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1 The onept of brae

Let R be a pseudo-ring ([10℄, I.8.1), that is, R satis�es all properties of a

ring exept the existene of a unit element. A left ideal I of R is said to be

modular [36, 7℄ if there is an element e ∈ R with ae − a ∈ I for all a ∈ R. If R
is the only modular left ideal, R is said to be a radial ring. For example, the

Jaobson radial of any (unital) ring is a radial ring. More generally, the radial

of a pseudo-ring R, the intersetion of all modular maximal left ideals (see [39℄,

Lemma 1), is a radial ring. Every radial ring R is a group R◦
with respet to

Jaobson's irle operation

a ◦ b := ab+ a+ b. (1)

In partiular,

a ◦ 0 = 0 ◦ a = a.

The group R◦
is alled the adjoint group of R.

Reall that a 1-oyle of a right module A over a group G (with right ation

a 7→ ag) is a map d : G→ A whih satis�es

d(gh) = d(g)h + d(h)

for all g, h ∈ G.
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116 W. Rump

Proposition 1.1. Let R be a radial ring. The right ation ab := ab+ a of R◦

on the additive group of R makes R into a right R◦
-module. The identity map

R◦ → R is a 1-oyle.

Proof. Sine (a + b)c = (a + b)c + a + b = (ac + a) + (bc + b) = ac + bc and

(ab)c = (ab+ a)c+ (ab+ a) = a(bc+ b+ c) + a = ab◦c, we have

(a+ b)c = ac + bc, ab◦c = (ab)c (2)

for all a, b, c ∈ R. Furthermore, a0 = a. Thus R is a right R◦
-module. Eq. (1)

an be written as

a ◦ b = ab + b, (3)

whih means that the identity map R◦ → R is a 1-oyle.

QED

Now let d : G→ A be any bijetive 1-oyle, where A is a right G-module.

Identifying G with A, we get an abelian group A with a group struture A◦ :=
(A, ◦) and a right ation a 7→ ab of A◦

on A suh that Eqs. (2) and (3) hold. The

onditions are partly redundant. It su�es to assume that the abelian group A
has a multipliation whih satis�es

(B1) (a+ b)c = ac+ bc

(B2) a(bc+ b+ c) = (ab)c+ ab+ ac

(B3) The map x 7→ xa := xa+ x is bijetive,

so that the irle operation is given by Eq. (1). Note that (B1) and (B2) are

equivalent to Eq. (2), while (B3) is an immediate onsequene of the group

ation.

De�nition 1. A (right) brae is an (additive) abelian group A with multi-

pliation (a, b) 7→ ab satisfying (B1)-(B3).

Axiom (B2) ombines the assoiativity rule with the left distributive law.

Using the right multipliation

Rb(a) := ab,

it an be written as

Rb◦c = Rb ◦Rc

whih relates the internal irle operation b ◦ c of A with an external irle

operation, namely, the irle operation in the endomorphism ring of (A,+).

Compare this with the Jaobi indentity

[a, [b, c]] = [[a, b], c]− [[a, c], b]
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of a Lie algebra, whih an be abbreviated as

R[b,c] = [Rb, Rc].

This shows that axiom (B2) is quite natural.

The next proposition shows that braes are just equivalent to bijetive 1-

oyles.

Proposition 1.2. Let A be an additive abelian group with a multipliation sat-

isfying (B1). Then A is a brae if and only if Eq. (1) de�nes a group struture

on A.

Proof. Using (B1), we have a◦ (b◦ c) = a(b◦ c)+a+(bc+ b+ c) and (a◦ b)◦ c =
(ab + a + b)c + (ab + a + b) + c = (ab)c + ac + bc + ab + a + b + c. Hene
(B2) is equivalent to the assoiativity of (A, ◦). Furthermore, (B1) implies that

0c = (0+0)c = 0c+0c. Hene 0c = 0, and thus 0◦ c = c for all c ∈ A. Now (B3)

states that the map x 7→ x ◦ a is bijetive for all a ∈ A. Thus it su�es to show

that a semigroup (A, ◦) is a group if the right multipliations are bijetive and

there is a left unit element. This fat is well known (e. g., [43℄, I.2).

QED

Corollary. Every bijetive 1-oyle gives rise to a brae, and vie versa.

Bijetive 1-oyles arise in many di�erent ontexts. For example, Etingof

and Gelaki [23℄ use them for the onstrution of semisimple Hopf algebras.

Like the onept of skew-�eld whih naturally arises from a projetive spae

by the Veblen-Young theorem, braes an be understood geometrially as groups

with an extra struture of a prinipal homogenous a�ne spae.

De�nition 2. Let k be a �eld. We say that a brae A is k-linear or a k-brae
if its additive group is a k-vetor spae suh that (λa)b = λ(ab) holds for λ ∈ k
and a, b ∈ A.

k-linear braes were onsidered by Catino and Rizzo [16℄ who alled them

�irle algebras�, referring to Jaobson's irle operation. Catino and Rizzo [16℄

generalize previous work [14℄ to non-ommutative groups by proving that irle

algebras are equivalent to a�ne k-spaes on whih a group ats freely and trans-

itively. For arbitrary braes, the orrespondene is given as follows. Reall that

a torsor is a set A together with a free transitive right ation of a group G. If A
is an abelian group suh that the impliation

a− b = c− d =⇒ ag − bg = cg − dg

holds for a, b, c, d ∈ A and g ∈ G, we all (A,G) an a�ne torsor. Equivalently,

ag + bg = (a+ b)g + 0g
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for a, b ∈ A and g ∈ G. The bijetion G −→∼ A with g 7→ 0g allows us to identify

G with A. So the group G indues a group struture (A, ◦) on A with neutral

element 0. The equation (0g)h = 0(gh) for g, h ∈ G then implies that the group

ation of G on A turns into the right regular representation a 7→ a ◦ b of (A, ◦).
In other words, an a�ne torsor is equivalent to an abelian group A with a seond

group struture (A, ◦), both with neutral element 0, suh that the equation

a ◦ c+ b ◦ c = (a+ b) ◦ c+ c

holds for a, b, c ∈ A. With the multipliation ab := a ◦ b − a − b, this equation
turns into (B1). Therefore, Proposition 1.2 immediately gives

Proposition 1.3. Every brae an be viewed as an a�ne torsor, and every a�ne

torsor arises in this way.

Braes an also be haraterized in terms of triply fatorized groups. I am

grateful to Bernhard Amberg who told me that suh a onnetion was observed

by Y. Sysak (see [60℄, Theorem 18). Note �rst that every right module A over a

group G gives rise to a semidiret produt S := G⋉A, suh that the elements of

S are multiplied by the rule (g, a)(h, b) = (gh, ah+b), with g, h ∈ G and a, b ∈ A.
The groups G and A an be regarded as subgroups of S, and the operation of G
on A is given by onjugation: ag = g−1ag. Thus a rightG-module A is ompletely

desribed by a group S with a subgroup G and an abelian normal subgroup A
suh that S = GA and G ∩A = 1.

