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0. INTRODUCTION

The present contribution to this volume is concemed with certain problems in non-linear func-
tional analysis which are motivated by classical physics, specifically by easticity theory: we
are given a «body», i.e. a compact smooth manifold M’ which moves and may be deformed
in some R™ (equipped with a fixed inner product); we assume that the motion and deforma-

tion are such that the diffeomorphism type of M’ does not change. Hence, M’ is the image
under a smooth embedding of some compact smooth manifold M (possibly with boundary
dM ) and the appropriate configuration space for the problem is the set E( M, R ™) of smooth

embeddings M — R * ; this set is a smooth Fréchet manifold when endowed with its natural
C°-topology .

The deformable medium is to be characterized by a «smooth one-form» on E( M, R ") ,
i.e. by a smooth real-valued function F which to each configuration J € E(M, R *) and
distortion L € C{°( M, R™) assigns a number F( J)(L) , depending linearly on L, which
is interpreted as the work caused by L a J, cf. section 4. An approach to elasticity along
these lines is described eg. in [(E,S] and [Bi 4]; cf. also section 6 for more details where we
also relate our treatment to the usual one such as given in [L,L].

If the deformations mentioned above are subject to smooth constraints or if the motion no
longer takes place in R ™, we will gtill assume that the ambient space is a smooth Riemannian
manifold N and this forces us to introduce as a configuration space the manifold E( M, N)
of smooth embeddings M — N . Since the tangent bundle TE( M, N) no longer is trivial, in
genera, the treatment of one-forms on E( M, N) becomes somewhat more complicated. In
order to obtain «integral representations» of certain one-forms, we assume that both M and N
are oriented. With this assumption, sections 2 and 3 introduce the basic geometric ingredients
needed for integral rcpresentations of those one-forms which at each 7 € E( M, N) only
depend on the one-jets of the vector fields L «along J ».

We introduce the metrics % and B 9 on E(M, N) and E( dM, N) , respectively, which
are continuous, symmetric and positive-definite bilinear forms on the respective tangent spa-
ces. Both B and B 9 are invariant under the group Diff* M of orientation preserving
diffcomorphisms of M and any group J of orientation preserving isometries of N. Sec-
tion 3 furthermore introduces the bundle 4 }9( M, TN) of «smooth TN-vaued one-forms
on M » which cover embeddingsM — N, fibred over E( M, N) by the Fréchet spaces
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H L(M, TN) ¥ A' (M, J*TN) . On these fibres, a «dot metric» g is defined by
8 () ,b) - /Ma (),

for a, b € ¥ (M, TN) . Here z . b is a smooth real-valued function on M which is
symmetric and bilinear in & , b and whose construction is based on the classical «trace inner
product» for bundle endomorphisms of the Riemannian bundle TN. If g is restricted to the
subspace L z( M, TN) introduced in section 3, one obtains a generalization of the classical
Dirichlet integral (cf. [Bi 2]).

Section 4 deals with g -representable one-forms F on E( M, N) , by which we mean the
following:
There exists asmooth map a: E(M,N) — 3&}3( M, TN) such that for J € E( M, N)
andL € C*(M,TN),

0.1 F(I)(L) :/M"”) VLu(J) = 3(J)(=(J), VL),

where VL is the covariant derivative of L along J induced by theLevi-Civita connection
of N.In particular, this yields a more precise notion of the «dependence on the one-jets» of
F( J) (L) mentioned above.

A crucial step is the following result of section 4: for any g -representable one-form F,
there exists a smooth vector field § on E( M, N) such that

0.2) FU)D) = /MVh(J') VLu(J) = 8 (J)(Vk (J), VL)

holds for 7 € E( M, N) and L € C( M, TN). The existence of such a field } follows
from the fact that « in (0.1) defines an eliptic boundary problem value (of the Neumann type)

whose solvability is guaranted by [Ho 2]. The right-hand side of (0.2) may be rewritten in the
form

/M(A(J)h(l),L)u(JH/;M(Vnh(J),L)inu(J),

with n the positively oriented m(J) -unit normal of gM . Here A(J) is the Laplacian of
V and m(J) on M. In physical terms, if F describes the deformable medium in N, then
A (D) (J)and V, k (J) are the force densities acting on M, g M, respectively.

Section 5 deals with the special case N = IR” (with afixed inner product <, >) and
shows, eg., tha the «one-jet dependence» of F as formulated above iS equivalent with the



One-forms on spaces of embeddings: a frame work for constitutive laws in elasticity 23

independence of F of the center of mass for each configuration J . Findly, section 6 indicates

the reason for the description of the medium in R™ by means of a one-form on E( M,R ™) :
Classicaly, eladticity theory as described in [L,L] deas with the set of all those Riemannian
structures On M which are pull-backs of <, > under the elements of E( M, R ™) and this
set isin general not a manifold in its C*°-topology; lifting the description to E( M, R™)
provides a configuration space which is a manifold. Moreover, one of the reasons why we
describe the deformable medium by a one-form F is that N generically does not admit non-

trivial orientation preserving isometries and hence, one cannot simply work with a symmetric

stress tensor. However, as a theorem in [S] shows, F can be replaced by a smooth symmetric
tensor field provided that it is SC(n) -invariant and that infinitesma rigid motions do not

cause any work. Note lastly that it is shown in [Bi 4] that the description of elagticity of [L,L]
is included in our current framework.

1. GEOMETRIC PRELIMINARIES AND THE FRECHET MANIFOLD E( M, N)

Let M be a compact, oriented, connected smooth manifold with (oriented) boundary oM
and N be a connected, smooth and oriented manifold with a Riemannian metric <, > . The
Levi-Civita connection of <, > on N is denoted by V and by d in the euclidean case, i.e. if
N =R™and <, > isassumed to be a fixed scalar product. For J € E( M, R ") we define
a Riemannian metric on M by setting

(L.1) m(J)(X,Y) = (TIX,TIY), VXY € (TM)
and one on d M via the formula
(1.2) m()(X,Y) = (TiX,TjY), VXY € T(T(dM))

(here] == J|dM). More customary are the notations J* <, > and j* <, > for m(J) and
m(j) respectively.

We use T (TQ) to denote the collection of all smooth vector fields of any smooth man-
ifold Q (with or without boundary). Moreover by =, : TQ — Q we mean the canonical
projection.

