of [T3] for quasinormable spaces.

In section 3 we use duality to show that for the quojection E constructed in section 2 the
spaces By ®_ L, and L(l,, E;) are not (g DF)-spaces. We also show that there exists a
strict (L B)-space without a local partition of unity in the sense of [H], section 2.

Our notation and terminology are standard and we follow [K1,2] and [T1]. We recall that
the tensor product of seminorms || - || and || - || is defined by

U -z @1 - llr) (2) =inf Y | a; |Igll b; |l

1=1

where ' and F' are vector spaces and the infimum is taken over all representations z =
=) a,®b, € EQF . The complete projective and injective tensor products and the e-product

of Schwartz for the locally convex spaces E and F' are denoted by E@IF, E@EF and
FeF, respectively. The space of linear continuous mappings from K to F' endowed with the
topology of uniform convergence on the bounded sets of E 1s denoted by L,( E, F'). The
reader unfamiliar with the basic techniques of the projective tensor norm in Banach spaces is
asked to consult [T1], section 4.1.

2. CONSTRUCTION OF THE QUOJECTION AND MAIN RESULTS

We now define a Fréchet space E which is a quojection such that E@Jz does not have prop-
erty ( BB) . The construction resembles that of [T1], section 4, and we try to use analogous
notation. However, to prove a form of Lemma 4.3, [T1], in the setting of quojections we need
some completely new 1deas.

We fix the number p,1 < p < oo. Our space E willdependon p; for 1 < p < oo we
get a reflexive space.

Forallm,k € N, k > 2,let M, and N, , be the k-dimensional Hilbert spaces I§ . We

choose for all n and k the space N, to be the finite dimensional Banach space E, defined
in the beginning of section 3.1 of [T2]. Recall that then M, is contained (isometrically) in
N, and that the projection constant inf{|| P || |P is a projection from N_, onto M, } is

for each fixed n asymptotically equal to Vk. We fix for all » and & a continuous projection

P, from N onto M, with || P, ||< 2vk (this is possible-by [P], 28.2) and denote
Nnk,l = Pﬂ.k(Nrﬂl:) .

Remark. Let (e;)*, be the canonical basis of M, . The inequality (4.1) of [T2] says that
the tensors

n

T =Eei®EiEMﬂ®Mnk

3=1
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satisfy for all n and &

(1) (1l ® 11 llaey ) @) 2 CVE (I T, @ 11 llar, ) k)

where C is an absolute constant; we can assume here 0 < C < 1. On the other hand, the
norm of z_, can be calculated in the space MﬂéiM : by [K2], 42.6(1) we have

k
(2) (” N, @1 - ”M_,,) (E €; ®Ei) = k.

=1

We still denote &G, = N, & N, , and define the subspace ﬁ'ﬂk C G, by

]

(3) N, := sp (eﬁ(Cn\/E)‘]fiIi: 1,...,&) |

where (e,)%, C M, and (f))£, C N, are the canonical orthonormal bases and C is as

1=1

in the Remark above.
Now for all n, k we define the following two norms in the space G :

~ ¥
” ) = (112w, 1By + Mz, 1B, )
and
(5) 94(z) = inf g, (z+y),

yEN,

where zy  and zy  denote the N, — and N, , -components of z € G .
We sull denote

H:=4qz= (Ink)mkew,kgz 1T € Gy, Eﬁﬁk (To) <00 ¢,

and define two seminorms on H :

|-

]

};(:‘E) = Eﬁnk (n:nk)p , h(x) := Egﬂk (I“k)F
nk

The corresponding unit balls are denoted by

= {m e H|h(z) < 1}, U:={z € Hlh(z) < 1}.

Note that ( H j) 1s a Banach space.
We denote by V' the closed unit ball of I, and forall £ > 2 we denote by M, some fixed
k-dimensional subspaces of [, .
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Lemma l. Forallne N, n> (24/C)?, andall s€ R

TrUV)NT(nI®V) ¢ T(vVrUNsU) V.