Now any map d : G → A with d(1) = 0 is determined by its graph H :=
{gd(g) | g ∈ G}, a subset of S with HA = S and H ∩A = 1, and vie versa. It is

easy to hek that H is a subgroup if and only if d is a 1-oyle. The kernel of d
is G∩H, and d is surjetive if and only if GH = S. Sine braes are tantamount

to bijetive 1-oyles, we obtain

Proposition 1.4. Up to isomorphism, there is a one-to-one orrespondene

between braes and groups S with subgroups G,H and an abelian normal subgroup

A suh that S = GA = HA = GH and G ∩A = H ∩A = G ∩H = 1.

2 The origin of braes

The onstrution of quantum groups is based on the quantum Yang-Baxter

equation, an equation for an operator R ∈ End(V ⊗ V ) on a vetor spae V .

On the threefold tensor produt V ⊗ V ⊗ V , the operator R gives rise to partial

operators Rij
, ating on the ith and jth omponent (in this order) for distint

i, j ∈ {1, 2, 3} and leaving the third omponent �xed. Then the equation reads

R12R13R23 = R23R13R12. (4)
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Drinfeld [22℄ initiated the study of set-theoreti solutions, where the operator R
is indued by a map X ×X → X ×X for some basis X of V . If the inverse of R
is obtained by onjugating R with a twist (x, y) 7→ (y, x), then R is said to be

unitary. R is alled non-degenerate if the omponent maps x 7→ xy and y 7→ xy
of

R(x, y) = (xy, xy) (5)

are bijetive. A speial role is played by the solutions R whih �x the diagonal,

that is, R(x, x) = (x, x) for all x ∈ X. Suh maps R are alled square-free [29℄.

They arise in onnetion with quantum binomial algebras [31℄, that is, quadrati

algebras A = k〈X〉/R over a �eld k with a set R of relations xy = axy
xy · xy

given by a square-free non-degenerate unitary map R : X × X → X × X and

onstants axy ∈ k×.
In 1994, Gateva-Ivanova introdued a speial lass of quantum binomial al-

gebras and alled them binomial skew polynomial rings [28℄. The term �quantum

binomial algebra� was attahed to them by La�aille [42℄ who veri�ed that the

algebras up to |X| 6 6 satisfy the quantum Yang-Baxter equation. A binomial

skew polynomial ring A is given by a �nite set X = {x1, . . . , xn} of generat-

ors and quadrati relations xjxi = aijxi′xj′ with i < j > i′ < j′ for all pairs

i < j suh that eah pair (i′, j′) ours on the right-hand side of a relation and

the overlaps xkxjxi with k > j > i do not give rise to new relations. In other

words, A has a PBW-basis of ordered monomials xk11 · · ·xknn [9℄. It is known that

the quantum binomial algebras assoiated to solutions R of the quantum Yang-

Baxter equation are (left and right) noetherian domains [28℄. They are Koszul

algebras of polynomial growth, and they are regular in the sense of Artin and

Shelter [2℄ as well as Auslander-regular and Cohen-Maaulay [32℄.

It is now known that the operator R of a �nitely generated quantum bi-

nomial algebra A satis�es the quantum Yang-Baxter equation if and only if A
has �nite global dimension and a PBW basis [31℄. Gateva-Ivanova and van den

Bergh [32℄ proved that the operator R of any binomial skew polynomial ring sat-

is�es the quantum Yang-Baxter equation. Gateva-Ivanova onjetured [30℄ that

onversely, every square-free non-degenerate unitary solution R of the quantum

Yang-Baxter equation omes from a quantum binomial algebra.

Here is the point where braes arise. To prove Gateva-Ivanova's onjeture,

we introdued a onept [52℄ losely related to that of a brae.

De�nition 3. A yle set is a set X with a binary operation · suh that the

left multipliations Lx : X → X with Lx(y) := x · y are bijetive and

(x · y) · (x · z) = (y · x) · (y · z)

holds for all x, y, z ∈ X. A yle set X is non-degenerate if the square map

x 7→ x · x is bijetive. If this map is the identity, we all X square-free.
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By [52℄, Theorem 2, every �nite yle set is non-degenerate. The onnetion

with the quantum Yang-Baxter equation (QYBE) rests upon the inverse y 7→ yx

of the left multipliation Lx:

Proposition 2.1 ([52℄). Every non-degenerate yle set X gives rise to a non-

degenerate unitary solution (5) of the QYBE with

xy = xy · y. Conversely, every
non-degenerate unitary solution of the QYBE arises from a non-degenerate yle

set. Under this bijetion, square-free yle sets orrespond to square-free solu-

tions.

In terms of yle sets, Gateva-Ivanova's onjeture admits a simple reformu-

lation.

De�nition 4. A yle setX is deomposable if there is a non-trivial partition

X = X1 ⊔X2 with x · xi ∈ Xi for all x ∈ X and xi ∈ Xi.

The onjeture is then equivalent to the statement of the following

Theorem 2.2 ([52℄). Any square-free yle set X with 1 < |X| < ∞ is deom-

posable.

Now braes an be viewed as partiular yle sets.

De�nition 5. A yle set A with an abelian group struture is alled linear

if it satis�ed the equations

a · (b+ c) = (a · b) + (a · c) (6)

(a+ b) · c = (a · b) · (a · c). (7)

Here the equation of De�nition 3 is ontained in Eq. (6) by the symmetry of

a + b. Note that Eqs. (6) and (7) an be viewed as reipes to redue the sums

in expressions like (a1 + · · ·+ an) · (b1 + · · ·+ bm). The inverse b 7→ ba of the left

multipliation b 7→ a · b oinides with the orresponding operation of a brae:

Proposition 2.3. Every linear yle set is a brae, and vie versa.

Proof. Passing to the inverse operation, Eq. (6) turns into the �rst equation in

(2), whih is equivalent to (B1). As to Eq. (7), the substitution b 7→ ba yields

(a+ ba) · c = b · (a · c). By c 7→ (cb)a, the equation turns into (ba + a) · (cb)a = c,
that is, (cb)a = cb

a+a
. This is the seond equation of (2), equivalent to (B2). The

bijetivity of the left multipliation is just (B3).

QED

Thus, every brae is a yle set. Conversely, every yle set gives rise to a

brae, and this lose relationship is deeply onneted with the mehanism of the

QYBE.
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Theorem 2.4 ([52, 53℄). Via Eqs. (6) and (7), the operation · of a non-degenera-

te yle set X admits a unique extension to the free abelian group Z
(X)

suh that

Z
(X)

beomes a brae.

The extension proess is like a knitting proedure. The mirale is that it does

not lead to a ontradition.

De�nition 6. A group of I-type [61, 32℄ is a �nitely generated free abelian

group Z
(X)

endowed with a seond group struture (Z(X), ◦) with the same

neutral element 0 suh that

{x ◦ a | x ∈ X} = {x+ a | x ∈ X}

for all a ∈ Z
(X)

.

Thus if we regard Z(X)
as a lattie-ordered group with positive one N(X)

,

the upper neighbours of any a ∈ Z
(X)

are permuted by multipliation with the

generators. Groups of I-type were studied, e. g., by Jespers and Okni«ski [37℄.

For a �nite yle set X, the linear extension Z(X)
is a group of I-type. In fat,

x ◦ a = xa + a. So the permutation of the upper neighbours of a is just x 7→ xa.
The onverse was proved in [54, 56℄.

Proposition 2.5. There is a one-to-one orrespondene between �nite yle sets

and groups of I-type.

