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ABELIAN p-GROUPS OF ARBITRARY LENGTH
AND THEIR ENDOMORPHISM RINGS

RAIMUND BEHLER, RUDIGER GOBEL
Dedicated to the memory of Professor Golifried Kothe

The second author enjoyed lListenung to many brilliant lectures on pure and applied mathemat-
ics by Professor G. Kothe at Frankfurt University. Golltfried Kothe refereed Ulm’s Habilita-
tionsschrift in 1936 and in 1988 he helped completing the paper [«Helmut Ulm: His work and
its impact on recent mathematics», by R. Gobel, pp. 1-10 in Contemporary Mathematics vol.
87 (1989)]. This papcr which deals with abelian p-groups of arbitrary infinite Ulm length is
dedicated to the memory of Goltfried Kothe.

1. INTRODUCTION

In this paper we want to gencralize results on endomorphism rings of separable abelian p—
groups ( = abelian p-groups of length w) and of abelian p-groups of length A with A cofinal
to w (see [2]) to abelian p-groups of arbitrary infinite length. The length [(G) = M\ of an
abelian p-groups @G is the first ordinal A with Ulm subgroup p*G to be 0; cf. [10, vol. 1,
p. 154]. In order to deal with decomposition properties of abelian groups, it turned out to be
very uscful to prescribe rings as endomorphism rings.

The general question, which will be investigated, can be summarized as follows.

Can we find a p-groups G of length ) (for a given infinite ordinal )\ ) such that the endomor-
phism ring End G of G modulo the ideal of all small endomorphisms becomes isomorphic
to a prescribed ring A ?

The necessity of some non-trivial «natural» ideal reflects the presence of well-known de-
composition theorems like Gaufl’ Fundamental Theorem, which has substantial influence on
all abelian p-groups.

The 1deca for such realization thecorems goes back to two classical papers of Comer’s, con-
cerning torsion-free abehian groups [3] and abelian p-groups (of length w) [4] respectively.
His 1dca has been exploited in a number of subsequent papers as [7], [9], [11], [18] and [19].
After having investigated endomorphism rings of abelian p-groups of length cofinal to w in
[2], see also Goldsmith [11] for the case A = w + 1, we want to derive realization theorems
for endomorphism rings of abclian p-groups of any infinite length.

If the length X\ of the groups under investigation is a limit ordinal cofinal to w, say ¢fA =
= w, then the p*-topology becomes the central tool: The p*-topology on groups G of length
A 18 defined by taking the subgroups p®Gi(e < M) as basis of neighborhoods for 0 € G.
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This topology is a metrizable Hausdorff topology under the assumption that X is cofinal to
W . .

Metrizable topologies have decent properties. In particular, infinite direct sums will never
be complete. Using now topological arguments, the transition from separable abelian p—
groups becomes natural and takes place in the frame work of the p*-topology. With some
care, e.g. replacing cyclic p-groups by generalized Priifer groups and by now standard com-
binatorial methods, the desired results can be established in this case [2]. The fact, that the
p*-topology on p-groups of length A with ¢f)# w is no longer metrizable, makes the topo-
logical approach completely useless.

A striking example of such a group can be constructed as follows. Let B be the general-
1zed Priifer group of length « (see § 2) and let A be an infinite cardinal of cofinality x > w.
There exists a strictly increasing sequence 8 (v € <) with supremum M. Then we consider
the torsion subgroup B of

<K
11B.
a<i

F i

the cartesian product with elements of support < . The p*-completion B is the inverse
limit of the system of groups B/p* B with (v € k). An easy exercise shows however that

B is not even dense in B.

Dealing with p-groups of length not cofinal to w, we need different methods to obtain
a realization theorem. These methods are quite simple. We replace the underlying «dense
submodule B » of the construction in [7] by B’ = H @ B with H of length \. Then we
proceed as before making sure that B' remains pure (even isotype) in the final extension G
in such a way that G/p“G = G/p“ looks like the old separable case [7].

In order to state our main theorems, and to describe the «natural» ideal mentioned above,
we recall Pierce’s [16] well-known notion of a small homomorphism.

A homomorphism ¢ : G — H between two groups G, H 1s small if the following holds:
(%) Ve <wdn=n <w with p"G [p*] p=0.