Let [ : M — T'M be asmooth map. Then f = my -L € C®°(M, N) and L isa «vector
field along f». For afixed f, the set of all such «vector fields along f » is precisely the
tangent space at f to C=°( M, N) (cf. [Bi,Sn,Fi] and also below at the end of this section).

Next, let V be a (linear) connection on N, i.e. in TN. There is the associated splitting
of T2 N = T( TN) into the canonically detined vertical bundle V( TN) and the horizon-
tal bundie H(TN) defined by V (cf. [G,H,V]). Since V(TN) = ker(Tmy) , the fibre
V,(TN) at the point v € TN is T,( T, N) with ¢ = v and hence, there isa natural iso-
morphism ¢, : V (TN) — T,N.,N for every v € TN. These isomorphisms yield a bundle
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map ¢: V( TN) — TN covering the projection . Lastly, let P: T2N — V( TN) be
the projection with kemel H( TN) .

The ¢ovariant derivative vL of L is now defined as follows. for X ¢ ' (TM), TL. X
isamap M — T?N andweset

VL = ¢(P(TL-X).

In our applications, V will be the Levi-Civita connection of the Riemannian manifold

(N, <, >) and in this Situation, the Levi-Civita connections of (M, m(J)) , (oM, m(j))
respectively are obtained as follows:
TN|J( M) splits into TJ(T M) and its orthogonal complement (T'J(T M))* (the Rie-
mannian normal bundle of J ) and henceany Z € T ( J( M), TN) has an orthogonal de-
composition Z = ZT + Z+, where the tangential component Z T is a section of TJ(T M)
and o isof theform Z7 =T J. U for aunique J €T (TM).

If nowY eT (TM), then TJY is a smooth map M — TN and therefore, the above
covariant derivative V( TJY) is well-defined. We use this to define the vector field V( J),Y
on M by the equation

(1.3) TI (V(DxY) = Vi (TIY) = (Vo (TIX))*,

for all X,Y €T (TM) . Moreover, if now X, Y €' (T0M), then

(1.4) Tj (V()xY) = TJ (V(I)xY) - m(W(HX,Y). N(j)

defines a vector field V( j), Y on M . Here W(j), the Weingarten map, is defined as
follows: by assumption, M is oriented and hence the norma bundle (TM|dM)/T( OM)
has a nowhere vanishing section s which is used to define the induced orientation of oM.
Under the Riemannian structure m( J) , the normal bundle of 3 M is isomorphic to T(aM) L
and as a consequence, this bundle now has a section i of unit length which corresponds to a
multiple of s by a non-vanishing postive function. This n is the positive unit norma vector
field along dM . With this, let N(j) = TJ . n and now set

(15) TI.W()Z=(V,N(D), VI eT(TOM).

As mentioned earlier, this determines W(j) uniquely. Note herethat N = R™, we may
replace TJ and Tj by their «principal parts» d J and d j respcctively. In this particular
case, we moreover define the second fundamental formf ( J) of J under the additional as-
sumptions that M = @ and dim( M) = n— 1, where now N(j) is replaced by the positive
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unit normal field along J and W(j) is defined as in (1.5). The two-tensor f then is given
by
f (X, Y)=m(N(W(HX,Y),

forye ECM, R and X,Y € '(ToM) . Note findly that now H(j) := trW(j) and
K(J) = det( W( j) are respectively the (unnormalized) mean curvature and the Gaussian
curvature of j(OM) ¢ R’. References for this section are e.g. [A,M,R], [Be,Go] and
[G,H,V].

It is well-known that the set C*°( M, N') of smooth maps from M into N endowed
with Withney's C*-topology is a Fréchet manifold (cf. e.g. [Bi,Sn/Fi]). For agiven K ¢
C>( M, N), the tangent space T, C*°( M, N) isthe Fréchet space C¥(M, TN) ={L €
C*®(M,N)|ry . L=K}¥T (K*TN) and the tangent bundle TC*®( M, N) is identified
with C*( M, TN), the topology again being the C*°-topology . In all this, M is assumed
to be compact.

The set E( M, N) of C*-embeddings M — N isopenin C®( M, N) and thus is
a Fréchet manifold whose tangent bundle we denote by Cg( M, TN); it is an open sub-
manifold of C>( M, TN), fibred over E( M, N) by «composition with 7, ». Moreover,
if 9 M =@, E( M, N) is a principal Diff M-bundle under the obvious right Diff M-action
and the quotient U( M, N) = E(M, N) /Diff (M) is the manifold of «submanifolds of type
M » of N (cf. the above reference, ch. 5, and further literature quoted there).

Lastly, the set #f (M) of all Riemannian structures on M is a Fréchet manifold since
it is an open convex cone in the Fréchet space of smooth, symmetric hilinear forms on M.
Moreover, the maps

m: E(M,N) — Ml (M)

and
m: E(OM,N) — i (0M)

are smooth (cf. [Bi,Sn,Fi]).
By an E-valued one-form a on M, where E is a vector bundle over N, we mean a
smooth map

a . TM - FE

for which x |T, M islinear for all p € M . We denote the set of such one-forms by 3! ( M, E)
and now obtain the following description of its structure:
The requirement that « € 8! ( M, E) should be linear along the fibres of TM means that
there is a (smooth) map f: M — N such that » |7, M is alinear map into By, forp € M,
in other words, that & isabundlemap T M — E over f .

There is f € C*(M,N) suchthat 7 . a = f . 7, (Where ng, 7, are the respective
bundle projections). The set of such one-forms is naturaly identified with the Fréchet space
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AY(M, F*E) . This shows that

H'(M,E) = U {A" (MFE) |f € C*(M,N))

It is clear from the construction that there is a natural surjection

B: ¥ (M, E) - C*(M,N)

whose fibres are the Fréchet spaces A' (M, f*E) .
The map B is (set-theoretically!) localy trivial: f € C*( M, N) has an open neighbour-
hood U, such that there exists a fibre-preserving, fibrewise linear bijection

oy B (Un ~ Uy x AN (M, fE),

which also is topological on each fibre; thus, for each g € Uy, the restriction of ¢ to 871 (9)
is a linear and topological isomorphis onto A!' (M, f*E) .