An ideal of a brae A is an additive subgroup I suh that a ∈ I and b ∈ A
implies that ab and ba belong to I. As in the ase of pseudo-rings, the additive

fator group A/I an be made into a brae with a well-de�ned multipliation

(a + I)(b + I) := ab + I (see [53℄). For any ideal I, the subgroup AI generated

by the produts ax with a ∈ A and x ∈ I is an ideal. Therefore, we have a

desending hain of ideals

A ⊃ A2 ⊃ A3 ⊃ · · ·

with An+1 := A(An). By ontrast, (A2)A need not be an ideal. On the other

hand, the sole

So(A) := {a ∈ A |Aa = 0}

is an ideal of A. Note that An = 0 for some n implies that So(A) 6= 0 whenever

A 6= 0. For a �nite yle set X, the brae A(X) := Z
(X)/So(Z(X)) is �nite, too,

and there is a natural morphism σ : X → A(X). For x, y ∈ X, we have

σ(x) = σ(y) ⇐⇒ Lx = Ly

whih shows that σ(x) an be identi�ed with the left multipliation Lx. The

image σ(X) ⊂ A(X) is again a yle set, the retration of X. If σ is not injetive,

the yle set X is alled retratable.
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So there is a sequene of retrations

X ։ σ(X) ։ σ2(X) ։ σ3(X) ։ · · ·

whih stops at an irretratable yle set σn(X). If σn(X) is trivial, the struture
of X is ompletely resolved. The orresponding solution of the QYBE is then

alled a multipermutation solution [24℄.

Gateva-Ivanova's �strong onjeture� [29℄ asserts that every square-free non-

degenerate unitary solution of the QYBE is a multipermutation solution. In

terms of yle sets, this an be stated as

Gateva-Ivanova's strong onjeture. Every square-free yle set X with

1 < |X| < ∞ is retratable.

Apart from its impliations to the quantum Yang-Baxter equation, the truth

of this statement would determine the struture of a big lass of Artin-Shelter

regular rings. The onjeture has been veri�ed in many ases. For example, it is

true for braes X or if Z
(X)

is a radial ring.

Note that a brae A is retratable if and only if its sole is non-zero. So there

is reason to hope that braes will help to deide this fundamental onjeture.

3 Braes in Di�erential Geometry

We have seen (Proposition 1.3) that braes an be viewed as a�ne torsors.

Let us pursue this approah in the lassial geometri ontext of �at manifolds.

Let X be an n-dimensional onneted real manifold with a �at a�ne struture

[49℄, in the sense thatX is overed by oordinate harts into the a�ne n-spae An

suh that the oordinate hanges between overlapping harts are given by a�ne

automorphisms. Fix a point in the universal overing X̃ and hoose an a�ne

neighbourhood. Attah it to an open set of An
, and extend this identi�ation

to get an a�ne immersion D : X̃ → An
. This developing map D is unique up to

a�ne automorphisms of A
n
. The a�ne manifold X is omplete if D is bijetive,

or equivalently, if any geodesi line segment extends to a full geodesi (see [6℄).

Any element g of the fundamental group π1(X) indues an a�ne automorph-

ism α(g) of An
suh that the diagram

X̃ X̃

A
n

A
n

D

g

D

α(g)

ommutes. The image of the holonomy representation α : π1(X) → A�(An) is

alled the holonomy group of X. If X is omplete, X̃ an be identi�ed with An
,
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and we have a free properly disontinuous ation π1(X) →֒ A�(An) on A
n
whih

identi�es X with A
n/π1(X).

There is a number of long-standing unsolved problems related to �at a�ne

manifolds. Reall that a group is said to virtually solvable if it has a solvable

subgroup of �nite index. A similar terminology is used for other �virtual� prop-

erties.

Milnor's �rst onjeture [49℄: IfX is omplete, the fundamental group π1(X)
is virtually solvable.

In his famous solution of Hilbert's 18th problem, Bieberbah has proved

that X is vrtually abelian (i. e. rystallographi) if π1(X) onsists of isometries.

Nevertheless, Milnor's 1977 onjeture was disproved by Margulis [45, 46℄. By the

Tits alternative, there are two possibilities: Either π1(X) is virtually polyyli

- or it ontains a subgroup isomorphi to Z∗Z. Margulis proved that the seond

ase ours in dimension 3.

Compat �at a�ne manifolds need not be omplete. A simple example is

Zeno's Paradox: The 1-dimensional manifold X = R>0/{2
n | n ∈ Z} is not

omplete.

It is not lear whether suh a paradox still ours in the presene of a parallel

volume. The latter means that the linear part of the holonomy group onsists of

maps with determinant 1.

Markus' onjeture [49℄: Every unimodular ompat �at a�ne manifold is

omplete.

The original Markus onjeture states that ompatness implies ompleteness

in ase of �at Lorentz manifolds. This was proved in 1989 by Carrière [15℄. The

general onjeture is still open. Another open problem is

Auslander's 1964 onjeture [4℄: If X is a ompat omplete �at a�ne

manifold, then π1(X) is virtually solvable.

The proof of this in statement in [4℄ is inorret. So the problem remains

unsolved. For dimensions up to six, the onjeture was reently proved [1℄. If

X is ompat and π := π1(X) virtually solvable, Fried and Goldman (see [27℄,

Corollary 1.5) proved that there is a simply transitive subgroup G ⊂ A�(An)
suh that π ∩ G has �nite index in π and G/(π ∩ G) is ompat. Sine π ∩ G
is �nitely generated and linear, Selberg's lemma implies that π ∩G is virtually

torsion-free. Thus, if Γ is a o�nite torsion-free subgroup of π ∩ G, we obtain

a �nite overing A
n/Γ ։ A

n/π ∼= X. On the other hand, the simply transitive

ation of G on An
lifts to a right-invariant omplete a�ne struture on G, suh

that the omplete a�ne solvmanifold Γ\G is a�nely equivalent to the overing

spae A
n/Γ of X.

The Lie group G is alled a rystallographi hull of Γ. By Proposition 1.3, G
is an R-brae. Thus, we obtain:
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Proposition 3.1. Modulo Auslander's onjeture, any ompat omplete �at

a�ne manifold gives rise to an R-brae.

Milnor [49℄ proved that every virtually polyyli torsion-free group is the

fundamental group of a omplete �at a�ne manifold X. He asked whether X
an be hosen to be ompat. This led to his seond onjeture whih an be

stated as

Milnor's seond onjeture: Every simply onneted solvable Lie group is

isomorphi to the adjoint group of an R-brae.

The onverse is due to Auslander [5℄. More preisely, Milnor ([49℄, The-

orem 3.2) proved the following

Theorem 3.2. A onneted Lie group G admits a free ation by a�ne trans-

formations on An
if and only if G is simply onneted and solvable.

Milnor's seond onjeture was believed to be true for a long while until it was

�nally disproved in 1995 by Benoist [8℄ who onstruted a non-a�ne nilvariety

by means of an 11-dimensional Lie algebra of nilpoteny lass 10.

A disrete version [18℄ of Milnor's seond onjeture is equivalent to the fol-

lowing statement: Every �nite solvable group is isomorphi to the adjoint group

of a brae.

We will return to this question in Setion 5.