Proof. It is not a restriction to assume that s > 1. By the remark above the tensors

\/_Ee ®e. EM, @M, C HRL

1=1

satisfy

(6) (Il Ty ® 11 1y ) ) 2 CVE (Il iy @ 11+l ) (2oi)

(It does not cause any confusion to denote also some orthonormal basis of M, by (e,)%;.)
By (2) we then have the normalization

(7 (- They ® 11 -1hg,) (2) = OV

Then it follows immediately from (6) and (7) that z_, € I"(m'[d-)'r ® V) forall n and k.
Since each 2, has the representation

and on the other hand since for all 1

o (e) = Inf Gy (64 9) < T (o= (4 (OB 1,)) =

VEN

= (CVE) Gy (£) = (CwR)T || filly, = (CVR) ™,

we get the estimate
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hence, z, € I'(U® V) forall nand k.
We show that for all n > (24 /C’)2 and s there exists a k£ such that

z, €T (J‘HUDS&)@V.

*l‘-:f '

Let k£ be such that
(8) 16C2s* < k < 64C~24%;

this choice is possible since 0 < C < 1 and s > 1. Suppose that z_, has a representation
as a finite sum

i
where Y .t < 1, a; € VaUNsU and b, € V. By definition we may assume thata; € G,

and b, € M,.

Let us denote R, = P, ﬁﬁ, where ﬁﬂk is the canonical projection from G, onto
N, . Since ) .t.R_,a, ®b, is also a representation of z_, , the normalization (7) implies the
existence of 1, such that

(9) | Ruas, I, > CnVk > 4ns.
Now we have also

(10 I (idw, = Puc) Pucy, lly, > 278

otherwise

e (3i,) 21l Py, Iy, >
(11)
>|| Ro, llay = Il (idu, — Put) Bucoy, llw, > 215,

which would contradict the assumption a; € sU . But now (10) and (8) and the choice of n
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in Lemma 1 imply

0 (i) = inf {G (0, +2)} =

z€N,,
— Lnﬁ{ {(H (ida_k — 13,“) (uiﬂ + z) Hi,ﬂ + || ﬁnk (uiu + :r:) ||i,-*) %} >
TN ik
(12) > inf {I1Py (a5, +2) lIn, } 2
>|lidy. — Py |7 inf {|| (idm - Pﬂk) P (ai +2) llny } =

IEH*

+ - : ~ Cn
=|| idy, — Pue 1711 (id,, — Pat) Pucc, lln, > 205/(3VR) > 55 > 2V,
This contradicts the assumption a; € v/nU . Hence, z , ¢ I'(y/nUnN sU)®V.

Using the space H and the norms h and h we now construct the Fréchet space E as In

section 4.4 of [T1]; the only change is to replace n,_ () = Eﬁm(mn) of [T1] by

-1 b

N, () = (Eﬁm (IH)F) .

To show that E' is a quojection we shall use the fact that E is a Moscatelli-type Fréchet
space in the terminology of [Bo-Di]. We first establish this statement in more detail.

Let us denote by N the closure of D, I:fnk in (H,Z) . It 1s easy to see that N is equal
tokem(h) in H. Weclaim thatforall z € H

(13) h(z) = inf h(z+y).
yeN

Indeed, forall z € H

p\ »
h(z) = | Y om (z)” ] =D ( inf g, (T, + 3)) <
nk

'ﬂ.,k IEN*

" =

- |-

< inf Eﬁﬁ: (T + V)" | = inf h(z+y),
vEN nk yeN
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where z_, is the G, -coordinate of z etc. On the other hand, if x € H and ¢ > 0 is
arbitrary and J C N x (N — {1}) is afinite subset such that

