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1 The 
on
ept of bra
e

Let R be a pseudo-ring ([10℄, I.8.1), that is, R satis�es all properties of a

ring ex
ept the existen
e of a unit element. A left ideal I of R is said to be

modular [36, 7℄ if there is an element e ∈ R with ae − a ∈ I for all a ∈ R. If R
is the only modular left ideal, R is said to be a radi
al ring. For example, the

Ja
obson radi
al of any (unital) ring is a radi
al ring. More generally, the radi
al

of a pseudo-ring R, the interse
tion of all modular maximal left ideals (see [39℄,

Lemma 1), is a radi
al ring. Every radi
al ring R is a group R◦
with respe
t to

Ja
obson's 
ir
le operation

a ◦ b := ab+ a+ b. (1)

In parti
ular,

a ◦ 0 = 0 ◦ a = a.

The group R◦
is 
alled the adjoint group of R.

Re
all that a 1-
o
y
le of a right module A over a group G (with right a
tion

a 7→ ag) is a map d : G→ A whi
h satis�es

d(gh) = d(g)h + d(h)

for all g, h ∈ G.
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Proposition 1.1. Let R be a radi
al ring. The right a
tion ab := ab+ a of R◦

on the additive group of R makes R into a right R◦
-module. The identity map

R◦ → R is a 1-
o
y
le.

Proof. Sin
e (a + b)c = (a + b)c + a + b = (ac + a) + (bc + b) = ac + bc and

(ab)c = (ab+ a)c+ (ab+ a) = a(bc+ b+ c) + a = ab◦c, we have

(a+ b)c = ac + bc, ab◦c = (ab)c (2)

for all a, b, c ∈ R. Furthermore, a0 = a. Thus R is a right R◦
-module. Eq. (1)


an be written as

a ◦ b = ab + b, (3)

whi
h means that the identity map R◦ → R is a 1-
o
y
le.

QED

Now let d : G→ A be any bije
tive 1-
o
y
le, where A is a right G-module.

Identifying G with A, we get an abelian group A with a group stru
ture A◦ :=
(A, ◦) and a right a
tion a 7→ ab of A◦

on A su
h that Eqs. (2) and (3) hold. The


onditions are partly redundant. It su�
es to assume that the abelian group A
has a multipli
ation whi
h satis�es

(B1) (a+ b)c = ac+ bc

(B2) a(bc+ b+ c) = (ab)c+ ab+ ac

(B3) The map x 7→ xa := xa+ x is bije
tive,

so that the 
ir
le operation is given by Eq. (1). Note that (B1) and (B2) are

equivalent to Eq. (2), while (B3) is an immediate 
onsequen
e of the group

a
tion.

De�nition 1. A (right) bra
e is an (additive) abelian group A with multi-

pli
ation (a, b) 7→ ab satisfying (B1)-(B3).

Axiom (B2) 
ombines the asso
iativity rule with the left distributive law.

Using the right multipli
ation

Rb(a) := ab,

it 
an be written as

Rb◦c = Rb ◦Rc

whi
h relates the internal 
ir
le operation b ◦ c of A with an external 
ir
le

operation, namely, the 
ir
le operation in the endomorphism ring of (A,+).

Compare this with the Ja
obi indentity

[a, [b, c]] = [[a, b], c]− [[a, c], b]
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of a Lie algebra, whi
h 
an be abbreviated as

R[b,c] = [Rb, Rc].

This shows that axiom (B2) is quite natural.

The next proposition shows that bra
es are just equivalent to bije
tive 1-


o
y
les.

Proposition 1.2. Let A be an additive abelian group with a multipli
ation sat-

isfying (B1). Then A is a bra
e if and only if Eq. (1) de�nes a group stru
ture

on A.

Proof. Using (B1), we have a◦ (b◦ c) = a(b◦ c)+a+(bc+ b+ c) and (a◦ b)◦ c =
(ab + a + b)c + (ab + a + b) + c = (ab)c + ac + bc + ab + a + b + c. Hen
e
(B2) is equivalent to the asso
iativity of (A, ◦). Furthermore, (B1) implies that

0c = (0+0)c = 0c+0c. Hen
e 0c = 0, and thus 0◦ c = c for all c ∈ A. Now (B3)

states that the map x 7→ x ◦ a is bije
tive for all a ∈ A. Thus it su�
es to show

that a semigroup (A, ◦) is a group if the right multipli
ations are bije
tive and

there is a left unit element. This fa
t is well known (e. g., [43℄, I.2).