The set of all small homomorphisms ¢ . G — H 1Is denoted by Small (G, H) . We also
write Small (G,G) =Small G, , which is a two sided ideal of End G .

The following properties of Small (G, H) have been observed by Pierce [16].

Small, (G, H) is a pure and closed subgroup of Hom (G, H) equipped with the p-adic
fopology. The quotient group Hom (G, H) /Small (G, H) is torsion-free and complete in
the p-adic topology.

A converse of Pierce’s obscrvations will be our main result which is the following
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Realization-Theorem. Let A be a torsion-free ring with 1 which is complete and Hausdor(f
in the p-adic topology and let )\ be a limit ordinal. Then there exists a p-group of length \
such that End G = A® Small .

Moreover, the cardinality of G can be any cardinal g > max(|X|, |A]) with R = 4.

Using slightly modified arguments we obtain maximal rigid systems of groups as in the
Theorem. A pair of groups is rigid, if homomorphisms between them are small. The Theorem
extends results in [2], where we restricted A to be cofinal to w. In [2] we replaced all (basic)
cyclic groups of G by generalized Priifer groups. This allows to prescribe the endomorphism
ring even on the layers p®G, however we have to pay for this. We had to replace Small G
by a larger ideal Small,G. The Theorem gives rise to various pathological decompositions
of groups of length A depending on the choice of well-known rings A. As special cases
we derive the existence of essentially indecomposable groups of length A of arbitrarily large
cardinality.

All application can be derived similar to [7] and references given there.

While direct sums of cyclic groups are the basis in constructing separable abelian p—
groups with prescribed endomorphism rings, here we will need a generalized Priifer group
of length A as well. It is made into an A-module, and the desired abelian p-groups will be
extensions of direct sums of such groups. The combinatorical arguments which are needed to
get rid of unwanted endomorphisms are of course similar to those used in the case of separable
abelian p-groups and depend on Shelah’s Black Box, see [7].

2. PRELIMINARIES

First we will give the basic definitions and formulate the required combinatorical results. As
indicated in § 1, we will have to generalize generalized Priifer groups, passing from modules
over the p-adic integers to modules over certain rings A.

We recall from [2] the following known result (cf. also [20], [17])

Corollary 2.1. Let A be a ring with 1 such that A* is a torsion-free and p-reduced group.
For all ordinals « there exists an A-module X such that

(1) X is areduced totally-projective p-group of length «,

(i) X, = G})ﬂm X g, if o limit ordinal,

() p*X,,. = A/p"A forall n< w and ordinals «,

(v) X_,./p°X .. = X_ forall n< w and ordinals «.

The isomorphisms in (iii) and (iv) are A-module isomorphisms.

We choose an A-module X, of length X as in (2.1) and A-modules X = A/p"A of
length p® forall n < w. Let x := |X,| > |A| > R, and choose a cardinal X’ such that
A" = X' In particular, by Konig’s Lemma ([12], p. 45) follows cf)\' > & > N, .
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We consider the three 7" =“> ), choose elements 1, € X_ of order p“°) for each
o € T" and idenfity 1, with o. Then we define our basic A-module

(%) B:=X_®&X,

reT’
where X_ = X forall n< w suchthat n=I(7) and X_, := X, . Hence {(B) = A and
let T=T'Uu{-1}.

The final group G will be an extension of B which is constructed rcecursively declaring
particular w-tuples of elements in B as new elements of the extension of B. Hence the
extensions can be described formally in a language L having constants for the elements in B
and at most A\’ function symbols with at most w places to allow L to talk about the desired
group extensions of B. The constructions then take place in an L-universe B* of cardinality
)'(= \'®e) which can be obtained easily by induction on intermediate sets, say B = BY C
B «a € w,), B* = UB® taking closures of B* under the operation of the function symbols
on B%; cf. Shelah [18, 19].