E Ok (2)” < €7,

(nk) gJ
then
i
P
inf h(z+y) = inf Yo om GEutuw)] <
veN VEN \ neN keN—{1)

a -

1
p

< inf E Ok (o + 0)" | + E O (z)" | =
VEN \ (nk)eJ (nk)gJ

P 1; P
= Z (i“.f 9 vk (Ink+z)) + E 0 (zo)" | < h(z) +6,

(nk)eJ \#€Nw (nk)¢J

since J is finite. This implies (13).
It follows now from (13) and Proposition 1.4 of [Bo-Di] that F 1s canonically isomorphic

to the Fréchet space of Moscatelli-type with respect to [, (Hk/ﬁﬁ), (Hk,_};) and gq,,

where we use the terminology of Definition 1.3 of [Bo-Di] and H, is equal to A, h 1s the

quotient norm of h with respect to N and g, 1S the continuous quotient mapping ( H, Tx) —
— (H,/N,h).

Lemma 2. The space E is a quojection.

Proof. In view of the definitons this follows now immediately from Proposition 2.10, (5) and
(6), of [Bo-Di].

Theorem 3. There exists a reflexive quojection E such that E@Jz does not have property
(BB).

Proof. Using the proof of Theorem 4.5 of [T1] and Lemma 1 we see that E®_L, , where E is
as above, does not have property ( BB) . Moreover, for 1 < p < oo the space E is reflexive.

Recall that in the terminology of [T3] this means that quojections are not in general
(FBa)-spaces.

The following consequence completes the considerations of section 2.1 of [T3].
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Corollary 4. Quotients of (F'Ba)-spaces need not be ( F' Ba)-spaces.

Proof. By [Bo-M] every quojection is a quotient of the countable product of Banach spaces
[, (I) for some index set I. Countable products of Banach spaces are ( F'Ba)-spaces by
[T1], Proposition 3.5 so that the result follows from Theorem 3.

Corollary 5. Quasinormable Fréchet spaces need not be ( F'Ba)-spaces in the sense of [T3].
In particular, there exist quasinormable Fréchet spaces E and F such that EQ_L, and

F®_F do not have property (BB) .

Proof. Quojections are quasinormable by [D-Z], Remark b( «) on p. 552, so we use Theorem
3. For the last statement we take F' = E x |, and use section 3.4 of [T1].

Remark. It follows easily from Proposition 3.5 of [T1] that our quojection 1s not trivial, 1.e.,
it 1s not a product of Banach spaces.

3. OTHER CONSEQUENCES OF THE EXAMPLE

Using duality we derive some more consequences of the example constructed in the previous
section.
For the definition of (gD F')-spaces we refer to [J], Section 12.4.

Proposition 6. Let E be a quojection which is the surjective limit of the sequence of Banach
spaces (E ).en - Ifweput F, = (E,);, F := E, andif G is a Banach space, then
(1) L,(G,F) and the strict inductive Iimit indL,( G, F,)) coincide algebraically, they
have the same bounded subsets and they induce the same topology on the bounded subsels,
(i) the space EQ_QG is quasinormable and

(Eé:G)L = iﬂd[’h (G! Fn)

holds topologically, and
(111) the following conditions are equivalent:
(1) L,(G,F) isa(gDF)-space
2) L,(G,F) isa(DF)-space
(3) L,(G,F) is barreled
(4) L,(G,F) = is (ultra)bornological
(3) L,(G,F) =ndL,(G, F,) holds topologically

(6) G@,E has property (BB) of [T1].
Proof. The statement (i) follows from [Di], section 4, and (ii) is due to Grothendieck. Con-

ceming the proof of (i11), (5) and (6) are equivalent by (i7), whereas (1) shows that (1) implies
(5). Finally, the implications (5) — (4) — (3) — (2) — (1) are well-known.
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Propositon 7. Let E be a quojection which is the surjective limit of the sequence of Banach
spaces (E,),.n - fwepw F, = (E,);, F := E; and G is a Banach space, then

() GeF' and the strict inductive limit ind (GeF,) coincide algebraically, they have the
same bounded subsets and they induce the same topologies on the bounded subsets, and

(ii) the following conditions are equivalent:

(1) GeF is a (gDF)-space

(2) GeF' isa (DF')-space

(3) GeF is barreled

(4) GeF' is (ultra)bornological

(5) GeF = 1nd(GeF,) holds topologically.