The assertion of local triviality can be established along the following lines (cf. [A]):
One chooses a neighbourhood U, of £ in C*°( M, N) which is diffeomorphic to some open,

convex neighbourhood of 0 € T, C*®(M,N)=T ( f*TN) . By the very congtruction of the
usual Fréchet manifold structure of C*°( M, N), this is aways possible (cf. eg. [Bi,Sn,Fi],
ch. 5 and its references). Accordingly, there now exists a smooth contraction of U, onto
{f},i.e.asmoothmap c: R x Uy = C( M, N), such that ¢(1, ) is the identity of U,
c(t,U)CU;for0<t<1,and c( 0, g) = f for every g € Uy . In particular, every
g € U, is smoothly homotopic to f by a homotopy induced by c. Accordingly, the choice
of aliinear connection V in E induces an isomorphism g*E & f*E as in[G,H,V]; the cor-
responding isomorphisms A'( M, ¢*E) & A'( M, f*E) now yield the desired triviaization
Pre

Suppose next that U, , U, are neighbourhoods of £, , chosen as above and that U, , =
U NU,#@;let o, be the corresponding trividizations. Firstly, then, U, 2 X AL (M, T*E),
1 =1,2, will be open submanifolds of U, x A'( M, f*E) and secondly, the compositions
prert, prp;! ae diffeomorphisms of these two submanifolds. As a conscquence, there
exig a unique topology and diffcrentiable structure on 3 ' (M, E) with the following prop-
erties:
Thesets g-1 (U ;) obtained as above are open submanifolds, diffeomorphic to U7, x A
(M, f*E) under the maps ¢ ;- Thus, the model space for 4-!( Uf) is the Fréchet space
T,C=( M, N) x A'( M, f*E) . Ladlly, the construction shows that with this diffcrentiablc

structure, ¥ ' ( M, E) bccomes a smooth Fréchet vector bundleover C°( M, N) with bundle
projection 3.
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2. THE METRIC B ON E( M, N)

The Riemannian structure <, > of N induces a «Riemannian structure» B on E( M, N) as
follows: for J € E( M, N) , let u( J) be the Riemannian volume defined on M by the given

orientation and the structure m(J) . For any two tangent vectors L, L, e C{°( M, TN),
we set

(2.1) B() (Ly,L,) 3=L(L1152)M(J)-

Itis clear, that B (J) is a continuous, symmetric, positive-definite bilinear form on C9°
(M, TN). In the same manner, one obtains the metric B ¢ on E(dM, N) .

The metrics B and B ¢ possess some invariance properties which will become impor-
tant |ater: let Diff* M be the group of orientation-preserving diffeomorphisms of M . As a

subgroup of Diff M, it operates (freely) on the right on E( M, N) as well as on E( gM, N)
by

E(M,N) x Diff* M%E(M,N)
(JM) _’J'SD

(2.2)

forafixed o, wealsowrite ij for J-p.
Similarly, if @ is any group of orientation-preserving isometries of N, then it operates
on the left on E( M, N) as well as E( M, N) by
d x E(M,N) - E(M,N)
(9,J) —=g-J

(2.3)

for fixed g, we also write L_J forg. J .
The geometry of these actions will be dealt with elsewhere, but we need the following -
rather obvious! - result for some basic invariance properties of one-forms on E( M, N) :

Proposition 2.1. Both B und B ? are invarinat under Diff* M and J .

Proof. The Diff* M -invariance is usual invariance of integration over M:
R;ﬁ(J) (L11L2) =8 .9 (L1 o, Ly . 90):
(2.4) =/ (Ly,Ly) -op(J - p) =
p(M)

=B () (L, Ly).
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Next, if g€ 3, then u( g . J) = u(J) and hence
LB () (Ly,L;) =B(g-J)(Tg-Ly,Tg - L,) =
(2.5 - fM<Tg-L1,Tg Ly(g ) =
=B () (L, Ly).
Similar arguments establish the claim for & 9.

3. THE FIBRED SPACE T (M, TN) AND ITS DOT METRIC

To begin with, denote by 3 L( M, TN)the subset of H },( M, TN) consisting of all TN —
valued one-forms covering embeddings M — N. This is the inverse image of E( M, N)
under the projection g: #' (M, TN) — C=( M, N) , hence is an open submanifold and,
in fact, is itself a (Fréchet) vector bundle whose fibre at J we denote by 3 5( M, TN) .

By congtruction of m(J) , TJ is fibrewise isometric and accordingly, the linear agebra
outlined in appendix 3.1 (cf. below) may be used to write a € 3 L( MTN) in the form

(3.1) 2 =c(a,TJ) -TJ+TJ Aa,TJ)

forsuitablebundleendomorphisms c(z,TJ) of TN|J(M) and A(a,TJ) of TM;these
endomorphisms are smooth and continuous linear functions of a . The second summand on

the right can also be written as E( a, TI)TJI (cf. appendix 3.2), and O 2 = ¢( a, TI)+

+A( 2", TJ) . The usual «trace inner product» for endomorphisms of TN then yields the dot
product

(32) % b= —%trc(a,TJ) ce(b,TJ) + trA(a,TJ) - A*(b, TJ),
A* the adjoint of A formed fibre-wise with respect to m(J) , and we define
(3.3) (T (a b) = fMa SE @]
This yields a smooth and continuous, symmetric and positive-definite bilinear form on the

Fréchet space ¥ }( M, TN), the «dot metric».
We shdl aso need a subfibration of M ‘E( M, TN), defined by

(3.4) L (M, TN) :={VL|L € CF(M,TN)},
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whose fibres we denote by T ;(M, TN) (= % (M, TN) n¥ } (M, TN)); evidently these

are subspaces of the Fréchet spaces 3 | ( M, TN) ; for more information, cf. appendix 3.2,
Next, we introduce the Laplacean A(J) which will depend on J viam(J) ; cf. [Ma]

and sew remarks in appendix 3.2:

For K € C{°( M, TN), we define the covariant divergence by

(3.5) V(K =0,

as usual, while following [Ma], V*(J)a for ae 11 1 ( M, TN) is given locally by

(3.6) V'(J)a = =) Vg (a)(E,),
r=1

(E,) alocal orthonormal frame with respect tom(J) ; Vya = V(J),a is defined in the
standard manner by

(V(Dxa) (V) = Vy(a?) —a (V(N)kY), VX, Y e T(TM).