In order to formulate Shelah’s Black Box in B*, we will use a (preliminary) support of
clements in B*:

If z € B, then x = ) .z _ with finitcly many elements 0 # z, € X_ follows from (*).
Welet [z]* = {7 € T : z_#0} bethe *-support of z. If the *-support of elements in B* is
already defined and z € B**' \ B*, then we can find an (as we will see even unique) w-tuple
X = (%;)c, € (B*)Y suchthat z = f(X), where f is represented by a well determined
function symbol in L. In this case we let [z]* = [ J;.,[z;]*. The subset [x]* of T is the
smallest set [ x]* such that

T € H X, .

e[ z])*

The notion of a *-support can be naturally be extended to subscts of B*.

In order to deal with singular cardinals A’ as well, we also have to introduce norms of
elements in B*. The *-norm || z ||* of an element z will be the norm || [z*] || of the
underlying support of z and it remains to define norms of subsets of 7.

We choose a continuous strictly increasing function || - ||: ¢fA" + 1 — A’ + 1 such that
| O |Jl= 0 and || ¢f)\' ||= A\'; moreover let || —1 ||= —1. For any element X C T let
| X ||:= min{v < cf\ : X C*?|| v]||}. |

An A-module P =@, ., X, C BwithI CT, |I| < « iscalled a canonical submodule
of B and a trap is a triple ( f, P, ), where P is a canonical submodule, f :“” & — T is
a tree embedding, [ P]* isasubtree of 7', c¢f || P ||= w, || v ||"=]|| P ||*, whenever v €
€ Br(Im f), ¢: B* — B* isapartial map with P C domyp C [P]* and [Pyp]* C [ P]*.

Here Br(Im f) denotes the set of all branches in Im f.

Now we can state our main combinatorical ool (see (18, 19] and also (A.7) in [7] for a
proof):
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The Black Box. For some ordinal \* < \'* exists a transfinite sequence of traps (f_, P,,
Oodacre SUCh that forall o, B < X*,

() B<a=| Pgl|*<|| P, I,
(i) B#Fa= Br(Im f,) N Br(Im fﬁ) =0,
(iii) B+ &® < a=> Br(Im f,) N Br([ Pgl]*) = @,

(iv) forall X C B with |X| < «, any partial map ¢ such that B C dom ¢ there exists
o €\ suchthat X C P, || X ||*<]|| P |I*, ¢|P, = ¢, and [Xp)* C [P,]*.

Finally we extend B (inside B*) in order to get rid of «essentually all» endomorphisms
except scalar multiplication by elements in A. We do this «locally first» and consider the
following

Definition 2.2. Let D = (B

z . be an element of order at most p**' of B for each k < w, let

"™ A be the direct sum of w copies of A. Furthermore, let

AW

X =< pz°, pz~*! +z, — 1", K< w>

be an A-submodule of D@ H where H is an A-invariant p-group containing B. Then call
H :=H&d, ., °A)/X ark-1extensionof H by z (s < w).

Write H' =< H,z_,kx < wg for the A-module generated by H and z* subject to
the relations X and call (z*) the chain defined by z, with x < w. Such rk-1 extensions
will arise from branches v of T'. If o, = v[x and z, = o,, v* = ) . p" "o, then

B' =« B, z,,k < wg is an example. We will also say that (z*) is a chain defined by v.
The following properties of rk-1 extensions are easily verified.

Lemma 2.3. Let H' be ark-1 extensionof H by z_(x < w) and let ¢ be an endomorphism
of H with p"p = 0. Then the following holds for all k < w.

(i) H'/H is divisibleand H N z"A =0,

(i) z° = z_+ pz**' = S P T+ p 18 g™l and o(z*) = p™!, n> &,

(ii*) Ifg € H', theng=b + p"az™, forana € A, b€ H and m < w.

(iii) There exists an extension ©' : H' — H of ¢ with p*¢' = 0 and

(*) g’ :=bp forallg € H withg=b+ p*az™ forana € A, m<w andb € H.

Proof, (1) and (ii) follow by construction of H' and (ii*) by iterated application of (ii).

(iii) We first define a homomorphism ¢ : Y == H @ P, ,z"A — H. If p"p = 0, then
we set ¢|H = o and z%a¢ := ¥ v o P™T,.,,ap. The homomorphism ¢ is well defined,
because (P, ., A is a free A-module and H is an A-module. We show that X (as above)
is contained in ker ¢ and consider the canonical A-generators of X .
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prlag = DY oP™T ap = Y. o p’"”mmurp = 0, since o(z,) divides p™1 and
(P2 —T*+2,)66 = P g P Ty 10 @0 — e P @+ T2 = P 3,1, 0
—z . ap+ 1z ap =0, since v 1s p"-bounded. Hence X C ker ¢.

