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1 The concept of brace

Let R be a pseudo-ring ([10], 1.8.1), that is, R satisfies all properties of a
ring except the existence of a unit element. A left ideal I of R is said to be
modular |36, 7| if there is an element e € R with ae —a € I for all a € R. If R
is the only modular left ideal, R is said to be a radical ring. For example, the
Jacobson radical of any (unital) ring is a radical ring. More generally, the radical
of a pseudo-ring R, the intersection of all modular maximal left ideals (see [39],
Lemma 1), is a radical ring. Every radical ring R is a group R° with respect to
Jacobson’s circle operation

aob:=ab+a-+b. (1)

In particular,
ao0=00a=a.

The group R° is called the adjoint group of R.
Recall that a I-cocycle of a right module A over a group G (with right action
a— a9) is a map d: G — A which satisfies

d(gh) = d(g)" + d(h)

for all g,h € G.
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Proposition 1.1. Let R be a radical ring. The right action a® := ab+ a of R°
on the additive group of R makes R into a right R°-module. The identity map
R° — R s a 1-cocycle.

Proof. Since (a +b)¢ = (a+b)c+a+b = (ac+ a) + (bc+b) = a® + b° and
(a®)¢ = (ab+ a)c + (ab+ a) = a(bc + b+ ¢) + a = a®¢, we have

(a + b)c — g + b07 aboc — (ab)c (2)

for all a,b,c € R. Furthermore, a® = a. Thus R is a right R°-module. Eq. (1)
can be written as
aob=a+b, (3)

which means that the identity map R° — R is a 1-cocycle. QED

Now let d: G — A be any bijective 1-cocycle, where A is a right G-module.
Identifying G with A, we get an abelian group A with a group structure A° :=
(A, 0) and a right action a — a® of A° on A such that Egs. (2) and (3) hold. The
conditions are partly redundant. It suffices to assume that the abelian group A
has a multiplication which satisfies

(B1) (a+b)e=ac+ bc
(B2) a(bc+ b+ ¢) = (ab)c + ab + ac
(B3) The map = +— z% := za + x is bijective,

so that the circle operation is given by Eq. (1). Note that (B1) and (B2) are
equivalent to Eq. (2), while (B3) is an immediate consequence of the group
action.

Definition 1. A (right) brace is an (additive) abelian group A with multi-
plication (a,b) — ab satisfying (B1)-(B3).

Axiom (B2) combines the associativity rule with the left distributive law.
Using the right multiplication

Ry(a) := ab,

it can be written as

Rboc = Rb o Rc

which relates the internal circle operation b o ¢ of A with an external circle
operation, namely, the circle operation in the endomorphism ring of (A, +).
Compare this with the Jacobi indentity

[CL, [b’ CH = Ha” b]’c] - [[avc]7b]
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of a Lie algebra, which can be abbreviated as
R[b,c] = [R67 Rc]

This shows that axiom (B2) is quite natural.
The next proposition shows that braces are just equivalent to bijective 1-
cocycles.

Proposition 1.2. Let A be an additive abelian group with a multiplication sat-
isfying (B1). Then A is a brace if and only if Eq. (1) defines a group structure
on A.

Proof. Using (B1), we have ao(boc) = a(boc)+a+ (bc+b+c) and (aob)oc =
(ab+ a + b)c+ (ab+a+b) +c = (ab)c + ac + bc + ab+ a + b + c¢. Hence
(B2) is equivalent to the associativity of (A, o). Furthermore, (B1) implies that
0c = (04 0)c = 0c+ 0c. Hence Oc = 0, and thus Ooc = ¢ for all ¢ € A. Now (B3)
states that the map x — x o a is bijective for all a € A. Thus it suffices to show
that a semigroup (A4, o) is a group if the right multiplications are bijective and
there is a left unit element. This fact is well known (e. g., [43], 1.2). QED

Corollary. Fvery bijective 1-cocycle gives rise to a brace, and vice versa.

Bijective 1-cocycles arise in many different contexts. For example, Etingof
and Gelaki [23| use them for the construction of semisimple Hopf algebras.

Like the concept of skew-field which naturally arises from a projective space
by the Veblen-Young theorem, braces can be understood geometrically as groups
with an extra structure of a principal homogenous affine space.

Definition 2. Let k be a field. We say that a brace A is k-linear or a k-brace
if its additive group is a k-vector space such that (Aa)b = A(ab) holds for A € k
and a,b € A.

k-linear braces were considered by Catino and Rizzo [16] who called them
“circle algebras”, referring to Jacobson’s circle operation. Catino and Rizzo [16]
generalize previous work [14] to non-commutative groups by proving that circle
algebras are equivalent to affine k-spaces on which a group acts freely and trans-
itively. For arbitrary braces, the correspondence is given as follows. Recall that
a torsoris a set A together with a free transitive right action of a group G. If A
is an abelian group such that the implication

a—b=c—d = ag—bg=-cg—dg
holds for a,b,c,d € A and g € G, we call (A, G) an affine torsor. Equivalently,

ag+bg = (a+0b)g+0g
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for a,b € A and g € G. The bijection G =~ A with g — 0g allows us to identify
G with A. So the group G induces a group structure (A4,0) on A with neutral
element 0. The equation (0g)h = 0(gh) for g, h € G then implies that the group
action of G on A turns into the right regular representation a + a o b of (A, o).
In other words, an affine torsor is equivalent to an abelian group A with a second
group structure (A, o), both with neutral element 0, such that the equation

aoc+boc=(a+b)oc+c

holds for a,b,c € A. With the multiplication ab := a o b — a — b, this equation
turns into (B1). Therefore, Proposition 1.2 immediately gives

Proposition 1.3. Every brace can be viewed as an affine torsor, and every affine
torsor arises in this way.

Braces can also be characterized in terms of triply factorized groups. I am
grateful to Bernhard Amberg who told me that such a connection was observed
by Y. Sysak (see [60], Theorem 18). Note first that every right module A over a
group G gives rise to a semidirect product S := G x A, such that the elements of
S are multiplied by the rule (g, a)(h,b) = (gh, a"+b), with g, h € G and a,b € A.
The groups GG and A can be regarded as subgroups of .S, and the operation of G
on A is given by conjugation: a9 = ¢~ 'ag. Thus a right G-module A is completely
described by a group S with a subgroup GG and an abelian normal subgroup A
such that S =GA and GN A =1.