4 Braes and spaes

The lassi�ation of spaes with zero urvature (with a view toward under-

standing the possible struture of our physial spae) has been a entral part

of the problem to lassify Cli�ord-Klein �spae forms� [40, 16℄. Killing [40℄ on-

struted Eulidean spae forms as homogenous spaes R
n/Γ with a Bieberbah

group Γ. Hermann Weyl [66℄ proved that all Eulidean spae forms are of that

type. More generally, a�ne spae forms are given by oompat properly dis-

ontinuous subgroups Γ ⊂ A�(An), that is, {g ∈ Γ | gC ∩ C 6= ∅} is �nite for

ompat subsets C ⊂ An
. These a�ne rystallographi groups Γ were lassi�ed

in dimension 3 by Fried and Goldman [27℄.

Here the stabilizer Γx of any x ∈ A
n
is �nite. If Γ ats freely, the quotient

An/Γ is a ompat omplete a�ne manifold. By Setion 3, the rystallographi

hull G of Γ is the adjoint group of an R-brae. The following theorem of Aus-

lander ([5℄, Theorem III.1) relates any R-brae A to one with a unipotent adjoint

group. Consider the algebrai hull of A◦
, the smallest algebrai group G ontain-

ing A◦
. The set of unipotent elements of G form a onneted normal subgroup

U , the unipotent radial of G, and G = T ⋉ U with a maximal torus T .
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Proposition 4.1. Let A be an R-brae, viewed as an a�ne torsor on A
n
. Let

U be the unipotent radial of the algebrai hull (Zariski losure) of A◦
. Then U

is a simply transitive subgroup of A�(An).

In other words, the ation of U on A
n
gives another R-brae with a unipotent

adjoint group U . The group U is isomorphi to the nil-shadow of A◦
, de�ned in

[3℄, III.2. Therefore, we all the orresponding brae the nil-shadow of A.
Reall (Setion 2) that a brae is retratable if and only if its sole is non-

zero. For a brae A, the sole onsists of the elements a ∈ A with Aa = 0, that
is, b◦a = b+a for all b ∈ A. Thus, if A is an R-brae, viewed as an a�ne torsor,

the sole onsists of the translations. In the language of braes, a weak form of

another onjeture of Auslander an be stated as

Auslander's seond onjeture [5℄: Every non-zero unipotent R-brae A is

ontratable.

Auslander's original onjeture assumes that the adjoint group A◦
is nil-

potent. By [58℄, Theorem 1, this implies that A◦
is unipotent. Furthermore,

Auslander laims that there are non-trivial translations in the enter of A◦
. Aus-

lander [5℄ mentions Sheunemann's paper [58℄ where the onjeture is proved.

Nine years later, Fried [25℄ gave a ounterexample in dimension 4 whih shows

that Sheunemann's argument was false. For other ounterexamples, see [48, 19℄.

Example 1. A non-unipotent ounterexample was given by Auslander himself:

The R-brae with group operation



a
b
c


 ◦



x
y
z


 =



a+ bzex−yz + cyeyz−x + x

bex−yz + y
ceyz−x + z




has a trivial sole. Here the nil-shadow is a 2-dimensional abelian subbrae.

Fried's ounterexample: A unipotent R-brae with trivial sole. Multiplia-

tion is given by




a
b
c
d







x
y
z
t


 =




−bt+ cz − ctv − dy + dzv − 1
2dtv

2

cv + 1
2dv

2

dv
0




where v := x+ yt− 1
2z

2
.

The adjoint group of this example has a Lie-algebra of maximal nilpoteny

lass. Suh Lie-algebras (and groups) are alled �liform [62℄. For an R-brae A
with �liform adjoint group, Medina and Khakimdjanov [48℄ have shown that

So(A) 6= 0 if dimA is odd. For even dimension > 4, they were able to extend

Fried's ounterexample.
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Flat spaetimes. In analogy to the Cli�ord-Kleinian problem of Eulidean

spae forms, Fried [26℄ lassi�ed ompat omplete 4-manifolds with zero urvatu-

re whih are overed by the Minkowski spae. The orresponding braes are two

exeptional (non-algebrai) ones and a series of unipotent braes Uβ,ε where the

right operation by (x y z t)T is given by the matrix




1 0 0 0

−βz + βεt2

2 1 0 0
−εt 0 1 0

−β2z2

2 + β2εzt2

2 − β2ε2t4

8 − ε2t2

2 βz − βεt2

2 εt 1


 .

The parameters β, ε > 0 are unique up to resaling (β, ε) 7→ (λβ, λ2ε) with

λ > 0. All these braes are retratable.

5 Braes versus radial rings

In view of a long-standing ring-theoreti tradition, notwithstanding the geo-

metri examples of the preeding two setions (where braes arise as groups

with an a�ne onnetion), braes may still be regarded as a kind of radial

rings where something is missing. Indeed, the onept of brae is one-sided, and

a two-sided brae is nothing else than a radial ring.

So it is time to point out that this perspetive is one-sided, as it evalu-

ates braes from the viewpoint of ring theory. A more appropriate omparison

should take into aount how far the two strutures are invariant under nat-

ural operations. We will show that the ategory of braes is losed with respet

to semidiret produts, while this fails to be true in the ase of radial rings.

Of ourse, this failure ould not be deteted in the lassial framework of ring

theory where a semidiret produt of radial rings does not exist!

Let M be an abelian group. With Jaobson's irle operation f ◦ g = fg +
f + g, the ring R(M) of right endomorphisms is a monoid with neutral element

0.

De�nition 7. A module M over a brae A is given by a monoid homo-

morphism A◦ → R(M).

Expliitly, this means that there is a right operation M × A → M whih

satis�es x0 = 0 and

(x+ y)a = xa+ ya (8)

x(a ◦ b) = (xa)b+ xa+ xb (9)

for all x, y ∈M and a, b ∈ A.
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Proposition 5.1. Modules over a brae A are the same as right A◦
-modules.

Proof. For an A-module, de�ne a new operation x 7→ xa by

xa := xa+ x.

Then x0 = x, and (8) and (9) turn into

(x+ y)a = xa + ya

x(a◦b) = (xa)b.

QED

In partiular, any brae is a module over itself. By Proposition 5.1, every

(right) module an be turned into a left module, and vie versa: (ax)a = x.

De�nition 8. We say that a brae A ats on a brae B if there is a map

A×B → B whih satis�es

α(a+ b) = αa+ αb

α(ab) = (αa)(αb)

(α ◦ β)a = α(βa)

and 0a = a for all α, β ∈ A and a, b ∈ B.

In other words, the ation of A on B is given by a group homomorphism

A→ Aut(B),

whih shows that De�nition 8 is quite natural. Less obvious is the following

result (see [55℄, Corollary of Proposition 4) whih de�nes a semidiret produt

for braes:

Theorem 5.2. Let A be a brae whih ats on a brae B. The operations

(a, α) + (b, β) =
(
(α · β)a+ (β · α)b, α+ β

)
(10)

(a, α) ◦ (b, β) = (a ◦ αb, α ◦ β) (11)

with α, β ∈ A and a, b ∈ B make the artesian produt B×A into a brae A⋉B.

Theorem 5.2 has no analogue in ring theory. Indeed, the following example

shows that the semidiret produt of radial rings need not be a radial ring.