The induced homomorphism & : H' — H of ¢ extends p because ¢|H = . By (ii*)
we can write g = b+ p"az” forsome a € A, b€ H and k < w. Hence g® = bp+ptaz” =
=bp by p"p=0.

Lemma 2.3 has an immediate consequence.

u+i

Definition/Lemma 2.4. Let H' be a rk-1 extensin of B. The projection w._ : B — TA with
T €T and [(7) = n has a unique extension

7. H =< B,z_,8 < wg ~+TA(b+p"uI”—rbﬁr).

T ! [
Wecall m_=m_.

Now we are ready to replace the preliminary *-support by a refined support. This will
follow by induction (§ 3) based on the

Definition 2.5. Let H be a group contained in B* and containing [ H]1*. Suppose w_ :
H — 1A is a given projection extending ©_ . @ ¢ yyr 0A — TA.

If H' =< H,z_,k < wg isark-1extensionof H and h € H', then let
[h]:={r €T, hn_#0}U{—=1} be the support of h.

Similarly let || h ||:= min{v < cf) : [h] C¥“> p(v)} be the norm of h, which extends
naturally to subsets of H'.

The two notions of supports are related, which follows by (2.6) and an induction 1n § 3.
The basic step (2.6) 1s very easy.

Lemma 2.6. (a) For any subsetY of B we have [Y] = [Y]*.
(b) For any element x of a rk-1 extension H of B we have [z] C [x]*.

Ifweletz, =0 (k <w) in(2.3),then H' is visibly not reduced. On the other hand we
have:

Lemma 2.7. Let H be a reduced extension of B contained in B* and let v be a branch of
T such that v [h]* is finite forall h € H with || h ||=|| v ||. If z, € B is of order at most
p* and H' =< H,z,,xk < wg isark-1extension of H as above with [ z*]* Nv infinite for
all Kk < w, then H' is reduced.

Proof. If H' is not reduced, then there are elements z, € H'\ H of order p™' such that
Pz, = 2, forall n < w and pz, = 0. These elements can be expressedas z, = h +a ™
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with h, € H, a, € A\ pA and nx < w. Clearly pz_,, = ph_,, + paﬂﬁzf“*”* =
=h,+a,x" =2z andph_,, —h, =a z™ —pa_, ;2™ P* € HNz™P* 4 =0 modulo
X, with X asin (2.2). It follows that ¢_z™ —pa_,, z™D* € X, hence (n+ 1)* = n*+ 1,
a, = a,; mod p™*1 A and (a,) forms a coverging p-adic sequence in A. There exists

n

a limit @ € A by completeness of A and a = o, mod p"A. Moreover a ¢ pA from
a, & pA. Using a € A\pA and ph_,, — h, = a(z™ — pz™*') = az_, € B we

Tk

derive h, = —ay o " pF ™z + p™'"h_ . and [h_]* is almost the same as v, which
contradicts our assumption on v.

Lemma 2.8. Let H be as in Definition 2.5 and let be H' :=< H,z_,k < wg with (z*) a
chain defined by x, and v € Br(T) such that v N [h] finite for all h € H and

i z,=v_+b b € Blp**!]

(@) || v |I> sup{]| by Il, s < w}.

Then H isisotypein H', p* H' = p*H and hy,(p™z*) = p™ forallm < x + 1,

Proof. We first claim that H is pure in A’ and show p"H' N H C p"H forall n < w. If
h' = p*y in p"H' N H, we want b’ € p"H . Since H' is a rk-1 extension of H, there are
h€ H a€ Aand xk < w suchthat y = h+ az*. Hence b’ = p*(h+ az®) € p"H' N H
and b’ — p"h = p*az" € HNz"A =0 by (2.3).

Thus p"h = h' € p®H as desired.