To see that this definition does not depend on the moving frarnes chosen we write 2 asa
finite sum

(3.7) a = Z’y‘ ® s;,

with 7 € A} (M, R) and s; € T, E( M, N) . Moreover, let a(+*, J) be the smooth strong
bundle endomorphism of T'M such that

(3.8) V(D) () (V) = m(D) (e (+,J) X,Y),

holds for all pairsX, Y €T (TM) and for each i . In addition let Y * €T (TM) for each
be such that

(3.9) (X)) = mQ) (Y%, X), vX € 1-(2-M).
With these data it is a matter of routine to show that

(3.10) V(Da==) (tra(y,J]). s+ Vyus,),

an expression independent of any moving frame.
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Clearly if y € AY(M,R) andV=d then

d*y==dv Y,
provided that
Y(X) = m(J)(Y, X), VX, Y € 1-(TM).
A (J)is then defined by
(3.11) A@J) = VV(J) + V())V.

The Laplacean A(J) is dliptic for any J € E( M, N) (cf. [Pa]). Aswe will see below
it is self-adjoint with respect to 8 (J) if M = 0. For each K € T, E( M, N) equation
(3.6) yields

(3.12) ADK = V()HVK ==Y Vp(VK)(E,).

r=1

Remark 3.1. Suppose that 7€ A'(M, R) and V = d . Define the vector field Y on M by
X)) = m(J)(Y,X) (VX € T(TM)). Thenitis clear that d*y = — div,;Y, div, the
classical divergence operator with respect to u(J) .

The following theorem will be a basic tool in our studies of one forms on E( M, N) :

Theorem 3.2. Forany J€ E(M, N), any & € H L,( M,TN)and two L, , L € C®( M,
TN) the following two relations hold

(3.13) 8(J)(a,VL) =B(J) (V*())a,L) + BO()(a(n),]),
and
(3.14) g(J) (VL,,VL) = B(J) (AL, L) + B2() (Vi Ly 1),

where j = J|OM and 1:= L |d M . Here V denotes the Levi-Civita connection of the metric
<,>onN.La®,;:={LeCP(M,TN)|VL= 0} foranyJ € E( M, N), then

(3.15) LeE ;< (A(J)L=0and V,L=0).

In fact dim & ; < 0o. Equation (3.14) implies in turn a Green’s equation

/(A(J)K,L)M(J')—/(K,A(J)L)p(]):
(3.16) M M

) . .
/‘3 (9 L Kig 0) /‘3 (T K, Ly (D).
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Here i, p(J) is the volume element on M defined by p(J) . Moreover, if M = @ then
a is g -orthogonal 10 all of ¥ LOM, TN), if V*(J)a=0. p

Proof. Writing any L € C*°( M, TN) relative to a given J € E(M, N) in the form
(3.17) L =TIX(L J)+ Lt

with aunique X( L,J) € T (TM) (and L+ being such that L*( p) is the component normal
to TJT,M for all p € M), we have the following formula a hand:

(3.18) VL =TIV X(L D+ (V4L)", VX € 1(TM).
From this equation we read off the coefticients in the decomposition (3.1):
(3.19) o(VL,T)TJ = (VL)'

S
.: v':
as well as \ o)

A(VL,TJ)=VX(L,J)+ W(J,L), VvV LEC®(M,TN)
and VJ € E(M,N).

(3.20)

Here W (J,L)isgiven by TJW(J,L) X =(VIL1X) T where, once again, L denotes
the component in TN | J( M) orthogonal to TJ( TM) , while T is the component tangential
to j(M), i.e. the component in TJ( TM) .

For eachz € ' ( M, TN) and for each J € E( M, N) , we write on the other hand

(3.21) a= A(Va ,THTJ,

with A(z,TJ): TN|J(M) — TN |J( M) the smooth bundle endomorphism introduced
above. Then for any moving frame ( E,) on M, orthonormal with respect to m(J), we
deduce

1. VL=) (A*(a,TJ). AVL,TTJE;TJE,) =
1

-
Ll

3

=3 (A*(a,T)). V5 L,TJE,),

-
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A*(a,TJ) being the adjoint of A(a,TJ) formed with respect to <, >. Hence

m

2 VL= Y (Vp (A2 TIL) ,TJE)+

r=1

—EL Ve, (—(a TJ)) TJE,)

r=1

yields
x-VL =Y (Vg (A2 TIL) ,TJE)+
i=l

m

+(V*(D)a, L)+ Y (A(a, TNV (TJ)E, L)

i=1
Since ( A*(a, T) L)L =TJZ(a, L,J) for some welldefined Z( a, L, J) and since
Vg (TJ) E, is pointwise normal to T JTM the following series of equations are immediate:

a-VL= =) (Vg (c(a,TJ)L),TJE,) + div,;Z(x,L,J)+

i=l
(V*())a, L)+ I (c(a, TNV (TNE,, L") =
1=1

m

—E(VE, (c(a , TIL*Y), TJE,)+

i=1

(3.22) - Y (Vg (el , THLT), TIE,)+
i=l

+div,Z(a, L, )+ (V' (Na, L)+

+ E(C(a ,TJ)VE'(TJ)E”LT) =

i=1
m

- Z Vg (c(a,T) L*Y), TIE,)+
=1

+div,Z(a, L, D)+ (VF(Da, L),

where div | is the divergence operator associatcd with m(J) . Writing ¢(a, TI) L1=TJ
U(a,L,J), for somewell defined U(a, L,J) € (TM), we obtain

(3.23) a. VL= —div,U(a, L J)+div,Z(a, L) + (V¥(J), . L
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In case a = VK, then (3.23) tums imo
(3.24) VL. VL = =div,U(K L, J)+ div,Z(K L, J)+ (AQ) K, L).

Integrating (3.23) and (3.24) and applying the theorem of Gauss yields the desired equa-
tions (3.13) and (3.14). Since AQ)) is dliptic (cf. appendix 3.2) dim & ; < oo as shown,
e.g. in [Pa] and [Ho 2]. The rest of the routine arguments in this proof are left to the reader.

We close this section by showing that the metric 5 on the fibres of % p( M, TN) dso
possesses the invariance under Diff* M and any group orientation-preserving isometries on
N:

For any choice ¢ € Diff' M, J € E( M, N) and L € C>°( M, TN) we form

(3.25) V(L-p)= VL-p

and represent V( L . ) with respect to T'( J . ) yielding

(3.26) V(L-p) =c(V(L-9), T(J-9)) - T(J - ) A(V(L - 9),T(J - ).