128 W. Rump

Example 2. Let R be a disrete valuation domain with quotient �eld K and

radial p = Rπ. For an integer n > 2, let Γn be a Morita-redued hereditary

R-order with n simple modules, and Jn := RadΓn. For example,

Γ4 =




R p p p

R R p p

R R R p

R R R R


 J4 =




p p p p

R p p p

R R p p

R R R p




Let eij denote the matrix units in Mn(K), and let g be the anonial generator

of Jn. For n = 4:

e21 =




0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0


 g =




0 0 0 π
1 0 0 0
0 1 0 0
0 0 1 0




Then gJng
−1 = Jn. Therefore, onjugation by g is an automorphism σ of Jn,

and 〈σ〉 ⊂ Aut(Jn) is a yli subgroup of order n. So the radial ring 〈σ〉 with
trivial multipliation operates on the radial ring Jn, and thus 〈σ〉 ⋉ Jn is a

brae. However, a diret alulation shows that left distributivity fails for this

brae:

(e32, 1)
(
(−e21, 1) + (0, σ)

)
6= (e32, 1)(−e21, 1) + (e32, 1)(0, σ).

Whene 〈σ〉⋉ Jn is not a radial ring.

Eq. (11) shows that every semidiret produt A⋉B of braes satis�es

(A⋉B)◦ = A◦
⋉B◦.

Now let us return to the question raised at the end of Setion 3, onerning

the solvable groups arising as adjoint group of a brae. In [18℄ they are alled

involutive Yang-Baxter groups (IYB-groups for short).

Corollary 1. Let A be a brae, and let G be an IYB-group ating on A◦
by

automorphisms of A. Then G⋉A◦
is an IYB-group.

Corollary 2. Every semidiret produt G⋉A of an IYB group G with an abelian

group A is an IYB group.

Proof. The abelian group A is a radial ring with trivial multipliation. Every

group automorphism of A is thus a brae automorphism.

QED
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For abelian groups G, a brae with adjoint group G is a radial ring. Usually,

there are several suh braes for a given group G. If G is non-ommutative, it

frequently happens that A◦ = G holds for a unique brae A, for example, if G
is a generalized quaternion 2-group [57℄.

6 Amalgamation of yle sets

Example 2 shows that semidiret produts of radial rings naturally lead to

braes. Let us now have a loser look upon Eq. (10) whih de�nes addition in a

semidiret produt A ⋉ B of braes. Subtration an be inferred from Eq. (10)

as

(a, α)− (b, β) =
(
(α · −β)a− (α · −β)α(β · −β)b, α− β

)
.

Reall that b 7→ a ·b is the inverse map of b 7→ ba. Using the formula a◦b = ab+b
whih holds in any brae, Eq. (10) transforms into

(a, α)(b,β) =
(
(α · β′)(aαb), αβ

)
, (12)

where β′ is the inverse of β in the adjoint group. Now Eq. (12) an be rewritten

as

(a, α) · (b, β) =
(
(α · β)a · (β · α)b, α · β

)
, (13)

an expression of Eq. (10) in terms of the yle set struture! This leads to the

following

De�nition 9. We say that a yle set X ats on a yle set Y if there is a

map X → S(Y ) into the symmetri group S(Y ) whih satis�es

α(x · y) = αx · αy (14)

(α · β)αx = (β · α)βx (15)

for α, β ∈ X and x, y ∈ Y .

While the �rst equation is obvious, the seond one beomes lear in ase that

X is a brae: Then (α · β) ◦ α = (β · α) ◦ β = α + β holds for all α, β ∈ X.

Generalizing Theorem 5.2, we have

Theorem 6.1 ([55℄). If a yle set X ats on a yle set Y , Eq. (13) makes

Y ×X into a yle set X ⋉ Y .

Firstly, this theorem shows that every semidiret produt of braes is a semi-

diret produt of the underlying yle sets. Seondly, in ombination with Pro-

position 2.1, Theorem 6.1 an be used to onstrut non-degenerate unitary set-

theoreti solutions of the quantum Yang-Baxter equation by amalgamation of

given solutions.
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Example 3. Let V be the Klein Four group, the additive group of F2⊕F2. Then

the yli group C3 = 〈σ〉 ats on V by permuting the three non-zero vetors.

The semidiret produt C3⋉V is the alternating group A4. An easy alulation

shows that (a, σ) ∈ C3⋉V has order 6 if a 6= 0. So we get a brae A with adjoint

group A4 and additive group C6 × C2.

Example 4. Every brae A ats on itself. If it ats by brae automorphisms,

there is a double A ⋉ A whih is again a brae. The existene of a double is

determined by the following riterion.

Proposition 6.2. A brae A admits a double A⋉A if and only if A3 = 0.

For a ∈ A, let a′ denote the inverse of a in A◦
. We need the following

Lemma. Every ideal of a brae A is a normal subgroup of the adjoint group A◦
.

Proof. Let I be an ideal of A. For a ∈ I and b ∈ A, we have b′ ◦ a ◦ b =
(b′a+b′+a)◦b = (b′a+b′+a)b+(b′a+b′+a)+b = (b′a+a)b+(b′a+a) ∈ I. QED

Proof of Proposition 6.2. . The brae A ats on itself by automorphisms if and

only if (a ◦ b)c = ac ◦ bc, that is, (ab + b)c = (ac)b
c
+ bc for all a, b, c ∈ A. This

is equivalent to (ab)c = (ac)b
c
or, by Eqs. (2), ab◦c = ac◦b

c
. Now this equation

an be written as a = ac◦b
c
◦c′◦b′

, whih means that c ◦ bc ◦ c′ ◦ b′ ∈ So(A) for all
b, c ∈ A. By the lemma, this ondition an be repaed by bc ◦ c′ ◦ b′ ◦ c ∈ So(A).
Now bc ◦ c′ ◦ b′ =

(
(bc)c

′
+ c′

)
◦ b′ = (c′ + b) ◦ b′ =

(
(c′)b

′
◦ b

)
◦ b′ = (c′)b

′
.

So the ondition turns into (c′)b
′
◦ c ∈ So(A). Sine (c′)c + c = c′ ◦ c = 0,

the substitution b′ = c ◦ d ◦ c′ gives (c′)b
′
◦ c = (−c)d◦c

′
◦ c = (−c)d◦c

′
◦c + c =

(−c)d + c = (−c)d − c + c = (−c)d. So the ondition states that A2 ⊂ So(A),
that is, A3 = 0. QED

7 Chevalley groups

The adjoint group of a �nite dimensional R-brae is solvable. So there is no way

to make a simple Lie group into a brae. On the other hand, Proposition 4.1

shows that every R-brae A gives rise to a unipotent R-brae where the adjoint

group is replaed by the nil-shadow of A. In this setion, we will show that the

unipotent part of a Chevalley group of type A-D has a natural struture of a

brae.

Remark. For a �nite Chevalley group G over a prime �eld Fp, it may happen

that G itself is a brae: In Example 3, we proved that PSL2(3) = A4 is the

adjoint group of a brae with additive group C6 ×C2. Of ourse, a �nite non-p-
group G annot be the adjoint group of an Fp-brae.
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Let g = g+⊕h⊕g− be a simple Lie algebra over a �eld K. The orresponding

Chevalley group of adjoint type is the subgroup of Aut(g) generated by the root

subgroups Xα := {xα(t) | t ∈ K}, where xα(t) := exp(t ad eα) for any root α
with root vetor eα ∈ g. Consider the unipotent subgroup

X(g+) := 〈xα(t) | α ∈ Φ+〉

generated by the Xα with α positive. The Chevalley groups of type A-D an be

represented as lassial groups. Using their matrix representation, we have

Proposition 7.1. For every simple Lie algebra g of type A-D, g+ is a brae

with adjoint group X(g+).