QED

Corollary. Every bije
tive 1-
o
y
le gives rise to a bra
e, and vi
e versa.

Bije
tive 1-
o
y
les arise in many di�erent 
ontexts. For example, Etingof

and Gelaki [23℄ use them for the 
onstru
tion of semisimple Hopf algebras.

Like the 
on
ept of skew-�eld whi
h naturally arises from a proje
tive spa
e

by the Veblen-Young theorem, bra
es 
an be understood geometri
ally as groups

with an extra stru
ture of a prin
ipal homogenous a�ne spa
e.

De�nition 2. Let k be a �eld. We say that a bra
e A is k-linear or a k-bra
e
if its additive group is a k-ve
tor spa
e su
h that (λa)b = λ(ab) holds for λ ∈ k
and a, b ∈ A.

k-linear bra
es were 
onsidered by Catino and Rizzo [16℄ who 
alled them

�
ir
le algebras�, referring to Ja
obson's 
ir
le operation. Catino and Rizzo [16℄

generalize previous work [14℄ to non-
ommutative groups by proving that 
ir
le

algebras are equivalent to a�ne k-spa
es on whi
h a group a
ts freely and trans-

itively. For arbitrary bra
es, the 
orresponden
e is given as follows. Re
all that

a torsor is a set A together with a free transitive right a
tion of a group G. If A
is an abelian group su
h that the impli
ation

a− b = c− d =⇒ ag − bg = cg − dg

holds for a, b, c, d ∈ A and g ∈ G, we 
all (A,G) an a�ne torsor. Equivalently,

ag + bg = (a+ b)g + 0g
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for a, b ∈ A and g ∈ G. The bije
tion G −→∼ A with g 7→ 0g allows us to identify

G with A. So the group G indu
es a group stru
ture (A, ◦) on A with neutral

element 0. The equation (0g)h = 0(gh) for g, h ∈ G then implies that the group

a
tion of G on A turns into the right regular representation a 7→ a ◦ b of (A, ◦).
In other words, an a�ne torsor is equivalent to an abelian group A with a se
ond

group stru
ture (A, ◦), both with neutral element 0, su
h that the equation

a ◦ c+ b ◦ c = (a+ b) ◦ c+ c

holds for a, b, c ∈ A. With the multipli
ation ab := a ◦ b − a − b, this equation
turns into (B1). Therefore, Proposition 1.2 immediately gives

Proposition 1.3. Every bra
e 
an be viewed as an a�ne torsor, and every a�ne

torsor arises in this way.

Bra
es 
an also be 
hara
terized in terms of triply fa
torized groups. I am

grateful to Bernhard Amberg who told me that su
h a 
onne
tion was observed

by Y. Sysak (see [60℄, Theorem 18). Note �rst that every right module A over a

group G gives rise to a semidire
t produ
t S := G⋉A, su
h that the elements of

S are multiplied by the rule (g, a)(h, b) = (gh, ah+b), with g, h ∈ G and a, b ∈ A.
The groups G and A 
an be regarded as subgroups of S, and the operation of G
on A is given by 
onjugation: ag = g−1ag. Thus a rightG-module A is 
ompletely

des
ribed by a group S with a subgroup G and an abelian normal subgroup A
su
h that S = GA and G ∩A = 1.

Now any map d : G → A with d(1) = 0 is determined by its graph H :=
{gd(g) | g ∈ G}, a subset of S with HA = S and H ∩A = 1, and vi
e versa. It is

easy to 
he
k that H is a subgroup if and only if d is a 1-
o
y
le. The kernel of d
is G∩H, and d is surje
tive if and only if GH = S. Sin
e bra
es are tantamount

to bije
tive 1-
o
y
les, we obtain

Proposition 1.4. Up to isomorphism, there is a one-to-one 
orresponden
e

between bra
es and groups S with subgroups G,H and an abelian normal subgroup

A su
h that S = GA = HA = GH and G ∩A = H ∩A = G ∩H = 1.

2 The origin of bra
es

The 
onstru
tion of quantum groups is based on the quantum Yang-Baxter

equation, an equation for an operator R ∈ End(V ⊗ V ) on a ve
tor spa
e V .