In order to show p“H = p“H’, it remains to show that any A" € p“H’ is in p* H .
Since H' is a rk-1 extension of /,h' = h + az™ € p*H' forsome h € H,m < w and
a € A. Ifaz™ =0, then h' = h € p* H' N H = p* H by purity. Now suppose az™# 0
for contradiction. We calculate with (2.3) (h+ z™a) = h— > (p" ™v_+ p* ™b )a+
+pn+1—n 1 g

By assumption on v we find n, suchthat o € v\[h], (o) = nand || o ||>]|] b, || forall
r < w. Itthen follows o ¢ [b.] and we derive (h+ z™a) 7, = p" ™ ' ga and a = p"d’ for
some r < m, @’ € a\pA from z™a#0. Thus p ™ 'oa = op™™ ' p"a’#0. Since cA
is a direct summand of H’, also h,.(h + 2™a) = hH,(p"‘"‘"‘lcm) = hH,(p"""‘l‘Tcr) =
= prm=l-r < u

This contradiction proves our claim.

The same calculations show p™z* = p™*!z**! 4+ p™g_ forall m < k + 1. Using purity
we derive

by (p™2") = hy (P™ ' 2 + p™z,) < min {p™ by (p7z,)} < P™.
Since heights in the sum are different, we derive equality h,,(p™z") = p™ forall m <
< k + 1 as desired.

Now it is immediate from purity and ihe last height equations that H is an isotype sub-
group of H',
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3. CONSTRUCTION OF ABELIAN p-GROUPS OF LENGTH ) AND PROOF OF
THE THEOREM

a. The construction. We will proceed similar to the construction given in [7]. If ( f_, P,,
©a)acye 18 asequence of traps given by the Black Box (§ 2), then we will construct inductively
agroup GG in B* as the union of a continuous chain G (a < A*) . Atthe same ume we define
the notion of supports of elements in & and determine a subset S C A* of «strong ordinals».
By continuity we only have to deal with non-limit ordinals < \*. Let Gy, = B (from § 2)
and suppose G4 and SN S have been determined for all 8 < a and some o < A*. In order

to define G, and SNa+ 1, we consider ( f,, P,, p,) from the Black Box.
Suppose we can choose a branch v, € Br(Im f,), a chain (g) defincd on the

K< W

branch v, by g, . € B[p**'] such that the following conditions hold for

Gﬂr+1 = Ga!'gﬂ,m&'ﬂ' <wg.

(c) g% = v& + b, for some b, € B(p™ '] and sup,,, || b [I<| v |
(a,) If the partial homomorphism ¢ extends g, then we can find n < w such that gZo
¢ Gosr -
(B,) It B € §N a (was strong) and a partial homomorphism ¢ exiends g, such that
P:NG ., C domyp, then we can find n < w such that g2 ¢ G, -

In this case we say that « is strong, put « into S and choose the extension G, as
above.

If « € S is not possible, then we choose G_,, as above without the requirement
(a,) . In this case we call « a weak ordinal.

It follows by now standard arguments that the weak case - in particular requircment ( 3,)
- 18 always possible. This 18 normally referred to as the statement that there are no uscless
ordinals, see¢ [7] and (3.5). Using (2.4) o (2.6), the notuon of support extends inductively to
(. This finishes the construction of G and & s fixed for the rest of this paper.

b. Proof of the Theorem. Finally we want to show that the constructed p-group G satisfies
the condition of the Theorem. We begin with some of its algebraic properties summarized in
the Theorem and (3.6) and finish with End G = A & Small G

As in [7], we can casily show that elements in G have a very special support.

Recognition Lemma 3.1. If g € G\ B, then there is a unique o € \* suchthat g € G, \
G, . Moreoveer, there exists a strictly decreasing sequence of ordinals a = ay > ... > a, €

€ A" suchthat || P, ||=|| P, || for + < r and there is v <|| P, || with ,[g] = F U

L; <r vl ”u,.] (a disjoint union), where F' is a finite set of elements of T' each of norm greater

than || P, ||. Furthermore for each 8 < X with || P4 ||=|| P, || there existan a € A and

{o)—x

K < w suchthat gn_ = o(p a) for almost all o € Vg
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In particular, elements in B and on branches can be recognized.

Lemma 3.2. There exists an ordinal v <|| v, || such that ,[g=) C v, andforall a € A.

a €™ A <= gfa=0 <= _[g"a] is finite,
In particular Ann,(gh) = p*"A and b € B if and only if [ b] is finite.