Now any map d: G — A with d(1) = 0 is determined by its graph H :=
{gd(g)| g € G}, a subset of S with HA = S and HN A = 1, and vice versa. It is
easy to check that H is a subgroup if and only if d is a 1-cocycle. The kernel of d
is GN H, and d is surjective if and only if GH = S. Since braces are tantamount
to bijective 1-cocycles, we obtain

Proposition 1.4. Up to isomorphism, there is a one-to-one correspondence

between braces and groups S with subgroups G, H and an abelian normal subgroup
A such that S =GA=HA=GH andGNA=HNA=GNH=1.

2 The origin of braces

The construction of quantum groups is based on the quantum Yang-Baxter
equation, an equation for an operator R € End(V ® V') on a vector space V.
On the threefold tensor product V ® V ® V', the operator R gives rise to partial
operators R acting on the ith and jth component (in this order) for distinct
i,7 € {1,2,3} and leaving the third component fixed. Then the equation reads

R12R13R23 — R23R13R12. (4)
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Drinfeld |22] initiated the study of set-theoretic solutions, where the operator R
is induced by a map X x X — X x X for some basis X of V. If the inverse of R
is obtained by conjugating R with a twist (z,y) — (y,x), then R is said to be
unitary. R is called non-degenerate if the component maps x — z¥ and y — %y
of

R(z,y) = (z¥,"y) (5)
are bijective. A special role is played by the solutions R which fix the diagonal,
that is, R(z,x) = (z,x) for all x € X. Such maps R are called square-free |29].
They arise in connection with quantum binomial algebras [31], that is, quadratic
algebras A = k(X)/Z over a field k with a set Z of relations zy = ag,"y - z¥
given by a square-free non-degenerate unitary map R: X x X — X x X and
constants a,, € k*.

In 1994, Gateva-Ivanova introduced a special class of quantum binomial al-
gebras and called them binomial skew polynomial rings [28]. The term “quantum
binomial algebra” was attached to them by Laffaille [42] who verified that the
algebras up to | X| < 6 satisfy the quantum Yang-Baxter equation. A binomial
skew polynomial ring A is given by a finite set X = {x1,...,z,} of generat-
ors and quadratic relations z;x; = agjxyxy with i@ < j > ' < j' for all pairs
i < j such that each pair (', ;') occurs on the right-hand side of a relation and
the overlaps zjxjx; with k > j > 7 do not give rise to new relations. In other
words, A has a PBW-basis of ordered monomials :c]fl - gkn 9] Tt is known that
the quantum binomial algebras associated to solutions R of the quantum Yang-
Baxter equation are (left and right) noetherian domains |28]. They are Koszul
algebras of polynomial growth, and they are regular in the sense of Artin and
Schelter |2] as well as Auslander-regular and Cohen-Macaulay [32].

It is now known that the operator R of a finitely generated quantum bi-
nomial algebra A satisfies the quantum Yang-Baxter equation if and only if A
has finite global dimension and a PBW basis [31]. Gateva-Ivanova and van den
Bergh [32] proved that the operator R of any binomial skew polynomial ring sat-
isfies the quantum Yang-Baxter equation. Gateva-Ivanova conjectured [30] that
conversely, every square-free non-degenerate unitary solution R of the quantum
Yang-Baxter equation comes from a quantum binomial algebra.

Here is the point where braces arise. To prove Gateva-Ivanova’s conjecture,
we introduced a concept |52| closely related to that of a brace.

Definition 3. A cycle setis a set X with a binary operation - such that the
left multiplications L,: X — X with L,(y) := z - y are bijective and

(- y)-(x-2)=y-z) (y 2)

holds for all xz,y,z € X. A cycle set X is non-degenerate if the square map
x +— x - x is bijective. If this map is the identity, we call X square-free.
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By [52], Theorem 2, every finite cycle set is non-degenerate. The connection
with the quantum Yang-Baxter equation (QYBE) rests upon the inverse y — y*
of the left multiplication L,:

Proposition 2.1 ([52]). Every non-degenerate cycle set X gives rise to a non-
degenerate unitary solution (5) of the QYBE with *y = x¥ -y. Conversely, every
non-degenerate unitary solution of the QYBE arises from a non-degenerate cycle
set. Under this bijection, square-free cycle sets correspond to square-free solu-
tions.

In terms of cycle sets, Gateva-Ivanova’s conjecture admits a simple reformu-
lation.

Definition 4. A cycle set X is decomposable if there is a non-trivial partition
X =XiUXy with z-x2; € X; for all x € X and z; € X;.

The conjecture is then equivalent to the statement of the following

Theorem 2.2 ([52]). Any square-free cycle set X with 1 < |X| < oo is decom-
posable.

Now braces can be viewed as particular cycle sets.

Definition 5. A cycle set A with an abelian group structure is called linear
if it satisfied the equations

a-(b+¢) =(a-b)+(a-o) (6)
(a+b)-c =(a-b)-(a-c). (7)

Here the equation of Definition 3 is contained in Eq. (6) by the symmetry of
a + b. Note that Egs. (6) and (7) can be viewed as recipes to reduce the sums
in expressions like (a; +---+ay) - (by + -+ + by,). The inverse b — b of the left
multiplication b — a - b coincides with the corresponding operation of a brace:

Proposition 2.3. Fvery linear cycle set is a brace, and vice versa.

Proof. Passing to the inverse operation, Eq. (6) turns into the first equation in
(2), which is equivalent to (B1). As to Eq. (7), the substitution b — b* yields
(a+b%)-c=b-(a-c). By c— ()%, the equation turns into (b* 4 a) - (c?)* = c,
that is, (c?)® = "+, This is the second equation of (2), equivalent to (B2). The
bijectivity of the left multiplication is just (B3). QED

Thus, every brace is a cycle set. Conversely, every cycle set gives rise to a
brace, and this close relationship is deeply connected with the mechanism of the
QYBE.
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Theorem 2.4 (|52, 53|). Via Egs. (6) and (7), the operation - of a non-degenera-
te cycle set X admits a unique extension to the free abelian group Z'X) such that
ZX) becomes a brace.

The extension process is like a knitting procedure. The miracle is that it does
not lead to a contradiction.

Definition 6. A group of I-type [61, 32] is a finitely generated free abelian
group ZX) endowed with a second group structure (Z(X),o) with the same
neutral element 0 such that

{zoalzeX}={x+a|ze X}
for all a € Z(X).

Thus if we regard Z as a lattice-ordered group with positive cone N,
the upper neighbours of any a € ZX) are permuted by multiplication with the
generators. Groups of I-type were studied, e. g., by Jespers and Okninski [37].
For a finite cycle set X, the linear extension Z(X) is a group of I-type. In fact,
xoa = z%+ a. So the permutation of the upper neighbours of a is just x — x®.
The converse was proved in [54, 56].