Multiplying V(L . p) with (T¢) ~! and comparing the resulting coefficients of (3.26)
with those of (3.1) shows

«(VL,TJ) ¢ =c(V(L-p), T(J - )T -9))

and
A(VL,TJ) - o=TpA(V(L-9),T(J -p)) - (Tp) L.
Now we verify

8(J-0) (V(L-9),V(Ly )=

!
= 2/ trc (VL,,TJ) ¢(VLy, TJ) - ou(J )+
(3.27)

/ trA (VL TJ). A (VLy, TJ) . pu(J . o) =
=5(N)(VL,, VL),

proving the Diff* M-invariance of 5 at TJ. To show the J -invariance we let g € 3 and
only need to remark that

( 3.28) V(Tg-L)=Tg -VL
holds. The rest is obvious. Therefore we have:

Proposition 3.3. The metric 5 on & ;( M, TN) is invariant under Diff* M and any group
J of orientation-preserving isometries on N .
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APPENDIX 3.1

As indicated earlier, we present here some of the linear algebra used in the condruction of the
dot product used in this section. The arguments may be interpreted as fibrewise considerations
for bundle maps or, with some obvious changes in the formulation, as considerations at the
level of section modules.

The aim is to show that the dot product «essentially» is induced by the classical trace inner
product in endomorphism rings of euclidean spaces and to this end, we now consider euclidean
spaces E, F with irmer products <, > and a fixed isometry « of E onto the subspace E, ¢

C F. For the sake of convenience, we write the elements of F as columns () with respect
to the direct sum decomposition F = E, @ E.i; here, e, € E, and e, € Ef; let aso

p,:F = E , p, : F— Ei be the respective orthogonal projections.
Any endomorphism D of F now is represented by a 2 x 2-matrix

D D
D= 1 12 ,
Dy Dy
where D), € L( E)), Dy € I( El), Dy, € I( ExJ‘, E\) and Dy € L(E,, E{') ; the

matrix acts on a column (:;) by the usual rules of matrix algebra.
Next, let ¢ € L( E, F) . We are going to write ¢ in the form

(3.29) p=ca+aA=ca+ Aa

for suitable choices of ¢ € L(F) and A € L(E) (or Ac L(F) ), both of them linear
functions of :
For e € E, write pe = (g;:) ; thus, p, = p,p and p, = p, p. Firdtly, since E, = im( a),

the expression < pe, af > (with e, f € E) reduces to < ¢, e, af > and this bilinear form
on E now can be written in the form < Ae, f > foraunique A € L(E) ; in fact, since « iS
an isometry,

A= a_lgol = a_lplgo.

There is a corresponding endomorphism 4, of E; , namely A, = p, pa~" and the endo-
morphism A of F now is the extension by 0 of this map; in other words:

(3.30) I Rl
. 1% ol
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Secondly, we wish to write p, = p, ¢ in the form ca for some ¢ € L( F) and it is clear
that ¢ is not automatically uniquely deterrnined by this condition (unless E, = F), s that
in the course of the construction, certain choices will have to be made. In afirst step, let
¢, : E, = E{ be defined by ¢, = P,pa~! . Any extension of ¢, to an endomorphism of F

then is of the form,
B 7
¢ )

and its action on ae is the map ae — (#%¢) ; this forces the choice § = 0, but leaves v, 6
undetermined. The obvious choice for § is 0 and with this, there now are three options for
y:iy=0,y=c] ory= —c} (Where «*» is the euclidean adjoint) and in all three cases, ¢
will remain a linear function of . At this point, we make the choice 7 = —c}, S that we

obtain

0 —¢
(3.31) c= 1
Cl 0

a skew-symmetric endomorphism of F: ¢* — —c. In part, this choice is motivated by the
usual splitting so( F) = so( E,) & so( E{) ® L( E, , E{), cf. section 5.

Let now ¢ : E — F beasecond linear map, written in the forrny =(D + §) a under
the congtruction just outlined. A simple caculation shows that

(c+ A)Y(D+ B)' = —cD+ AB* + (cB* — A*D),

where the term in parentheses is trace free. Moreover, the trace of AB* (in F) is easily seen
to coincide with tr( AB*) since e is an isometry. Accordingly, the «trace inner product»
in L(F) now reduces to s trp( cD) + trg( AB*). Thus, we see that the dot product ¢ - 4 in
L( E, F) essentidly isthe inner product induced by the classical trace inner product under the

consiruction ¢ — ¢+ A = Up to the factor 5— in the first summand. We shall add some remarks
on this point below, but firstly now indicate the application of the linear agebra outlined here
to the actua constructions used in this section:
Pointwisse, the role of « is played by TJ, that of ¢ by a € ¥ }( M, TN) ; accordingly
c(a,TJ) =cand A(a,TJ) = o . Note that this also shows that the bundle endomorphisms
used above depend linearly on a.

Let us turn to the factor 3 in equation (3.2); it appears because of the following reason.
The endomorphism

(3.32) —c(a, TJ) (b , TIY(I(P) : TyyN = Tyy N
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of Ty, N splits for each p € M into a direct sum of the two linear maps

—o(a, TJ) - (b, TH|(J(p)) : T,T,M
and

—c(a,TJ) - (b, TI)|(TIT,M)*,

both endomorphisms of T'JT, M and (TJT,M )+ respectively. Their traces are identical.
Thus the factor ;— alows us to take only the pointwise formed trace of
(3.33) —c(a,TT). (b, THITIT,M

into account. The endomorphism (3.33) can be pulled back to TM in the obvious manner.
Hence in the dot product (3.2) contribute traces of endomorphisms of TM only.

APPENDIX 3.2,

It is pointed out earlier that the fibres CP(M, TN) of C®(M, TN) = TC>( M, N) are

naturally isomorphic to the section spaces T' (J*T'N) ; similarly, A}( M, TN) is isomorphic
to A'(M, J*T'N) . On the other hand, if V denotes e.g. the Levi-Civita connection of

N, then there is the induced «pull-back connection» J*V in J*T' N, obtained in the usual
manner. It now is routine to verify that the following diagram commutes:

C¥(M,TN) ~ 1(J*TN)
vi [ENAY
Ay (M, TM) =~ A}(M,TM)

V simply «is» the induced connection in J*TN .