Definition 3.3. For any n < X\ the constant branch w(n) is the branch represented by the
constant function w — {n}, hence w(n) =“~ {n}.

Every branch v_(a < A*) hasnorm || v_ || alimitordinal and || b || is a sucessor ordinal.
We dernive a

Corollary 34. Let ¢ € G. Then [g] contains no infinite subset of a constant branch w,
such that || w ||=]] g |I.

The next Lemma is similar to [7] but 1t 1s the crucial part for proving that there are no
useless ordinals. The final argument is in [7].

Lemma 3.5. Let a < X*, v <|| P || and for each branch v € Br(Im f_) let (g5)., be
a chain defined by g, . € Bip™'1(x < w) suchthatforall k < w (gt —vi)] = D . Then
there exists a branch v € Br(Im f,) such that ggp & G, (v) for all strong ordinals
B < a, where G, (v} =G, 9, .,k <wg.

Proof. Suppose the conclusion is false. Then for each branch v € Br(Im f_) there exists
an ordinal 8 = B(v) < o, m = m(f), a homomorphism g, and gg'p, € G,,,(v). By
definition of G, there are elements a = a, € A, & = x(v) with bg — gya € G, and it
follows that gfa# 0. For large enough v we get [gfa] = _[v®a] which is empty or an
infinite subset of v by (3.1). If [v"*a] is empty, then a € p**! A and g%a = 0 by (3.2) which
contradicts gfa# 0. Therefore ,[gga] is an infinite subset of v. The branches v, (v < )
have norm atmost || P, ||=|| v || and thus are different from v. We derive (bg—gga)m, = 0
for almost all ¢ € v and bﬁﬂﬂ = ghim_#0 for infinitely many o € v from (3.1). Thus an
infinite subset of v lies in [bﬁ] C IPﬁ] and since [Pﬁ] 1S a subtree of T°, the branch v 1s
contained in [ Pg]. Hence v € Br(Im f,) N [ Pg]) . This implies that § < o < B+ kR by
the Black Box. Thus we have proved that for each v € Br(Im f_) there exists an ordinal
B(v) and an a, € A such that B(v) < a < B(v) + &% and by, — g5Va, € G,. If
B, is the least ordinal such that 8, < a < B, + &, then B, < B(v) < a < B, + &M

and B(v) assumes less than xRo = |Br(Im f,)| values. There are two different branches
v,w € Br(Im f,) suchthat f(v) = S(w) . Subtracting the corresponding equations, we get

s(w)

Jw
in [g**)g ] C w. But this is impossible because v and w are different.

— y;",‘(") € G, . Arguing as before we conclude that an infinite subset of v 1s contained
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The constructed abelian group G has further properties collected in a

Lemma 3.6. G is a reduced abelian p-group containing G as an isotype subgroup (o <
< A*) . Moreover p*G = p“B forall a < A*.

Proof. First we will show that G 1s i1sotype in (¢, ; and assume that

Gu?{-Gcﬁl =L G x<wg,

ot gﬂ'ﬂl

and g, , = v, .+ b, € B[p**'] for some b, € B and some branch v, € Br(Im f,) such

that || v, ||> sup,., || b« ||- We apply Lemma 2.8 with H' = G _,,, H = G,
and z, = g, .. The assumtions in (2.8 are either obvious or follow from (3.1). Thus &, is
isotype in G, , and G is also isotype in G by induction.

We will now show p*G_ = p“B by induction on «. The statement is trivial for o =
= 0, and we assume p“G_ = p“B. We have shown above that G, and G, satisfy the
assumptions (2.8), hence p“G ., = p¥G, which is p“ B by induction hypothesis. If « is a
limit-ordinal, let = € p*G, C {J,.,G,- Then z € p*G, NG, for some p < a. Since G,
is isotype in &, also z € p“G o It follows p“G, C p“B. The reverse inclusion is trivial.

If D 1s a divisible subgroup of &G, then D C p¥G = p* B from above. B 1s reduced,
hence D = 0 and G 1s reduced as well.

v =19,

Lemma 3.7. Let G' =< G,z,,k < wg, p € End G and ¢, : G' — Im ¢, C X two
extensions ;. D , for 1 = 1,2 and some group X . If X is reduced, then o, = ¢, .