(X)

Proposition 2.5. There is a one-to-one correspondence between finite cycle sets
and groups of I-type.

An ideal of a brace A is an additive subgroup I such that a € [ and b € A
implies that ab and ba belong to I. As in the case of pseudo-rings, the additive
factor group A/I can be made into a brace with a well-defined multiplication
(a+1I)(b+1):=ab+ I (see [53]). For any ideal I, the subgroup Al generated
by the products ax with a € A and z € [ is an ideal. Therefore, we have a
descending chain of ideals

AD A2 A3 ...

with A"*! ;= A(A™). By contrast, (A2)A need not be an ideal. On the other
hand, the socle

Soc(A) :={a € A| Aa =0}
is an ideal of A. Note that A™ = 0 for some n implies that Soc(A) # 0 whenever
A # 0. For a finite cycle set X, the brace A(X) := Z(X) /Soc(ZN)) is finite, too,
and there is a natural morphism o: X — A(X). For z,y € X, we have

o(z) =0(y) <= L, =L,

which shows that o(z) can be identified with the left multiplication L,. The
image o(X) C A(X) is again a cycle set, the retraction of X. If o is not injective,
the cycle set X is called retractable.
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So there is a sequence of retractions
X = 0(X) > 0*(X) » o3(X) —» -

which stops at an irretractable cycle set o™ (X). If ¢"(X) is trivial, the structure
of X is completely resolved. The corresponding solution of the QYBE is then
called a multipermutation solution |24].

Gateva-Ivanova’s “strong conjecture” [29] asserts that every square-free non-
degenerate unitary solution of the QYBE is a multipermutation solution. In
terms of cycle sets, this can be stated as
Gateva-Ivanova’s strong conjecture. Every square-free cycle set X with
1 < |X| < oo is retractable.

Apart from its implications to the quantum Yang-Baxter equation, the truth
of this statement would determine the structure of a big class of Artin-Schelter
regular rings. The conjecture has been verified in many cases. For example, it is
true for braces X or if Z(X) is a radical ring.

Note that a brace A is retractable if and only if its socle is non-zero. So there
is reason to hope that braces will help to decide this fundamental conjecture.

3 Braces in Differential Geometry

We have seen (Proposition 1.3) that braces can be viewed as affine torsors.
Let us pursue this approach in the classical geometric context of flat manifolds.
Let X be an n-dimensional connected real manifold with a flat affine structure
[49], in the sense that X is covered by coordinate charts into the affine n-space A”
such that the coordinate changes between overlapping charts are given by affine
automorphisms. Fix a point in the universal covering X and choose an affine
neighbourhood. Attach it to an open set of A", and extend this identification
to get an affine immersion D: X — A™. This developing map D is unique up to
affine automorphisms of A", The affine manifold X is complete if D is bijective,
or equivalently, if any geodesic line segment extends to a full geodesic (see [6]).

Any element g of the fundamental group 7 (X) induces an affine automorph-
ism a(g) of A™ such that the diagram

X 24X
b, b

commutes. The image of the holonomy representation a: m(X) — Aff(A") is
called the holonomy group of X. If X is complete, X can be identified with A™,
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and we have a free properly discontinuous action 71 (X) < Aff(A™) on A™ which
identifies X with A" /m(X).

There is a number of long-standing unsolved problems related to flat affine
manifolds. Recall that a group is said to wirtually solvable if it has a solvable
subgroup of finite index. A similar terminology is used for other “virtual” prop-
erties.

Milnor’s first conjecture [49]: If X is complete, the fundamental group 71 (X)
is virtually solvable.

In his famous solution of Hilbert’s 18th problem, Bieberbach has proved
that X is vrtually abelian (i. e. crystallographic) if 71 (X) consists of isometries.
Nevertheless, Milnor’s 1977 conjecture was disproved by Margulis [45, 46]. By the
Tits alternative, there are two possibilities: Either 71 (X) is virtually polycyclic
- or it contains a subgroup isomorphic to Z x Z. Margulis proved that the second
case occurs in dimension 3.

Compact flat affine manifolds need not be complete. A simple example is
Zeno’s Paradox: The 1-dimensional manifold X = R.o/{2" | n € Z} is not
complete.

It is not clear whether such a paradox still occurs in the presence of a parallel
volume. The latter means that the linear part of the holonomy group consists of
maps with determinant 1.

Markus’ conjecture [49]: Every unimodular compact flat affine manifold is
complete.

The original Markus conjecture states that compactness implies completeness
in case of flat Lorentz manifolds. This was proved in 1989 by Carriére [15]. The
general conjecture is still open. Another open problem is
Auslander’s 1964 conjecture [4]: If X is a compact complete flat affine
manifold, then (X)) is virtually solvable.

The proof of this in statement in [4] is incorrect. So the problem remains
unsolved. For dimensions up to six, the conjecture was recently proved [1]. If
X is compact and 7 := 71 (X) virtually solvable, Fried and Goldman (see [27],
Corollary 1.5) proved that there is a simply transitive subgroup G C Aff(A"™)
such that 7 N G has finite index in 7 and G/(7 N G) is compact. Since 7t N G
is finitely generated and linear, Selberg’s lemma implies that 7 N G is virtually
torsion-free. Thus, if I" is a cofinite torsion-free subgroup of m# N G, we obtain
a finite covering A"/T" — A" /7 = X. On the other hand, the simply transitive
action of G on A" lifts to a right-invariant complete affine structure on GG, such
that the complete affine solvmanifold I'\G is affinely equivalent to the covering
space A"/I" of X.

The Lie group G is called a crystallographic hull of T'. By Proposition 1.3, G
is an R-brace. Thus, we obtain:
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Proposition 3.1. Modulo Auslander’s conjecture, any compact complete flat
affine manifold gives rise to an R-brace.

Milnor [49] proved that every virtually polycyclic torsion-free group is the
fundamental group of a complete flat affine manifold X. He asked whether X
can be chosen to be compact. This led to his second conjecture which can be
stated as
Milnor’s second conjecture: Every simply connected solvable Lie group is
isomorphic to the adjoint group of an R-brace.

The converse is due to Auslander [5]. More precisely, Milnor (|49, The-
orem 3.2) proved the following

Theorem 3.2. A connected Lie group G admits a free action by affine trans-
formations on A™ if and only if G is simply connected and solvable.

Milnor’s second conjecture was believed to be true for a long while until it was
finally disproved in 1995 by Benoist [8] who constructed a non-affine nilvariety
by means of an 11-dimensional Lie algebra of nilpotency class 10.