In addition, J*T N carries a natural Riemannian structure given by <, >in TN ; the
connection J*V is compatible with this metric. The Riemannian structure of J*T'N togcther
with g(J) now is used to obtain a pre-Hilbert space structure inI" (J*T'N) as well asin
Al (M, J*TN) , etc., and hence under the isomorphisms in the above diagram, onc obtains a
formal adjoint V(J) ..of V. This operator coincides with the operator V*( J) of this section
and this shows that V*(J) again is a first-order operator. Accordingly, the Laplacean A (J)
as defined in the text now is seen to be a second-order eliptic operator. This will be true «at
all levels», i.e. on the spaces A%( M, TN), p > 1, detined in the obvious manner. We omit
the details here, but point out that the elipticity of A (J) will be crucial later on.

At «level 0», the symbol of V is injective and one concludes now that the range % ;( M,
TN) of this V is closed in # }( M, TN), hence itsself a Fréchet space. In fact, onc can argue
thet it is a split subspace and that T ;( M, TN) is a Fréchet subbundle of 4 ( M, TN) . The
technical details of these claims will be dealt with elscwhere.
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4. ONE FORMS ON E( M, N)

Recall that the tangent bundle of E( M, N) is identified with C( M, TN) ; accordingly, we
define 1-forms on E( M, N) as follows:
A (scalar) ]-form on E( M, N) is a smooth function

F: C2(M,TN) = R

with the property that for each J € E( M, N), the restriction F(J) = F|C?°( M, TN) is
linear in L € C;( M, TN) . In particular, F(J) is a continuous linear form on this fibre,
i.e. an element of the topological dual C$°( M, TN)" ~ I'(J*TN)". Loosely speaking,
then, F is a smooth section of the «cotangent bundle» U;C;( N, TN)' of E(M, N) , but
this point-of-view will not be pursued any further here; cf. however below.

For our purposes, it will be sufficient to limit attention to a smaller class of such one-forms;
in particular, their values will depend only on the one-jets of the elements of CF( M, TN) .
More precisely:

Definition 4.1. The one-form F on E( M, N) is said to be g -representable if there exists a

smoothsection a : E( M, N) — 3 L( M, TN) of the bundfe (¥ (M, TN), B, E( M, N))
such that

1) F(I)(L) = /Ma(J')‘VLu(J): o (J)(a (J), VL)

for J€e E( M, N)and L € C( M, TN) . The section a is called the (g -)kernel of F.

For instance, suppose that § is a smooth section of CZ( M, TN) over E(M,N) , i.e.
a smooth vector field. Then a (J) = Vi (J) will provide a g -kemel and the right-hand
side of (4.1) then will detine a representable one-form. In fact, this example can be shown to
characterize the representable one-forms, cf. below. Let us denote by A' g (E( M, N) , R)
the collection of all smooth g -representable one-forms on E( M, N) .

Remark 4.2. Clearly, the existence of non-trivial 1-forms, in particular that of g -represen-
table ones depends on the existence of not identically vanishing smooth sections of the bundles
in question. Both ¥ L,( M, TN) and CZ( M, TN) = TE( M, N) admit local sections since
they are locally trivial over E( M, N) . Moreover, the model spaces [ (J*T'N) of E( M, N)
are nuclear Fréchet spaces obtained as countable inverse limits of Hilbert spaces, namely e.g.
the H*-completions of I'( J*T'N)for s ¢ N . Thisimplies that E( M, N) admits enough
«bump functions». Given the open ncighbourhoods U, V of J with V ¢ U, there exist
an open neighbourhcod W of J and a smooth function f on E( M, N) such that W ¢ V,
together with 0 < f < 1, f[W =1 and f = 0 on the complement of V . With this existence
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of non-zero sections of the above bundles is clear. The paracompactness of E( M, N) (as
subspace of the paracompact and locally metrizable, hence metrizable space C*®( M, N) )
can be used to obtain smooth partitions of unity, but we omit the details here and return to all
these matters elsewhere.

We now show that any g -kemel = of a smooth one-form F can be presentcd by Vi ,

where
k: E(M,N) - Cy(M,TN)

is a smooth vector field. This means that for any J € E( M, N)

(4.2) /‘;{E(J%VL;;(J)=/}‘th(J)AVLp,(J)

or equivalently
(4.3) 8 (N)(a(J), VL) =g (J)(Vh(J), VL)

has to hold for all L € C°( M, TN) . Todo so we are required to solve

(4.4) A(N)h(J)=V’a
and
(4.5) Vb (J) =a(n).

This is for each J € E(M, N) an dliptic boundary value problem (cf. [Pa] or [Ho 2]
as well as appendix 3.2) and admits according to [Ho 2] a smooth solution k (J) for each
J € E( M, N) . Since the solutions are smooth with respect to small perturbations of the
system (cf. [Ho 2]), we may state:

Theorem 43. Any F ¢ Ag (E( M, N), R) admits a smooth vector field
h: E(M,N) = C¥(M,TN)
for which

@6 P = [ 90(D)- 90w )

holds for gll variables of F.

The following corollary is an easy consequence of proposition 2.1:
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Corollary 4.4. Let G and K be a groups acting on M and on N for a given J € E( M, N)
via the homomorphism

®:G—-Diff *Mand ¥ :K -3
respectively. where @ is an isometry group of N preserving the orientation. If F € Al (E

(M, N), R) is g -representable and invariant at J, under ¢ and ¥ respectively, then there
is a smooth vectorjield §: E(M, N) — CZ( M, TN) such that

F(I)(L) = A[th(n VLu(J)

and

(4.7) E(J-@(f))=h(N)D(g), VIEG
as well as

(4.8) F(W(k)-J)=TY(k)-4({J), Vk € K

hold for g/l variables of F .