If G has the approximation property (in the sense of [K2], chapter 43), then the e-product
can be replaced here by the complete injective tensor product,

(iif) If G, has the approximation property and G is reflexive, then (1) to (5) of (i1) imply

(6) the space G\®_F; = G\®,E", has the property (BB) .

(iv) If G has the approximation property, then (1)-(5) in (ii) are also equivalent to

(I'’) G®, F isa(gDF)-space

2’) G®, F isa(DF)-space

(3°) G®, F is quasibarreled

(4’) G Q®, F is bornological

(5’) G, F=1nd(G ®, F,) holds topologically.

Proof. The statement (i) is a consequence of [Bi-M], 5.10, and (i) follows directly from (i).
So we prove now (iii).
According to [D-F], Proposition 2

(G&F), = Gi&,F,

holds algebraically. If G ®, F' is quasibarreled ( DF)-space, then this identity also holds
topologically. Consequently, if C is any bounded subset of G*},é, Fy, it is strongly bounded

in (G®,F)’, hence it is (G®, F')-equicontinuous . We can apply again [D-F], Proposition 2,
to obtain neighbourhoods U and V in & and F' such that

CCr (U°®Ve).

(Here U® denotes the polar of U and the closure is taken in E;®_Fj .) Hence, Gi®_ F}, has
property ( BB) .

Concerning (iv) it is enough to observe that (5) implies (5°) by density, since G has the
approximation property, that the implications (58’) — (4’) — (3’) — (2’) — (1’) are trivial,
and that (1’) — (1) follows again by a density argument.
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Corollary 8. (i) There exists a quojection E such that neither E, @, L, nor L,(,,E,;) isa
(gDF)-space.

(ii) There is a strict (L B) -space F' = indF,, where (F,),n 1S a sequence of Banach
spaces, such that l, ®,  F and ind(l, ®_ F,) do not coincide topologically, hence F' is a strict
( L B) -space without a local partition of unity in the sense of [H], section 2.

Proof. In the former section we constructed a quojection E such that EQ_L, does not have
property ( BB) . Proposition 6 implies that L,(l,, E;) is not (¢DF). Taking E reflexive
Proposition 7 implies that Ej®, L, is not a (gDF)-space and E}, = ind(E,), is a strict
(LB)-space such that [, ®_Fj andind (I, ®, (E_),) do not coincide topologically. For the
statement concerning the local partition of unity, see [H], Proposition 3.2.

Remarks. 7. A result related to (i) was proved in [Bo-G] using a different method.

2. The space F' of Corollary 8 is the first example of a strict ( L B) -space without a local
partition of unity. |

3. The class of Fréchet spaces satisfying the density condition of Heinrich was studied
in [Bi-Bol]. A Fréchet space has the density condition if and only 1if the bounded subsets of
the strong dual are metrizable. Every Fréchet-Montel space and every quasinormale Fréchet
space have the density condition. In [Bi-Bo2] it is shown that if ¥ and F' are Fréchet spaces
with the density condition and EQ_F has property ( BB), then E®_F has also the density
condition. Our examples above show that there are quasinormable Fréchet spaces E and F
(hence such that Eé,F is quasinormable) such that E@,F does not have property ( BB) .
As a consequence, the converse of the result mentioned above does not hold.

Note added in proofs. After the present paper was submitted, a simplified ccouterexample
and nice complementary results were obtained by J.C. Diaz and G. Metafune in «The problem
of topologies of Grothendieck for quojections», Results Math. 21, 1992, 299-312.
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