A discrete version [18] of Milnor’s second conjecture is equivalent to the fol-
lowing statement: Fvery finite solvable group is isomorphic to the adjoint group
of a brace.

We will return to this question in Section 5.

4 Braces and spaces

The classification of spaces with zero curvature (with a view toward under-
standing the possible structure of our physical space) has been a central part
of the problem to classify Clifford-Klein “space forms” [40, 16]. Killing [40] con-
structed Euclidean space forms as homogenous spaces R"/I" with a Bieberbach
group I'. Hermann Weyl [66] proved that all Euclidean space forms are of that
type. More generally, affine space forms are given by cocompact properly dis-
continuous subgroups I' C Aff(A"™), that is, {g € I'| gC N C' # @} is finite for
compact subsets C' C A”. These affine crystallographic groups I' were classified
in dimension 3 by Fried and Goldman |27].

Here the stabilizer I', of any x € A™ is finite. If I' acts freely, the quotient
A™/T is a compact complete affine manifold. By Section 3, the crystallographic
hull G of T' is the adjoint group of an R-brace. The following theorem of Aus-
lander ([5], Theorem III.1) relates any R-brace A to one with a unipotent adjoint
group. Consider the algebraic hull of A°, the smallest algebraic group G contain-
ing A°. The set of unipotent elements of G form a connected normal subgroup
U, the unipotent radical of G, and G =T x U with a maximal torus 7.
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Proposition 4.1. Let A be an R-brace, viewed as an affine torsor on A™. Let
U be the unipotent radical of the algebraic hull (Zariski closure) of A°. Then U
is a simply transitive subgroup of Aff(A™).

In other words, the action of U on A™ gives another R-brace with a unipotent
adjoint group U. The group U is isomorphic to the nil-shadow of A°, defined in
[3], II1.2. Therefore, we call the corresponding brace the nil-shadow of A.

Recall (Section 2) that a brace is retractable if and only if its socle is non-
zero. For a brace A, the socle consists of the elements a € A with Aa = 0, that
is, boa = b+a for all b € A. Thus, if A is an R-brace, viewed as an affine torsor,
the socle consists of the translations. In the language of braces, a weak form of
another conjecture of Auslander can be stated as
Auslander’s second conjecture [5]: Every non-zero unipotent R-brace A is
contractable.

Auslander’s original conjecture assumes that the adjoint group A° is nil-
potent. By [58], Theorem 1, this implies that A° is unipotent. Furthermore,
Auslander claims that there are non-trivial translations in the center of A°. Aus-
lander [5] mentions Scheunemann’s paper [58] where the conjecture is proved.
Nine years later, Fried [25] gave a counterexample in dimension 4 which shows
that Scheunemann’s argument was false. For other counterexamples, see [48, 19].
Example 1. A non-unipotent counterexample was given by Auslander himself:
The R-brace with group operation

a x a+bze" YV 4 cyeV* T +
bloly]| = be* YV +y
c z ceY¥*7T 4 2

has a trivial socle. Here the nil-shadow is a 2-dimensional abelian subbrace.
Fried’s counterexample: A unipotent R-brace with trivial socle. Multiplica-
tion is given by

a\ [z —bt + cz — ctv — dy + dzv — Sdtv?
bl (v cv + 1dv?

c 20 dv

d t 0

where v := 2 + yt — 327

The adjoint group of this example has a Lie-algebra of maximal nilpotency
class. Such Lie-algebras (and groups) are called filiform [62]. For an R-brace A
with filiform adjoint group, Medina and Khakimdjanov [48] have shown that
Soc(A) # 0 if dim A is odd. For even dimension > 4, they were able to extend
Fried’s counterexample.
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Flat spacetimes. In analogy to the Clifford-Kleinian problem of Euclidean
space forms, Fried [26] classified compact complete 4-manifolds with zero curvatu-
re which are covered by the Minkowski space. The corresponding braces are two
exceptional (non-algebraic) ones and a series of unipotent braces Ug . where the

right operation by (zy zt)T is given by the matrix
1 0 0 0
Bet?
—Bz+ 5 1 0 0
—et 0 1 0
2,2 2 2 2.244 2,2 2
e e SUEE S

The parameters 3, > 0 are unique up to rescaling (B8,¢) — (A3, %) with
A > 0. All these braces are retractable.

5 Braces versus radical rings

In view of a long-standing ring-theoretic tradition, notwithstanding the geo-
metric examples of the preceding two sections (where braces arise as groups
with an affine connection), braces may still be regarded as a kind of radical
rings where something is missing. Indeed, the concept of brace is one-sided, and
a two-sided brace is nothing else than a radical ring.

So it is time to point out that this perspective is one-sided, as it evalu-
ates braces from the viewpoint of ring theory. A more appropriate comparison
should take into account how far the two structures are invariant under nat-
ural operations. We will show that the category of braces is closed with respect
to semidirect products, while this fails to be true in the case of radical rings.
Of course, this failure could not be detected in the classical framework of ring
theory where a semidirect product of radical rings does not exist!

Let M be an abelian group. With Jacobson’s circle operation fog = fg+
f + g, the ring R(M) of right endomorphisms is a monoid with neutral element
0.

Definition 7. A module M over a brace A is given by a monoid homo-
morphism A° — R(M).

Explicitly, this means that there is a right operation M x A — M which
satisfies x0 = 0 and

(x 4+ y)a=za+ya (8)
z(aob) = (xa)b+ xa + xb 9)

for all x,y € M and a,b € A.



The brace of a classical group 127

Proposition 5.1. Modules over a brace A are the same as right A°-modules.
Proof. For an A-module, define a new operation z — z% by

x% = xa + x.
Then 2° = z, and (8) and (9) turn into

(@ +9)" = + 4"
I(aob) _ (xa)b‘

QED

In particular, any brace is a module over itself. By Proposition 5.1, every
(right) module can be turned into a left module, and vice versa: (“z)* = .

Definition 8. We say that a brace A acts on a brace B if there is a map
A x B — B which satisfies

ala+b) =aa+ab
a(ab) = (aa)(ab)
(@ofa = a(Ba)

and Oa = a for all @, 8 € A and a,b € B.

In other words, the action of A on B is given by a group homomorphism
A — Aut(B),

which shows that Definition 8 is quite natural. Less obvious is the following
result (see [55], Corollary of Proposition 4) which defines a semidirect product
for braces:

Theorem 5.2. Let A be a brace which acts on a brace B. The operations

(@,0) +(0,8) = ((aBla+ (B-a)a+p) (10)
a,a) o (b, §) = (acab,aof) (11)

with a, B € A and a,b € B make the cartesian product B x A into a brace Ax B.