5. THE SPECIAL SITUATION N = R™

In this section we will show that in case of N = R™ (with afixed inner product <, >),
the spaces I z( M, TR”) alow a considembly simpler and more detailed description; in
particular, formula (4.1) takes on a more concrete form of importance in the applications.
The simplifications are due to the trividity of TR” = R™ x R™ and to the fact that the
natural operation of R™ as the group of trandations of the vector space R™ together yield a
«splitting» of T (M, TR ™) . Firstly, since TR * is trivial, S0 isthe pull-back J*TR * for
each J,ie. J*TR"™~ M X R" and hence thefibre T ,( M, TR *) may be identified with
the space {dL|L € C(M, R")} := A4, of exact R "-valued one-forms on M ; thus,

(5.1) Ty (M,TR™) = E(M,R™ x {dL|L € C®(M,R")},

and thisis easily seen to be a Fréchet manifold; under the differentiation operator d, C®°( M,

R ") maps onto A, with kernel the subspace R ™ of constant maps (since M is connected).
Accordingly, for each J€ E(M,R ™), T ;(M, TR™) = C*(M, R ™) /g~ is a Fréchet
space. L x( M, TR ™) now inheits the product structure of the right-hand side of (5.1); this
aso showsthat T z( M, TR ™) isa trivial Fréchet bundle over E(M, TR ™).
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Secondly, the operation of R * as the group of trandations of R ™ provides an action
E(M,TR™) x R" o E(M,TR"™) by (J,u) = J + u, where y is interpreted as the
constant map M — {u}, cf. below. We next wish to determine the orbit space of this action
and to this end, we introduce

E, (M,R™) :={JOEE(M,R")|/MJOM (Jo) :}0

Ey ( M, R ™) meets every equivalence class mod trangations in exactly one point and thus
determines a section of the equivalence relation.

Observe that u( J + u) = p(J) since trandations are (orientation-preserving) isometries.
Hence,if J, Jg € E;(M,R™) and Ji + y, then

0=/;IJ(’)u(J('))=/M(JO+u)u(JO)= vol (M) -5,

whence u = 0 becauseof vol ; (M) = f,, u(Jy) > 0.
Next, let J € E( M, R") be arbitrary and define

uy = (1/ volj(M))/MJu(J) € R";

u; is the barycenter of JM) for the uniform massdistribution p = 1 . Then

A(J'”J)N(J““J)=/M(J—u1)u(J)=0

and SO J -U; € Ey(M,R ") : every equivalence class meets E, ( M, R ") . We conclude
that the map (J,,u) — J, + u is a bijection of E,(M,R"™) x R" onto E(M,R™)

E(Man) = E(] (M’R“)X R”’

cf. also below.

Next, it is clear that the image of E( M, R ™) under d coincides with the onc of E, ( M,
R ™) and it can be argued that this image is an open subset of C*( M, R ™) /=, see below,
and under the bijection d of E,( M, R") onto thisimage, E,( M, R”) inherits a Fréchet
manifold structure. Formula (5.2) then holds for the differentiable structures as well.

As a conseguence,

(5.3) TE(M,R") = TE,(M,R") @ TR"



One-forms on spaces of embeddings: a frame work for constitutive laws in elasticity 41

and we now have to determine the first summand more explicitly.

Let again A denote the vector space of exact R "-valued one-forms on M . The differ-
entiation operator d is a continuous linear surjection inducing the continuous isomorphism
C*(M,R™)/R" = A, mentioned above; in the sequel, we use the Fréchet topology of
the quotient on A, . Then d remains a continuous linear surjection and hence is an open
map. Accordingly, C = d( E( M,R ™)) C A, isopenin A, und thus is a Fréchet manifold.
Moreover, d |E,( M, R ™) is a diffeomotphism by the earlier definition of the differentiable
structure of E, (M,R™).

Since d is linear, the (principal part of the) tangent map Td is d once more and, in
particular, d yields an isomorphism of T, £, ( M, R ™) onto the tangent space 4, ; iden-
tifying the former with C*=( M, R™), the kemel of this map is, of course, the subspace
R" ¢ C%(M,R"). We now split C®(M R"™ a J, € E¢(M,R™ ¢ E(M,R")
as follows:

For [ e C*(M,R"), set

u, = (1/ vol ;, () /A;Lu (J)

congdruction yields a continuous splitting
T, E(M,R") = {LO € C*(M,R™) 1\11 Lop(JO)_O}GB]R".

Under d , the split subspace {L, € C*(M,R")| [, Lou( J;) = 0} is mapped isomor-
phicdly onto A, and we conclude that

T, B (MR = {1y € 0= (M, R") ] o= }

Note that the right-hand side is isomorphic to (M, R™) /R " . Lastly, there is a «split-
ting» of F( M,R ™ in C°( M,R ™), anadogous to (5.2), namely

(5.4) E(M,R™) = E,(M,R™ + R"CC®(M,R");
we also conclude that

(5.5) TE(M,R™ = (Ey (M,R™) x C®(M,R") /g») & (R" x R").
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Consequently, any smooth one-form F on E( M, R ™) can be written in the form
(5.6) F(I)(L)=F (Jy + u) (Lo) + F(J0+u) (z),

with L = Ly + 2, Ly € T; Ey( M,R™) = C*( M,R™"/R" 2eR", u e R". Formula
(4.1) now shows that for representable forms F,

(5.7) F(I)(L) = F (Jg) (Lo) -

Remark 5.1. In the applications to continuum mechanics, (5.7) means that F only depends
on those embeddings whose center of mass is fixed a& 0 ¢ R™.

The following theorem (cf. [Bi 4]) describes in full generdity the structure of g -represen-
table one-forms for N = R" and <, > afixed scalar product.

Theorem 5.2. Every F € Ay (E(M, R™), R) admits a smooth constitutive map
(5.8) h: E(M,R™ — C®(M,R"),
such that F can be expressed as

(5.9) F(J)(L):/M<A<J>w),L>u<J>+/6M<dhu><n>,b>inu<n

foreach J € E(M,R™) andeach L € C*(M,R™). Forall ] € E(M,R™), themap }
defines ® € C*(E(M, R ™), C®( M, R™)) respectively by

(5.10) (D) = AR
and
(5.11) p(J)==dh (J)(n),

which satisfy, due to the first jet dependence of F, the equation

(5.12) o=/ <1>(J>u(J>+f oD ().
M M

Conversely, given two smooth maps € C*®(E(M,R™),C=(dM,R™)) andp € C>(E
(M, R™), C>(aM, R™)), for which (5.12) holds as an integrability condition there exists
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a smoothmap § € C®(E(M, r"), C®( dM,r ")) satisfying (5.10) and (5.11) which s
uniquely determined up to a constant for eachJe E(M,R ™). (]

Remark5.3. @) If @' € C*(E(M,R"),C*(dM,R")) and ' € C*(E(M,R"),
C*( M, R ™)) are given arhitrarily, we may split off a constant and components ® and
satisfying (5.12). Then @ and ¢ can be expressed as in (5.10) and (5.11).

b) As a brief comment on the interplay between linearity and non-linearity, we point out the
following:
Even if f is of the form

k(J+ K)=h(J)+ Dy (J)(K),

for any K € C*( M, R”) such that J + K ill liesin E(M, R™), the two mapsin (5.10)
respectively (5.11) do not vary in a Similary simple manner since the Laplacian on J is con-
siderably more subtle (cf. (3.11)).