Type An. The Lie algebra sln+1(K) orresponds to the matrix group SLn+1(K)
with unipotent partX(sln+1(K)+) = Un+1(K), the group of unipotent lower tri-

angular matries of size n + 1. The Lie algebra un+1(K) of Un+1(K) oinides
with the radial of the lower triangular matrix ring. Hene un+1(K) is a K-brae

with adjoint group Un+1(K). The orresponding bijetive 1-oyle is given by

δ : Un+1(K) → un+1(K)

with δ(g) := g− 1. In partiular, there are braes of type A for �nite �elds K of

harateristi p > 0. Here Un+1(K) is a Sylow p-subgroup of SLn+1(K).

For the unipotent groups U of type B-D, the a�ne struture is given by a

bijetive 1-oyle γ : U → A indued by δ via a ommutative diagram

U Um(K)

A um(K)

γ δ

p

(16)

with a Um(K)-linear epimorphism p. In any ase, γ = pδ|U is a 1-oyle. Thus,

to obtain γ, it is enough to �nd a fator module A of um(K) with γ bijetive.

We will show that this an be done in a natural way.

Type Bn: The odd orthogonal group Ω2n+1(K) onsisting of the (2n+1, 2n+
1)-matries A with AJAT = J , where

J =




O

1

. .
.

1
2

1
. .
.

1 O


 .
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Preisely, the simply onneted group Ω2n+1(K) is the ommutator group of the

orthogonal group O2n+1(K) with respet to J , and PΩ2n+1(K) is the Chevalley
group of adjoint type.

For n = 2, the unipotent part U onsists of the matries

A =




1 0 0 0 0
−d 1 0 0 0

2bd−2c −2b 1 0 0
db2−2bc−a −b2 b 1 0
−ad−c2 a c d 1




(17)

�
�
��

❅
❅

❅❅

with a, b, c, d ∈ K. The subspae

M := Ke21 ⊕Ke31 ⊕Ke32 ⊕Ke41 ⊕Ke42 ⊕Ke51

of u5(K) is a right U5(K)-submodule, and the epimorphism

p : u5(K) ։ u5(K)/M ∼= g+

provides a bijetive 1-oyle γ = pδ|U : U → g+ whih makes g+ into a brae

with adjoint group U .

Type Cn: The sympleti group Sp2n(K). With

J =



O

1

. .
.

1
−1

. .
.

−1 O


 ,

this group onsists of the (2n, 2n)-matries A whih satisfy AJAT = J . For
n = 3, the unipotent part U onsists of the matries

A =




1 0 0 0 0 0
−i 1 0 0 0 0

gi−h −g 1 0 0 0
f+dgi−dh−ei e−dg d 1 0 0
c+fg−bi−eh b e g 1 0

a c f h i 1




(18)

✟✟✟✟✟✟✟✟

❅
❅

❅
❅

with a, b, c, d, e, f, g, h, i ∈ K. As in ase B, the parameters an be found in a

triangle-shaped part of the matrix A. So we an apply exatly the same method

to obtain a anonial brae struture on the nilpotent Lie algebra g+ with adjoint

group U .
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Type Dn: The even orthogonal group Ω2n(K) of (2n, 2n)-matries A with

AJAT = J , where

J =



O

1

. .
.

1
1

. .
.

1 O


 .

For n = 3, the matries in the unipotent part U of Ω2n(K) are of the form

A =




1 0 0 0 0 0
−f 1 0 0 0 0
df−e −d 1 0 0 0
bf−c −b 0 1 0 0

bdf−be−cd−a −bd b d 1 0
−af−ce a c e f 1




(19)

�
�
�

��

❅
❅

❅
❅❅

with a, b, c, d, e, f ∈ K. Again, the parameters are loated in a triangle-shaped

part of A, and there is a anonial brae g+ with adjoint group U .

Note that for all ases A-D, the unipotent group U is a subgroup of the

Chevalley group Ga of adjoint type as well as a subgroup of its simply onneted

overing σ : Gu ։ Ga: The kernel of σ is just the enter of Gu.

The above matrix representations exhibit the root subgroups of U . These are

bijetively assoiated to the entries of the triangle-shaped region in the matries

A.
Remark. In ontrast to ase A, the braes of type B,C,D are not radial rings.

To verify this for B2, onsider x := e54 − e21, y := e43 − 2e32 − e42 ∈ g+. Then

x(y + y) 6= xy + xy.

8 The exeptional group G2

The 14-dimensional exeptional simple Lie group G2 has a faithful matrix rep-

resentation of dimension 7. As a real group, G2 is the automorphism group of

the division algebra O of otonions. The ation of G2 on the imaginary part

Im(O) of O yields an embedding into the orthogonal group O(Im(O)):

G2 →֒ O7(R).

Compat Riemannian manifolds with G2-holonomy were onstruted in 1994

by D. Joye. They arry the hidden dimensions in 11-dimensional supergravity

theory.

Aording to the root system of G2, the unipotent part U of G2 is of dimen-

sion 6. Using Wildberger's basis [67℄ for g2, the matries in U an be put into

the form
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1 0 0 0 0 0 0
e 1 0 0 0 0 0

ef−d f 1 0 0 0 0
2c 2d 2e 1 0 0 0

ce−b de−c e2 e 1 0 0
a−bf+cef−cd def−cf−d2 e2f−de−c ef−d f 1 0
c2+ae−bd a b c d e 1




✟✟✟✟✟

�
��

❅
❅

❅
❅❅

where the parameters a, b, c, d, e, f are loated in a strehed triangle-shaped part.

As above, we obtain a brae A with A◦ = U . Now the operation x 7→ x ◦ a in A
yields an a�ne matrix representation for U :




1 0 0 0 0 0 0
f 1 0 0 0 0 0
2d 2e 1 0 0 0 0

de−c e2 e 1 0 0 0
def−cf−d2 e2f−de−c ef−d f 1 0 0

0 0 0 0 0 1 0
a b c d e f 1




(20)

Here the matries take a very simple form. The parameters a, b, c, d, e, f , indi-
ating the root subgroups, appear in the last row. They orrespond, respetively,

to the roots

2α+ 3β, α+ 3β, α+ 2β, α+ β, β, α,

where α denotes the long root. So we obtain

Theorem 8.1. The positive part of a simple Lie algebra g of type A,B,C,D,G

over a �eld K is a brae with adjoint group X(g+).

With some patiene, a similar onstrution should yield a brae with adjoint

group the unipotent part of F4, the automorphism group of the exeptional

Jordan algebra of 3× 3 self-adjoint matries over O. For the remaining type E,

the representations given in [68℄ may be useful. Already for E6, the matries are

too large to be depited.

On the other hand, the above example for G2 shows that Wildberger's mar-

vellous basis [67℄ is not optimal for our purpose. We leave it as a hallenge to
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�nd a anonial onstrution of the diagram (16) simultaneously for all Cheval-

ley groups, inluding the exeptional ones. We shall return to this problem in

Setion 10. Using the brae struture in ases A-D, the matries (17)-(19) ould

also be given in a form like (20), at the expense of inreasing the dimension of

the representation. The triangle-shaped area then turns into a straight line.