Theorem 5.2 has no analogue in ring theory. Indeed, the following example
shows that the semidirect product of radical rings need not be a radical ring.
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Example 2. Let R be a discrete valuation domain with quotient field K and
radical p = Rm. For an integer n > 2, let I';, be a Morita-reduced hereditary
R-order with n simple modules, and J, := RadI';,. For example,

I'y = Jy =

=vji=vi=vala
=viie ey IS
fn g = = =2

p
p
R
R

gl =2 =M =3
T

p b
p p
R p
R p

Let e;; denote the matrix units in M, (K), and let g be the canonical generator
of J,. For n = 4:

0000 000 =
(1000 1000
=10 00 0 910 1 0 0

0000 0010

Then gJ,g~' = J,. Therefore, conjugation by g is an automorphism o of J,,
and (o) C Aut(J,,) is a cyclic subgroup of order n. So the radical ring (o) with
trivial multiplication operates on the radical ring .J,, and thus (o) x J, is a
brace. However, a direct calculation shows that left distributivity fails for this
brace:

(632, 1) ((—621, 1) + (0, O’)) 7é (632, 1)(—621, 1) =+ (632, 1)(0,0’).

Whence (o) x J,, is not a radical ring.
Eq. (11) shows that every semidirect product A x B of braces satisfies

(Ax B)° = A° x B°.

Now let us return to the question raised at the end of Section 3, concerning
the solvable groups arising as adjoint group of a brace. In [18| they are called
involutive Yang-Baxter groups (IYB-groups for short).

Corollary 1. Let A be a brace, and let G be an IYB-group acting on A° by
automorphisms of A. Then G x A° is an [YB-group.

Corollary 2. Fvery semidirect product Gx A of an IYB group G with an abelian
group A is an 1YB group.

Proof. The abelian group A is a radical ring with trivial multiplication. Every
group automorphism of A is thus a brace automorphism.
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For abelian groups G, a brace with adjoint group G is a radical ring. Usually,
there are several such braces for a given group G. If G is non-commutative, it
frequently happens that A° = G holds for a unique brace A, for example, if G
is a generalized quaternion 2-group [57].

6 Amalgamation of cycle sets

Example 2 shows that semidirect products of radical rings naturally lead to
braces. Let us now have a closer look upon Eq. (10) which defines addition in a
semidirect product A x B of braces. Subtraction can be inferred from Eq. (10)
as

(ava) —(b,B) = ((a -=Bla— (- —=B)a(B-—B)b,a — /8)

Recall that b — a-b is the inverse map of b — b®. Using the formula aob = a®+b
which holds in any brace, Eq. (10) transforms into

(a, )" = ((a- §)(a*), "), (12)

where (' is the inverse of 8 in the adjoint group. Now Eq. (12) can be rewritten
as

(a,a) - (b,8) = ((a Ba- (B-a)b,a- B), (13)
an expression of Eq. (10) in terms of the cycle set structure! This leads to the
following

Definition 9. We say that a cycle set X acts on a cycle set Y if there is a
map X — S(Y) into the symmetric group S(Y) which satisfies

alr-y) =ar-ay (14)
(a-Blax = (B-a)fz (15)
for a,f € X and z,y € Y.

While the first equation is obvious, the second one becomes clear in case that
X is a brace: Then (a-f)oa = (f-a)o = a+ f holds for all o, € X.
Generalizing Theorem 5.2, we have

Theorem 6.1 ([55]). If a cycle set X acts on a cycle set Y, Eq. (13) makes
Y x X into a cycle set X x Y.

Firstly, this theorem shows that every semidirect product of braces is a semi-
direct product of the underlying cycle sets. Secondly, in combination with Pro-
position 2.1, Theorem 6.1 can be used to construct non-degenerate unitary set-
theoretic solutions of the quantum Yang-Baxter equation by amalgamation of
given solutions.
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Example 3. Let V' be the Klein Four group, the additive group of Fo &Fs. Then
the cyclic group C3 = (o) acts on V by permuting the three non-zero vectors.
The semidirect product C'5 x V' is the alternating group A4. An easy calculation
shows that (a,0) € C5x V has order 6 if a # 0. So we get a brace A with adjoint
group A4 and additive group Cg x Cj.

Example 4. Every brace A acts on itself. If it acts by brace automorphisms,
there is a double A x A which is again a brace. The existence of a double is
determined by the following criterion.

Proposition 6.2. A brace A admits a double A x A if and only if A3 = 0.
For a € A, let a’ denote the inverse of a in A°. We need the following

Lemma. Every ideal of a brace A is a normal subgroup of the adjoint group A°.

Proof. Let I be an ideal of A. For a € I and b € A, we have ' ocaob =
(V'a+b+a)ob = (V'a+b'+a)b+(b'a+b'+a)+b = (Vata)b+(bata) € I. [eED

Proof of Proposition 6.2. . The brace A acts on itself by automorphisms if and
only if (a o b)¢ = a0 b¢, that is, (a® + b)¢ = (a®)®" 4 b¢ for all a,b,c € A. This
is equivalent to (a®)¢ = (a®)® or, by Egs. (2), a®*¢ = a®*". Now this equation
can be written as a = a®°®°“°? which means that cob®o ¢ ob’ € Soc(A) for all
b,c € A. By the lemma, this condition can be repaced by b0 o/ o ¢ € Soc(A).
Now b o o) = ((bc)c, +d)ob = (d+b)ob = ((c’)b, ob)ol = ().
So the condition turns into (¢/)” o ¢ € Soc(A). Since (¢)°4 ¢ = ¢ oc = 0,
the substitution ¥’ = codo ¢ gives () o ¢ = (=)™ 0 ¢ = (—¢)®c 4 ¢ =
(—e) 4 ¢ = (—c)d — ¢+ ¢ = (—c)d. So the condition states that A% C Soc(A),
that is, A% = 0.

7 Chevalley groups

The adjoint group of a finite dimensional R-brace is solvable. So there is no way
to make a simple Lie group into a brace. On the other hand, Proposition 4.1
shows that every R-brace A gives rise to a unipotent R-brace where the adjoint
group is replaced by the nil-shadow of A. In this section, we will show that the
unipotent part of a Chevalley group of type A-D has a natural structure of a
brace.