Proof. Let (z*) be the chain defined by z,. Then we have pz**'p. = z*p. — z_p, for
1=1,2. Setting d”* := z"(p; — p,), we get

Pdﬁl = PIHH(‘P‘l — ) =1, — ) — z.(p— )= "(p; —py) =d" € X,

forall k < w. But < d*,k < w > Z(p*), if d*# 0 for infinitely many . Since X is
reduced, this forces d* = 0 for almost all kK < w, hence d* = 0 for all &, z%p, = z"p,,
for all k < w and ¢, = ¢, follows.

Next we observe that small endomorphisms of G can be recognized on B.
Lemma 3.8. If ¢ € End G then ¢|B is small if and only if ¢ is small.

Proof. We have to show that ¢ € End G is small if the restriction ¢|B is small. For any
x < w there exists x* < w such that p** B[ p*]p = 0. We may assume <* < (s + 1)* and
want to show p™*Gp*lp = 0.

Using the Recognition Lemma 3.1, any ¢ € p**G[p*] can be expressed as ¢ = b+
+Y o 6,z with £, € G coming from a branch v, Intheconstructionof &G, ., and b € B.
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R, *R* R, TR

Wecanwrite g = b'+ p** Y oy a,z;*  forsome b’ € B and b’ € p** B[p"], p**a;z;" " €
€ p**G[p*]. Hence b'p = 0 and it is sufficient to show az™p = 0 for az™ € p**G[p"].
This will follow from

(*) If az™ € p**G[p"*], we find z = raz™ € p**V*G[p**!] such that (p2)p = (az™)p.

Since (z~) is a chain, we can write az™ = u+ v with u = S \%¢V* ptaz_, and v =

(x+1)=+] (x+1)s+14+m

=p ax
This yields u € p**B[p*] and if z = p{F*D*qr{stsdm then az™p = vy = pzp and (*)
holds.

If zy, = ax™ € p™*GIp"], thenwefind 2z, € p**D*Qp**1] such that (pzy)p = 2y by (¥).
Inductively we obtain elements z; such that z; € p'*®*G[p™**] and p(z,,,)p = z,p € G.
If 2,p#0, then < 20,1 < w >¥ Z(p*™) is a subgroup of G which is impossible. We
derive z_p = ax™p = 0 which completes the proof.

Some easy calculations show

Lemma 3.9. If ¢ is a small endomorphism of G and G' is a rk-1 extension of G, then ¢
extends to a homomorphism of G' into G.

The proof of the converse is more complicated, but it follows by standard arguments for
separable abelian p-groups [7].

Lemma 3.10. If ¢ € End G\ Small G, then there are z, € B[p**'1(x < w) and k* < w
such that the following holds:
™o ¢ G forall extensions p D ¢ withG' =< G,z,,k <wg C dom {.

Proof. Since ¢ is not small, by Lemma 3.8 there is aminimal d < w suchthat p*B[p?]p# 0
forall x < w.Wefind e, € p"B[p?] suchthat 0# e, p =: h_ € p*B{p]. We may assume

that all e_ have the same order p® and choose x, € B such that p**'~9z_ = e_, hence
o(x,)=p*! and p**!'-9z p=¢ p#0.

Passing to a subsequence of w, we may assume
(*) ho(y,) is strictly increasing for y, = p* 'z, p € G andsome ¢t > d .
We will distinguish two cases:

Casel: y ¢ H_,, forinfinitcly many x < w and
Case2: y_ € H_,, foralmostall x < w.

Incase 1 we may assume that y ¢ H_,, forall x < w. Again, passing to subsequences, we
can choose elements o, € [y,]\{—1} suchthat sup,_, || o, ||= sup,., || v, || Similarly,
the sequences (|| y,. ||, and (|| o, |, are non-decreasing and

(1) ye. €496,

A< K<
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(2) if infinitely many of the o, s lie in one single branch, then all do so.
Note, that by (1) each element of [y_,,] has a height larger than [(o,). Therefore
Yes1 T, = 0 for every element p € T with I(p) < l(o,.). In particular I(o_,,) > I(0o,)

and o,,, #0, foralln<w.If ¢, € {0,1} and ¢ > I(0,) <, then

(3) 2 1= (Lot €V o, = alt €xYe) o, -

Thus z_ only depends on ¢, for x < l(o,). Furthermore 2, € G[p™], where m =
=t—d+ 1 and
@4) z_ =o,c,, with c, € p9)-™4.