¢) Introducing the A-product and the Hodge-star operator as done in [A,M,R] we may write

M M

for any pair L,, L,€ C*°(M, R") . Thisis easily seen by converting the right-hand side
of (5.13) into the right hand side of (5.9). In fact, equality already holds a the level of the
integrands (cf. [A]).

d) A theorem analogous to theorem 5.2 holds in the general case as well, cf. [Ho 2].

APPENDIX 5.1.

Let us motivate (3.1) in the context of the present section: giventwo I, J e E(M,R™)
which lie in the same connected component, we may write

dJ=Q(J) -dI

with Q) € C*( M, L( R™*, R ™)) . Using the classical polardecomposition (cf. [Bi,Sn,Fi])
the map Q(J) can be expressed in the form

QW) = g(J) - F(),

where g(J) € C=( M, SO(n)) and f(J) € C*(M, L,(R" R™), theindex s meaning
«self-adjoint» with respect to <, > . Moreover, for all X,Y € I (T M)

m(J)(X,Y) = (f(NH)AIX, f(J)dIY) =
=m(I)(f(J)X, f(J)Y),

(5.14)



44 E. Binz. H.R. Fischer

where f(J) is the (positive self-adjoint) square root of the strong bundle isomorphism
A'(J) €L( TM, TM), defined by

m(J)(X,Y) = m()(A(NHX,Y), VX, Y eI'(TM).
Defining {'(J) € C*(M,L,(R" R")) by
f'(J -dI= dl. f(Q),
with f'(J) |(T( JTM))* = 0, we conclude by (5.14)
dJ)=g-dI-f.
Letting J depend on a smooth real parameter ¢ with J( 0) = I, we find
(5.15) dJ(0) = g(0)dI+dIf(0).

Thus there isaunique C € C>=( M, L (R", R")) , theindex a meaning skew-adjoint,
such that
g(0)dI=cd]+dI-C,

with ¢ as in (3.1). Collecting C and F( 0) into A(d J,d I), yields
(5.16) dJ(0)=c-dI+dI-A(dJ,dI)

the decomposition (3.1) in case of a= d J( 0). Equation (5.16) then motivates the gen-
eral decomposition (3.1). The meaning of the coefticients ¢, € and f is discussed eg. in
[Bi,Sc,So].

6. 5 -REPRESENTABLE ONE-FORMS ON E( M, R™) AS CONSTITUTIVE LAWS

In this part of the paper we link the formalism developed earlier to classical elasticity as pre-
sented e.g. in [L,L]. In doing so, we work in a C*-setting. First of all we introduce the work
caused by deforming a body, the body being identitied with the manifold M with bound-
ary enjoying the properties of the previous sections. To this end we consider the derivative
ofthemapwm : E(M,R") —» M(M), aany J € E(M,R™) inthedirectionofany
L € C2(M,R") . Itisdetermined by

(6.1) Dm(J)(L)(X,Y)=(dJX,dLY)+ (dLX,dJY), VX, Y e (TM).
Writing Dm(J)(L) with respect to m(J) yields the strong smocth bundle endomorphism

(6.2) B(dL,dJ) :TM —-TM.
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Hence, B(d L, d J) is the symmetric part of A(d L, d J) a coefticient appearing in (3.1).
This is easily seen by using (3.1) and (6.1); the tensor

m(J)(B(dL,dJ) ...,... )=

is called the linearized deformation tensor.
Let us assume that some smooth map

J: m(E(M;R™) - SH(M)

is prescribed, where the range is the collection of all symmetric two tensors on M endowed
with the C*-topology . 3 (m( J)) is called the stress fensor at m(J) . 3 (m(J)) deter-
mines a uniquely defined smooth strong bundle map of T M, such that

6.3) 3 (m(N)(X,Y)= m(IN(EFW@NHXY), VXY eT(TM).

We define
(6.4) F,(m(J)) (%Dmu)(m) ::fMtr(;iT(m(J» -BL)dJ)u(J),

forany m(J) € m(E(M,R")) andany Dm(J)(L) € Dm(E(M,R™))(C*(M,R™)).

It is not clear as to whether m( E( M, R ™)) isamanifold or not. It isone if the codi-
mension of M in R™ is high enough (cf.[St]). Hence the usua techniques in anaysis and
differential geometry cannot by applied without camion. However, E( M, R ") is a Fréchet
manifold and it makes sense to lift (6.4) to E( M, R ™) by introducing the one-form

F: E(M,R™) x C*(M,R™) - R
given by
F(J)(L) = F,m(J) <—;—Dm(J)(L)> ‘

for any of the variables of F. It makes also sense to require that F is smooth even though
smoothness is not detined for F,.As shown in [Bi 4] there is a map

h: E(M,R™ — C®(M,R"),

for which

(6.5) FO)(L) = / dn (dJ) -dLu(J)
M
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holds for all variables of F. Hence, prescribing the stress tensor at each conliguration in
m( E( M, R *))yieldsa g -representable one-form F. Since 3 is a condtitutive entity in
elagticity, we call F a congtitutive Iw (cf.[E,S]). Equation (6.5) is the motivation for calling
any Fe A; (E(M, R ™, R) aconstitutive law.

As shown in [S], given any g -representable one-form F invariant under the natural action
of the euclidean group of R™on E( M, R ™), satisfying an additional condition, there is a
map 3 such that (6.4) holds. The additional condition amounts to say that no rigid motion
in R™ causes any work.

The force densities associated with any congtitutive law F with g -kemel d § are given
ateach J € E(M,R™) by

(6.6) A(NHYR(J) on M
and
(6.7) dy (J)(n) on OM,

(cf.[Bi 417. Thus, the formalism presented in these nots refines the usual treatment of elasticity
and carries over to any ambient manifold N (cf. Remark 5.3 d) in the previous section). If
N c R™, then it may reflect constraints a deformation of a body in R ® has to satisfy.

If N has no non-trivial isometry group, then there is in general no natural symmetric
stress-tensor available at each configuration. Hence the generality of the mechanism pre-
sented here, which describes all the deformable media admitting smooth force densities a
each contiguration acting upon M and gM respectively seems to be necessary.
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