Remark. For a finite Chevalley group G over a prime field F,, it may happen
that G itself is a brace: In Example 3, we proved that PSLy(3) = Ay is the
adjoint group of a brace with additive group Cg x Cs. Of course, a finite non-p-
group G cannot be the adjoint group of an [F-brace.
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Let g = g™ @h® g~ be a simple Lie algebra over a field K. The corresponding
Chevalley group of adjoint type is the subgroup of Aut(g) generated by the root
subgroups X, 1= {z(t) | t € K}, where z,(t) := exp(tade,) for any root «
with root vector e, € g. Consider the unipotent subgroup

X(g") = (wa(t) |a € 2T)

generated by the X, with « positive. The Chevalley groups of type A-D can be
represented as classical groups. Using their matrix representation, we have

Proposition 7.1. For every simple Lie algebra g of type A-D, g* is a brace
with adjoint group X (g*).

Type A,,. The Lie algebra sl,, 1 (K) corresponds to the matrix group SL,1(K)
with unipotent part X (sl,4+1(K)") = U,+1(K), the group of unipotent lower tri-
angular matrices of size n + 1. The Lie algebra u,41(K) of U,+1(K) coincides
with the radical of the lower triangular matrix ring. Hence u,, 41 (K) is a K-brace
with adjoint group U,,4+1(K). The corresponding bijective 1-cocycle is given by

0: Un—l—l(K) — un+1(K)

with 6(g) := g — 1. In particular, there are braces of type A for finite fields K of
characteristic p > 0. Here U,,11(K) is a Sylow p-subgroup of SL,41(K).

For the unipotent groups U of type B-D, the affine structure is given by a
bijective 1-cocycle v: U — A induced by § via a commutative diagram

U—— Up(K)
y s (16)

A« u,(K)

with a Uy, (K)-linear epimorphism p. In any case, v = pd|y is a 1-cocycle. Thus,
to obtain 7, it is enough to find a factor module A of w,,(K) with v bijective.
We will show that this can be done in a natural way.

Type B,,: The odd orthogonal group Q9,41 (K) consisting of the (2n+1, 2n+
1)-matrices A with AJAT = J, where

1 O
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Precisely, the simply connected group Qop+1(K) is the commutator group of the
orthogonal group Og,,41(K) with respect to J, and PQg,+1(K) is the Chevalley
group of adjoint type.

For n = 2, the unipotent part U consists of the matrices

1 0 00 O
—d 1 000

A= 2bd—2¢ —2b 1 0 0 (17)
db>*—2bc—a —b? 1 0
—ad—c? 1

with a,b,c,d € K. The subspace
M = Keg1 D Keg1 @ Keszo ® Keq1 @ Kego @ Kesy
of us(K) is a right Us(K)-submodule, and the epimorphism
p:us(K) — us(K)/M = g*
provides a bijective 1-cocycle v = pd|y: U — g™ which makes g* into a brace

with adjoint group U.
Type C,: The symplectic group Spa,(K). With

o
L O

this group consists of the (2n,2n)-matrices A which satisfy AJAT = J. For
n = 3, the unipotent part U consists of the matrices

1 0 0 0 0O
—i 1 0 00O

_ gi—h —-g 1 0 0 0 (18)
f+dgi—dh—ei e—dg 100
c+fg—bi—eh 10
1

with a,b,c,d,e, f,g,h,i € K. As in case B, the parameters can be found in a
triangle-shaped part of the matrix A. So we can apply exactly the same method
to obtain a canonical brace structure on the nilpotent Lie algebra g* with adjoint
group U.
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Type D,: The even orthogonal group Q9,(K) of (2n,2n)-matrices A with
AJAT = J, where
( ) 1

J = 1

0

For n = 3, the matrices in the unipotent part U of s, (K) are of the form

1 0 00 00

—f 1 00 00

- df —e —-d 1~0 0 0
4 bf—c 0 INO O (19)

bdf —be—cd—a b d 0

—af—ce a ¢ e f 1

with a,b,¢,d, e, f € K. Again, the parameters are located in a triangle-shaped
part of A, and there is a canonical brace g™ with adjoint group U.

Note that for all cases A-D, the unipotent group U is a subgroup of the
Chevalley group G, of adjoint type as well as a subgroup of its simply connected
covering o: G, — G4: The kernel of ¢ is just the center of G,,.

The above matrix representations exhibit the root subgroups of U. These are
bijectively associated to the entries of the triangle-shaped region in the matrices
A.

Remark. In contrast to case A, the braces of type B,C,D are not radical rings.
To verify this for By, consider x := esq — €21, y := €43 — 2e32 — €40 € g*. Then

z(y +y) # xy +xy.

8 The exceptional group G,

The 14-dimensional exceptional simple Lie group G2 has a faithful matrix rep-
resentation of dimension 7. As a real group, Gg is the automorphism group of
the division algebra O of octonions. The action of Gy on the imaginary part
Im(O) of O yields an embedding into the orthogonal group O(Im(Q)):

G2 — O7(R).

Compact Riemannian manifolds with Ga-holonomy were constructed in 1994
by D. Joyce. They carry the hidden dimensions in 11-dimensional supergravity
theory.

According to the root system of Go, the unipotent part U of G is of dimen-
sion 6. Using Wildberger’s basis [67] for ga, the matrices in U can be put into
the form
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( 1 0 0 0 00 0)
e 1 0 0O 000
ef—d f 1 0O 000
2¢ 2d 2e 1 000
ce—b de—c e? e 100
a—bf+cef—cd def—cf—d? e*f—de—c ef=d 1 0
\ A +ae—bd a b c d e

where the parameters a, b, ¢, d, e, f are located in a streched triangle-shaped part.
As above, we obtain a brace A with A° = U. Now the operation z +— zoa in A
yields an affine matrix representation for U:

1 0 0 00 0O

f 1 0 0000

2d 2e 1 00 00
de—c e? e 1000 (20)

def —cf —d?* e*f—de—c ef—d f 1 0 0

0 0 0 0010

a b c d e f |1

Here the matrices take a very simple form. The parameters a, b, ¢, d, e, f, indic-
ating the root subgroups, appear in the last row. They correspond, respectively,
to the roots

200+ 3B, a+ 38, a+ 28, a+ 5, B, a,

where a denotes the long root. So we obtain

Theorem 8.1. The positive part of a simple Lie algebra g of type A,B,C,D,G
over a field K is a brace with adjoint group X (g*).

With some patience, a similar construction should yield a brace with adjoint
group the unipotent part of Fj, the automorphism group of the exceptional
Jordan algebra of 3 x 3 self-adjoint matrices over Q. For the remaining type E,
the representations given in [68] may be useful. Already for Fg, the matrices are
too large to be depicted.