9 Right symmetri algebras

Let A be an R-brae with adjoint group G = A◦
, viewed as an a�ne torsor. The

additive group (A,+) is an R-vetor spae R
n
, and the map x 7→ x ◦ a yields a

simply transitive ation α : G→ A�(A) on A as an a�ne spae. The di�erential

of α gives an a�ne representation dα : g → a�(A) of the Lie algebra g whih �ts

into a ommutative diagram

g a�(A)

G A�(A)

exp

dα

exp

α

The identi�ation g = A turns g into a right module over itself. This gives a

bilinear map g× g → g with

[a, b] = ab− ba

a[b, c] = (ab)c− (ac)b

for all a, b, c ∈ g. Hene

(ab)c− a(bc) = (ac)b− a(cb) (21)

for all a, b, c ∈ g.

De�nition 10. A (non-assoiative) algebra satisfying Eq. (21) is alled a

right symmetri algebra.

With [a, b] := ab− ba, Eq. (21) an be written as

[Rb, Rc] = R[b,c],

another version of the Jaobi identity!

In fat, every right symmetri algebra (RSA) is a Lie algebra with braket

[a, b] := ab−ba. Therefore, we also speak of a Lie algebra with a right symmetri

struture. The onept was introdued by Vinberg [64℄ in onnetion with his



136 W. Rump

theory of onvex homogenous ones. Right symmetri algebras and their left-

hand version (LSA's) arise in very many areas of mathematis and physis (see,

e. g., [12℄). Let us mention just a few typial examples.

Gerstenhaber proved in his fundamental paper [33℄ that the Hohshild om-

plex of an assoiative ring is a (graded) right symmetri algebra. The free RSA

with one generator has the rooted trees as a basis. It was disovered 1857 by Cay-

ley [17℄ in his analysis of di�erential operators. Chapoton and Livernet ([20℄, 3.1)

identi�ed this RSA with a Lie algebra onsidered by Connes and Kreimer [21℄

in onnetion with renormalization of quantum �eld theories. More generally,

every lass of graphs (e. g. Feynman graphs) yields an RSA.

Let P be a non-empty open onvex one in R
n
with a transitive ation of its

automorphism group Aut(P ) := {α ∈ GLn(R)|α(P ) = P}. By [64℄, Theorem I.1,

G := Aut(P ) deomposes into G = GxT , where Gx is the stabilizer of some

x ∈ P and T is a maximal onneted split solvable subgroup whih ats simply

transitively on P . The orbit map g 7→ xg is a di�eomorphism T −→∼ P whih

indues a linear isomorphism ρ : t −→∼ R
n
from the Lie algebra t of T onto R

n
.

The binary operation

a∆b := aρ−1(b)

on R
n
makes R

n
into a right symmetri algebra (f. [64℄, Chapter 2). Moreover,

Vinberg [64℄ has haraterized the RSA's whih arise in this way. (To be sure,

Vinberg [64℄ introdued left symmetri algebras, whih is just a matter of taste!)

A homogenous one P ⊂ R
n
is alled symmetri if

∀y ∈ P : 〈x, y〉 > 0 ⇐⇒ x ∈ P

holds for all x ∈ R
n
. By the famous Koeher-Vinberg theorem [41, 63℄, there is a

one-to-one orrespondene between symmetri ones P and formal real Jordan

algebras, that is, real Jordan algebras for whih x2+y2 = 0 implies that x = y =
0. The one assoiated to a formal real Jordan algebra onsists of the non-zero

squares.

Right symmetri algebras are the Lie-theoreti analogue of braes:

Proposition 9.1. Right symmetri algebra strutures with underlying Lie al-

gebra g are equivalent to 1-oyles of g.

Proof. Let A be a right module of g, and let q : g → A be a 1-oyle, that is,

q[a, b] = q(a)b − q(b)a for all a, b ∈ g. Assume that q is bijetive, and de�ne a

multipliation on g by

ab = q−1(q(a)b). (22)

A straightforward veri�ation shows that Eq. (22) makes g into an RSA. Con-

versely, the right multipliation of an RSA g is a g-module struture, suh that

the identity map g → g is a 1-oyle.

QED
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Thus, in partiular, every formal real Jordan algebra A is a Lie-theoreti

�brae�. Let I(A) denote the set of idempotents e ∈ A for whih the spae

{a ∈ A | ea = a} is one-dimensional. For simple A, Ulrih Hirzebruh [34℄

has shown that a formal real Jordan algebra is ompletely haraterized by

the topologial spae I(A) whih is a two-fold homogenous losed Riemannian

manifold. Hsien-Chung Wang lassi�ed these manifolds [65℄: For odd dimension,

I(A) is a Cli�ord-Klein spae form, while for even dimension, I(A) is either

an n-sphere, a real, omplex or quaternioni projetive spae, or the Cayley

projetive plane of dimension 16.

For every R-brae A, the orresponding bijetive 1-oyle A◦ → Rn
indues

a bijetive 1-oyle Lie(A◦) → Rn
, whih gives a right symmetri algebra stru-

ture on Lie(A◦). The onverse does not hold, unless A is omplete, that is, the

maps x 7→ ax+x are bijetive for eah a ∈ A. By [59℄, Theorem 1, A is omplete

if and only if the left multipliations x 7→ ax are nilpotent. So we have

Proposition 9.2. R-braes are equivalent to right symmetri algebras g suh

that the left multipliations La in g are nilpotent.

10 Hall algebras

Let g be a simple Lie algebra with root vetors eα, α ∈ Φ+
, suh that

[eα, eβ ] = Nαβeα+β whenever α, β, α + β ∈ Φ+
, and Nαβ ∈ Z. The examples of

Setions 7 and 8 suggest that there exists a right symmetri algebra struture

on g+ suh that the positive root vetors form a monomial basis.

An obvious andidate for an RSA basis omes from the assoiated Hall al-

gebra. The positive roots α ∈ Φ+
an be assoiated to the indeomposable

representations Mα of a hereditary algebra A over a �eld K suh that A and g

are of the same Dynkin type. Assume that q := |K| <∞.

The Hall algebra H (A) has a basis B onsisting of the isomorphism lasses

[M ] of �nite dimensional A-modules M . The struture onstants FN
LM ∈ N of

H (A) ount the number of submodules M ′
of N with M ′ ∼=M and N/M ′ ∼= L.

Ringel [50℄ proved that H (A) is isomorphi to the positive part U+
q (g) of the

Drinfeld-Jimbo quantum group Uq(g). For α, β, α + β ∈ Φ+
, he found a �nite

list of polynomials [51℄ whih our as Hall polynomials ϕαβ ∈ Z[x] suh that

F
Mα+β

MαMβ
= ϕαβ(q).