Suppose €,,...,€e__, areconstructed. As z_ and ¢, only dependonthe €, for x < (o, ),
wecan findan e, suchthat z m, isdifferent from any prescribed elementof o, A. We choose

€, such that

(1) z, = pHow—mc #o po)-mc | ifnisoddand 2, #0, if n is even.
Define G' =< G,s,.k < wg, where s, := €.z, and let (s*) be the chain defined

by s.. Suppose there is an extension ¢ D ¢ with G' C dom @ such that s'p € G, then

(s*p) m, = i(:f pH_tEﬂIﬁfpﬂp = E:l) €Y PT, = 2,7, for some o = o, . By the choice

of ¢,(k < w) we have o € [s'@] for even n. Moreover sup,_, || o, ||=]| s*@ ||. The
Recognition Lemma 3.1 and (2) force that there are an @ € A, x < w such that (s*p) My =

= o,p"°~*q for all large enough n < w. Because of o( s'p) < p™ we can assume that
x = m and (4) implies a — ¢, € p™ ! A for all large enough n. Finally we conclude

i(o,)—m l{o,)—m

(s'p) M, = 0,P a, = 0,p
which contrdicts (7) for all large odd n=.

In case 2 we may assume y,_ € H_, forall k < w and (*) and an easy analysis of gencralized
Priifer groups (2.1) show that some subscquence y (x € I C w) generates a direct sum
Drer U«A In H_; . Wereplace I and w and choose a rk-1 extension &' =< G, z,, k < wy
of G accordingly.

If o is an extension of ¢ such that 2*@ € G, then we obtain
(S) Itgﬁ — E:=t Pﬁutfﬂﬂﬂ + pn+l $n+1 {13 — Z:::t TR + pn+1 $n+1 ’E

This implies [z'@] C [y.p] C {—1}, z'p € H_, and only a finite number of y, con-
tribute to z*@. On the other hand, an easy argument shows h(p**' ~'z"**'5) > h(p™ 'z _¢p)
V n < &, and an infinite number of y_ must contribute to z*p, a contradiction.

The final proof follows [7], see [1] for details. Here are the main steps.

— (o, ,)—m
a=ag,p- G, 1

Lemma 3.11. Let w be a constant branch and (w") the chain defined by w. Then the
following holds:

wa € G <= a€ptA
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Corollary 3.12. AN Small G =0

Lemma 3.13. Let ¢ € End GG, w a constant branch, G' =< G, w,,k < wg and (w") the
chain defined by w. If ¢ D o : G' — @', then thereis an a € A such that

w* (p—a) € G forall k< w.

Lemma 3.14. If ¢ € End G\ A® Small G, then there are =, € B[p**'](x < w) and a
chain (z") defined by x, such that
(*) Yo D pdn< w withdom p O G', where G' = G,z K < wg .

Finally, as 1n [7] we can see that ¢ sausfies End G = A& Small .

Proof. Assume thereisa p € End G\ A® Small GG. By (3.14) there is a chain (z*) defined
by z, € B[p**'] such that G’ :=< G,z s < wg is reduced and Y D ¢ such that dom
@ D G thereis n = n(p) with z*p ¢ G'. The Black Box yields an o < A* and a trap
(f.P,,p,) suchthat z_,z o € P Ve < w, sup{|| z* ||,|| z"¢ ||,x < w} <]|| P, || and
0o = P[P,

According to the construction of G and Lemma 3.5 there is a chain (g~) such that « 18
either weak or strong. We want to show that « 1s strong.

If ve Br(Im f,), then the following holds (see (7] and use the lemmata above , or see
[1]) Se € {0, 1}Vp D p3n=n(p) such that (v* + ex™)p €K G, v, + €z, Kk < wg .

This shows that « is strong, gfp ¢ G and ¢ ¢ End G, a final contradiction, which
completes the proof our Theorem. o
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