On the other hand, the above example for G5 shows that Wildberger’s mar-
vellous basis [67] is not optimal for our purpose. We leave it as a challenge to
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find a canonical construction of the diagram (16) simultaneously for all Cheval-
ley groups, including the exceptional ones. We shall return to this problem in
Section 10. Using the brace structure in cases A-D, the matrices (17)-(19) could
also be given in a form like (20), at the expense of increasing the dimension of
the representation. The triangle-shaped area then turns into a straight line.

9 Right symmetric algebras

Let A be an R-brace with adjoint group G = A°, viewed as an affine torsor. The
additive group (A, +) is an R-vector space R™, and the map = — x o a yields a
simply transitive action av: G — Aff(A) on A as an affine space. The differential
of a gives an affine representation da: g — aff(A) of the Lie algebra g which fits
into a commutative diagram

g —2% 5 aff(A)

J’exp J{exp

G —2 5 Aff(A)

The identification g = A turns g into a right module over itself. This gives a
bilinear map g x g — g with

[a,b] = ab—ba
alb,c] = (ab)e— (ac)b
for all a,b,c € g. Hence
(ab)c — a(bc) = (ac)b — a(cb) (21)

for all a,b,c € g.

Definition 10. A (non-associative) algebra satisfying Eq. (21) is called a
right symmetric algebra.

With [a, b] := ab — ba, Eq. (21) can be written as

[Rp, Re] = Ry g,

another version of the Jacobi identity!

In fact, every right symmetric algebra (RSA) is a Lie algebra with bracket
[a, b] := ab—ba. Therefore, we also speak of a Lie algebra with a right symmetric
structure. The concept was introduced by Vinberg [64] in connection with his
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theory of convex homogenous cones. Right symmetric algebras and their left-
hand version (LSA’s) arise in very many areas of mathematics and physics (see,
e. g, [12]). Let us mention just a few typical examples.

Gerstenhaber proved in his fundamental paper [33] that the Hochschild com-
plex of an associative ring is a (graded) right symmetric algebra. The free RSA
with one generator has the rooted trees as a basis. It was discovered 1857 by Cay-
ley [17] in his analysis of differential operators. Chapoton and Livernet (|20], 3.1)
identified this RSA with a Lie algebra considered by Connes and Kreimer [21]
in connection with renormalization of quantum field theories. More generally,
every class of graphs (e. g. Feynman graphs) yields an RSA.

Let P be a non-empty open convex cone in R with a transitive action of its
automorphism group Aut(P) := {a € GL,(R)|a(P) = P}. By |64], Theorem I.1,
G := Aut(P) decomposes into G = G,T, where G, is the stabilizer of some
x € P and T is a maximal connected split solvable subgroup which acts simply
transitively on P. The orbit map g — zg is a diffeomorphism T =~ P which
induces a linear isomorphism p: t = R" from the Lie algebra t of T" onto R".
The binary operation

alb = ap~ (D)

on R™ makes R™ into a right symmetric algebra (cf. [64], Chapter 2). Moreover,

Vinberg [64] has characterized the RSA’s which arise in this way. (To be sure,

Vinberg [64] introduced left symmetric algebras, which is just a matter of taste!)
A homogenous cone P C R" is called symmetric if

VyeP: (z,y) >0<=x€P

holds for all x € R™. By the famous Koecher-Vinberg theorem [41, 63|, there is a
one-to-one correspondence between symmetric cones P and formal real Jordan
algebras, that is, real Jordan algebras for which 2 +y? = 0 implies that = y =
0. The cone associated to a formal real Jordan algebra consists of the non-zero
squares.

Right symmetric algebras are the Lie-theoretic analogue of braces:

Proposition 9.1. Right symmetric algebra structures with underlying Lie al-
gebra g are equivalent to 1-cocycles of g.

Proof. Let A be a right module of g, and let q: g — A be a 1-cocycle, that is,
qla,b] = q(a)b — g(b)a for all a,b € g. Assume that ¢ is bijective, and define a
multiplication on g by

ab = ¢~ (g(a)®). (22)
A straightforward verification shows that Eq. (22) makes g into an RSA. Con-
versely, the right multiplication of an RSA g is a g-module structure, such that
the identity map g — g is a 1-cocycle. QED
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Thus, in particular, every formal real Jordan algebra A is a Lie-theoretic
“brace”. Let I(A) denote the set of idempotents ¢ € A for which the space
{a € A|ea = a} is one-dimensional. For simple A, Ulrich Hirzebruch [34]
has shown that a formal real Jordan algebra is completely characterized by
the topological space I(A) which is a two-fold homogenous closed Riemannian
manifold. Hsien-Chung Wang classified these manifolds [65]: For odd dimension,
I(A) is a Clifford-Klein space form, while for even dimension, I(A) is either
an n-sphere, a real, complex or quaternionic projective space, or the Cayley
projective plane of dimension 16.

For every R-brace A, the corresponding bijective 1-cocycle A° — R™ induces
a bijective 1-cocycle Lie(A°) — R™, which gives a right symmetric algebra struc-
ture on Lie(A°). The converse does not hold, unless A is complete, that is, the
maps & — az +x are bijective for each a € A. By [59], Theorem 1, A is complete
if and only if the left multiplications x — az are nilpotent. So we have

Proposition 9.2. R-braces are equivalent to right symmetric algebras g such
that the left multiplications L, in g are nilpotent.

10 Hall algebras

Let g be a simple Lie algebra with root vectors ey, o € ®*, such that
lea, €3] = Napeatp whenever o, B, + 3 € T, and N,p € Z. The examples of
Sections 7 and 8 suggest that there exists a right symmetric algebra structure
on g* such that the positive root vectors form a monomial basis.

An obvious candidate for an RSA basis comes from the associated Hall al-
gebra. The positive roots o € ®T can be associated to the indecomposable
representations M, of a hereditary algebra A over a field K such that A and g
are of the same Dynkin type. Assume that ¢ := | K| < oo.