The struture onstants Nαβ of g are obtained by passing to q = 1:

Nαβ = ϕαβ(1)− ϕβα(1). (23)
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This wonderful formula suggests that a produt like

eαeβ = ϕαβ(1)eα+β

might give the desired RSA struture on g+. Let us hek this for D4:

γ

α β δ

(24)

The linear part of the Chevalley group matries is




0 0 0 0 0 0 0 0
−a 0 0 0 0 0 0 0
−e −b 0 0 0 0 0 0
−h −f −c 0 0 0 0 0
−i −g −d 0 0 0 0 0
−k −j 0 d c 0 0 0
−l 0 j g f b 0 0
0 l k i h e a 0




✧
✧

✧
✧
✧

✧
✧✧

❝
❝

❝
❝

❝
❝

with a, b, c, d, e, f, g, h, i, j, k, l ∈ K orresponding to the 12 positive roots (in this

order): α, β, γ, δ, α+β, β+γ, β+δ, α+β+γ, α+β+δ, β+γ+δ, α+β+γ+δ, α+2β+γ+δ.
Aordingly, the multipliation table of the RSA looks as follows:

a b c d e f g h i j k l

a e h i k

b f g

c

d

e h i −l

f −j

g −j

h −k −l

i −k −l

j

k −l

l

Now let us return to Eq. (23), Here ϕλµ 6= 0 if and only if there exists a short

exat sequene

0 → Mµ → Mλ+µ → Mλ → 0.
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If ϕλµ 6= 0, then ϕµλ = 0. At �rst glane, it looks extremely plausible that the

struture onstants of the RSA are just ϕλµ(1).
Unfortunately, this is not the ase! The orientation of the Dynkin diagram

(24) is required in order to have ϕλµ(1) 6= 0 if and only if eλeµ 6= 0; however,
this just fails for the produt eα+β+γ+δeβ , that is, the downward leftmost entry

of the table. Note that the Hall algebra ansatz annot be orreted by passing

to the LSA.

Ringel has shown that the struture onstants ϕλµ at q = 1 yield the universal
enveloping algebra:

H (A)q=1 = U(g+)

whih is assoiative. Indeed, any assoiative algebra is an RSA. However, suh

an RSA must be a radial ring, in ontrast to the braes of type B-D.

11 Finite p-groups

For every p-group G, the lower entral series

G = G1 ⊃ G2 ⊃ G3 ⊃ · · ·

gives rise to a Lie ring L(G) :=
⊕

Gi/Gi+1 with Lie braket

[xGi, yGj ] := (x−1y−1xy)Gi+j .

One may wonder if the natural bijetion G → L(G) would lead to a brae

struture. If yes, this would imply that every �nite p-group is an IYB-group.

Alternatively, we ould try to �nd a omplete RSA struture on L(G). Or
we let G at on the Fp-spae L(G) and look for a triangle-shaped region in the

matries as done for the Sylow subgroup of a �nite Chevalley group.

However, there are several obstrutions: First, the group G annot be re-

overed by its Lie ring. Seond, even if G is abelian, G need not admit a bijetive

1-oyle onto an Fp-vetor spae. In fat:

Proposition 11.1. Let p be an odd prime. Then the additive group of any brae

with adjoint group Cp2 is yli.

Proof. Let F2
p be a right Cp2-module and π : Cp2 → F2

p a bijetive 1-oyle. If

Cpn = 〈c〉, then π(ci+1) = π(ci)c + π(c). With v := π(ci), this shows that

v, v + vc, v + vc + vc
2
, v + vc + vc

2
+ vc

3
, . . .

runs through all of F
2
p. On the other hand, (c−1)p

n
= cp

n
−1 = 0 implies that the

automorphism x 7→ xc is unipotent. So we an assume that this automorphism γ
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is given by a matrix

(

1 a
0 1

)

. For a positive integer m, an easy alulation shows

that

1 + γ + γ2 + · · ·+ γm−1 =
(

m
(

m
2

)

0 m

)

.

Hene 1 + γ + γ2 + · · ·+ γp−1 = 0, a ontradition.

QED

Example 5. For p = 2, there is a unique brae A with yli adjoint group

and the Klein four-group as additive group. Assume that the adjoint group is

generated by a. Then b := a2 = a◦a /∈ {0, a}. Hene A = F2a⊕F2b. Furthermore,

b2 = b ◦ b = 0 and a ◦ b = b ◦ a = a ◦ a ◦ a = a+ b. Hene ab = ba = 0, and thus

A is a unique radial ring.

12 Nilpotent braes

Let g be a �liform R-linear Lie algebra of dimension n > 1. Benoist [8℄ has
shown that the minimal dimension µ(g) of a faithful g-module satis�es µ(g) > n.
He onstruted a �liform Lie algebra n of dimension 11 with µ(n) > 12. So there

annot be an RSA struture, as this would require a faithful representation

of dimension 12 (see also [13℄). In partiular, this disproves Milnor's seond

onjeture.

Vergne [62℄ has shown that �liform Lie algebras of dimension > 8 are de-

formations of the standard graded �liform Lie algebra L(n) = Re0 ⊕ · · · ⊕ Ren
with non-zero brakets [e0, ei] = ei+1 for i ∈ {1, . . . , n− 1}. Burde [11℄ replaed

Benoist's example by a family of 10-dimensional Lie algebras, given as deform-

ations of L(9). The simplest one

†
seems to be L(9) with additional non-zero

brakets

[e1, e2] = e4 + e5 [e1, e3] = e5 + e6 [e1, e4] = 2e6 + 3e7 + 25e8
[e1, e5] = 3e7 + 5e8 + 50e9 [e1, e6] = 7e8 + 5e9 [e1, e7] = 14e9
[e1, e8] = −e9 [e2, e3] = −e6 − 2e7 − 25e8 [e2, e4] = −e7 − 2e8 − 25e9
[e2, e5] = −4e8 [e2, e6] = −7e9 [e2, e7] = e9
[e3, e4] = 3e8 − 2e9 [e3, e5] = 3e9 [e3, e6] = −e9
[e4, e5] = e9.

As in the previous examples, the veri�ation that every faithful module must be of

dimension > 11 is based on omputer alulations.

Postponing the task of �nding an independent proof, let us sketh how suh ex-

amples an be transformed into �nite braes with a p-group as adjoint group. Note

�rst that the struture onstants of the above Lie algebra are integral, involving the

†
We owe thanks to D. Burde who pointed out that a ondition was missing in the example

on our slides for the AGTA-onferene (Porto Cesareo 2013) whih was given by a monomial

basis.
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prime numbers 2, 3, 5, and 7. In order to make use of Lazard's orrespondene [44℄,

one has to hoose p > 11. Lazard's orrespondene re�nes the Malev orrespondene

whih relates torsion-free radiable nilpotent groups, that is, groups with unique k-th
roots, to nilpotent Lie Q-algebras. This simply works sine exponentials have �nitely

many terms in the nilpotent ase. The group operation is uniquely given by the Baker-

Campbell-Hausdor� formula. Sine p exeeds the nilpoteny lass, Q an be replaed

by the �nite �eld Fp. So Burde's example yields a p-group G of order p10 with nilpo-

teny lass 9. Suppose that G is the adjoint group of a brae A. The 1-oyle G → A
would then lead to a omplete RSA struture of g via Lazard's orrespondene. As g is

10-dimensional, this gives an 11-dimensional faithful representation of g. In partiular,

the RSA struture would yield a bijetive 1-oyle of g. For the adjoint representation,

this an be ruled out for all p.
To remove any doubts that a �nite p-group need not be IYB, all 10-dimensional

representations have to be taken into aount. At present, notwithstanding the speial

struture of g, we are not able to do this by hand.
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