The Hall algebra 5 (A) has a basis # consisting of the isomorphism classes
[M] of finite dimensional A-modules M. The structure constants F?,, € N of
S (A) count the number of submodules M’ of N with M’ =2 M and N/M' = L.
Ringel [50] proved that . (A) is isomorphic to the positive part U (g) of the
Drinfeld-Jimbo quantum group U,(g). For a, 3,a + 8 € &%, he found a finite
list of polynomials [51] which occur as Hall polynomials @3 € Z[x] such that

M,
Fuiar, = Papla)-

The structure constants N, of g are obtained by passing to ¢ = 1:

Naﬂ = ‘paﬁ(l) - 90,804(1)' (23)
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This wonderful formula suggests that a product like

€afp = @aﬂ(l)ea—i-ﬁ

might give the desired RSA structure on g*. Let us check this for Dy:

Y
| (24)
a—— f——90

The linear part of the Chevalley group matrices is

0O 0 0 0 O0O0O00O0
—a 0 0 0 0 0 00
—e —=b 0 0 0 0 0O
—h —f —c 0 0 0 0 O
-t —g —d 0.0 0 0 0
—k ’ d 0 0 0
- g f 00 0
0 i h e a

with a,b,¢,d, e, f, g, h,i,j,k, | € K corresponding to the 12 positive roots (in this
order): av, 8,7, 8, a+B, B+, B+6, at B+, a8+, B+y+6, a+B+v+0, a+28+y+6.
Accordingly, the multiplication table of the RSA looks as follows:

a e h 7 k
b f |y

c

d

e h 7 -1
/ —J

g —J

h —k -1

1 —k -1

J

k -1

l

Now let us return to Eq. (23), Here ¢y, # 0 if and only if there exists a short
exact sequence
0— M, = M)y, — My — 0.
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If pxu # 0, then ¢, = 0. At first glance, it looks extremely plausible that the
structure constants of the RSA are just ¢y, (1).

Unfortunately, this is not the case! The orientation of the Dynkin diagram
(24) is required in order to have ¢y,(1) # 0 if and only if eye, # 0; however,
this just fails for the product e, g4~+5€s, that is, the downward leftmost entry
of the table. Note that the Hall algebra ansatz cannot be corrected by passing
to the LSA.

Ringel has shown that the structure constants ¢,,, at ¢ = 1 yield the universal
enveloping algebra:

H(A)g=1 =U(g")

which is associative. Indeed, any associative algebra is an RSA. However, such
an RSA must be a radical ring, in contrast to the braces of type B-D.

11 Finite p-groups
For every p-group G, the lower central series
G=G1DG2DG3D -
gives rise to a Lie ring L(G) := @ G;/G;+1 with Lie bracket
[0GiyyGy] 1= (2 y )Gy

One may wonder if the natural bijection G — L(G) would lead to a brace
structure. If yes, this would imply that every finite p-group is an I'YB-group.

Alternatively, we could try to find a complete RSA structure on L(G). Or
we let G act on the [F,-space L(G) and look for a triangle-shaped region in the
matrices as done for the Sylow subgroup of a finite Chevalley group.

However, there are several obstructions: First, the group G cannot be re-
covered by its Lie ring. Second, even if G is abelian, G need not admit a bijective
1-cocycle onto an IF,-vector space. In fact:

Proposition 11.1. Let p be an odd prime. Then the additive group of any brace
with adjoint group C,z is cyclic.

Proof. Let IFI% be a right Cp2-module and 7: Cp2 — Fg a bijective 1-cocycle. If
Cpn = {c), then (") = 7(c')¢ + w(c). With v := 7(c?), this shows that

2 2 3
v, v+ 050+ v+ 08 v+ 0+ 0 v, ...

runs through all of F2. On the other hand, (c—1)P" = ¢®" —1 = 0 implies that the
automorphism x +— z¢ is unipotent. So we can assume that this automorphism ~
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is given by a matrix ((1) ‘I) For a positive integer m, an easy calculation shows

that .
L+y+~2 4 44m = (m (2))

0 m

Hence 1+~ +~2 +--- 4+ 14771 = 0, a contradiction. QED

Example 5. For p = 2, there is a unique brace A with cyclic adjoint group
and the Klein four-group as additive group. Assume that the adjoint group is
generated by a. Then b := a? = aoa ¢ {0,a}. Hence A = Foa®F2b. Furthermore,
b>=bob=0andaob=boa=aocaoa=a+b. Hence ab= ba = 0, and thus
A is a unique radical ring.

12 Nilpotent braces

Let g be a filiform R-linear Lie algebra of dimension n > 1. Benoist [8] has
shown that the minimal dimension p(g) of a faithful g-module satisfies p(g) = n.
He constructed a filiform Lie algebra n of dimension 11 with p(n) > 12. So there
cannot be an RSA structure, as this would require a faithful representation
of dimension 12 (see also [13]|). In particular, this disproves Milnor’s second
conjecture.

Vergne [62| has shown that filiform Lie algebras of dimension > 8 are de-
formations of the standard graded filiform Lie algebra L(n) = Reg @ --- @ Re,
with non-zero brackets [eg, ;] = e;11 for i € {1,...,n — 1}. Burde |11] replaced
Benoist’s example by a family of 10-dimensional Lie algebras, given as deform-
ations of L(9). The simplest onel seems to be L(9) with additional non-zero
brackets

€1,62] = €4+ €5

[e1,e2] = [e1, €3] [e1, €4]

[61, 5] = 3e7 + Seg + 50eq [61, 66] = Teg + beg [61, 67] = l4eg

[61, 8] —E€9 [62, 63] = —€g — 267 - 2568 [62, 64] = —€7 — 268 - 2569
le2, 5] = *468 [e2,e6] = —Teg [e2, e7] = eg

[e3, e4] = 3es — 2e9 [e3, e5] = 3eg [e3, e6] = —eg

les, es] =

As in the previous examples, the verification that every faithful module must be of
dimension > 11 is based on computer calculations.

Postponing the task of finding an independent proof, let us sketch how such ex-
amples can be transformed into finite braces with a p-group as adjoint group. Note
first that the structure constants of the above Lie algebra are integral, involving the

TWe owe thanks to D. Burde who pointed out that a condition was missing in the example
on our slides for the AGTA-conference (Porto Cesareo 2013) which was given by a monomial
basis.
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prime numbers 2, 3, 5, and 7. In order to make use of Lazard’s correspondence [44],
one has to choose p > 11. Lazard’s correspondence refines the Malcev correspondence
which relates torsion-free radicable nilpotent groups, that is, groups with unique k-th
roots, to nilpotent Lie Q-algebras. This simply works since exponentials have finitely
many terms in the nilpotent case. The group operation is uniquely given by the Baker-
Campbell-Hausdorff formula. Since p exceeds the nilpotency class, Q can be replaced
by the finite field F,. So Burde’s example yields a p-group G of order p'® with nilpo-
tency class 9. Suppose that G is the adjoint group of a brace A. The 1-cocycle G — A
would then lead to a complete RSA structure of g via Lazard’s correspondence. As g is
10-dimensional, this gives an 11-dimensional faithful representation of g. In particular,
the RSA structure would yield a bijective 1-cocycle of g. For the adjoint representation,
this can be ruled out for all p.

To remove any doubts that a finite p-group need not be I'YB, all 10-dimensional
representations have to be taken into account. At present, notwithstanding the special
structure of g, we are not able to do this by hand.
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