On the threefold tensor produ
t V ⊗ V ⊗ V , the operator R gives rise to partial

operators Rij
, a
ting on the ith and jth 
omponent (in this order) for distin
t

i, j ∈ {1, 2, 3} and leaving the third 
omponent �xed. Then the equation reads

R12R13R23 = R23R13R12. (4)
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Drinfeld [22℄ initiated the study of set-theoreti
 solutions, where the operator R
is indu
ed by a map X ×X → X ×X for some basis X of V . If the inverse of R
is obtained by 
onjugating R with a twist (x, y) 7→ (y, x), then R is said to be

unitary. R is 
alled non-degenerate if the 
omponent maps x 7→ xy and y 7→ xy
of

R(x, y) = (xy, xy) (5)

are bije
tive. A spe
ial role is played by the solutions R whi
h �x the diagonal,

that is, R(x, x) = (x, x) for all x ∈ X. Su
h maps R are 
alled square-free [29℄.

They arise in 
onne
tion with quantum binomial algebras [31℄, that is, quadrati


algebras A = k〈X〉/R over a �eld k with a set R of relations xy = axy
xy · xy

given by a square-free non-degenerate unitary map R : X × X → X × X and


onstants axy ∈ k×.
In 1994, Gateva-Ivanova introdu
ed a spe
ial 
lass of quantum binomial al-

gebras and 
alled them binomial skew polynomial rings [28℄. The term �quantum

binomial algebra� was atta
hed to them by La�aille [42℄ who veri�ed that the

algebras up to |X| 6 6 satisfy the quantum Yang-Baxter equation. A binomial

skew polynomial ring A is given by a �nite set X = {x1, . . . , xn} of generat-

ors and quadrati
 relations xjxi = aijxi′xj′ with i < j > i′ < j′ for all pairs

i < j su
h that ea
h pair (i′, j′) o

urs on the right-hand side of a relation and

the overlaps xkxjxi with k > j > i do not give rise to new relations. In other

words, A has a PBW-basis of ordered monomials xk11 · · ·xknn [9℄. It is known that

the quantum binomial algebras asso
iated to solutions R of the quantum Yang-

Baxter equation are (left and right) noetherian domains [28℄. They are Koszul

algebras of polynomial growth, and they are regular in the sense of Artin and

S
helter [2℄ as well as Auslander-regular and Cohen-Ma
aulay [32℄.

It is now known that the operator R of a �nitely generated quantum bi-

nomial algebra A satis�es the quantum Yang-Baxter equation if and only if A
has �nite global dimension and a PBW basis [31℄. Gateva-Ivanova and van den

Bergh [32℄ proved that the operator R of any binomial skew polynomial ring sat-

is�es the quantum Yang-Baxter equation. Gateva-Ivanova 
onje
tured [30℄ that


onversely, every square-free non-degenerate unitary solution R of the quantum

Yang-Baxter equation 
omes from a quantum binomial algebra.

Here is the point where bra
es arise. To prove Gateva-Ivanova's 
onje
ture,

we introdu
ed a 
on
ept [52℄ 
losely related to that of a bra
e.

De�nition 3. A 
y
le set is a set X with a binary operation · su
h that the

left multipli
ations Lx : X → X with Lx(y) := x · y are bije
tive and

(x · y) · (x · z) = (y · x) · (y · z)

holds for all x, y, z ∈ X. A 
y
le set X is non-degenerate if the square map

x 7→ x · x is bije
tive. If this map is the identity, we 
all X square-free.
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By [52℄, Theorem 2, every �nite 
y
le set is non-degenerate. The 
onne
tion

with the quantum Yang-Baxter equation (QYBE) rests upon the inverse y 7→ yx

of the left multipli
ation Lx:

Proposition 2.1 ([52℄). Every non-degenerate 
y
le set X gives rise to a non-

degenerate unitary solution (5) of the QYBE with

xy = xy · y. Conversely, every
non-degenerate unitary solution of the QYBE arises from a non-degenerate 
y
le

set. Under this bije
tion, square-free 
y
le sets 
orrespond to square-free solu-

tions.

In terms of 
y
le sets, Gateva-Ivanova's 
onje
ture admits a simple reformu-

lation.

De�nition 4. A 
y
le setX is de
omposable if there is a non-trivial partition

X = X1 ⊔X2 with x · xi ∈ Xi for all x ∈ X and xi ∈ Xi.

The 
onje
ture is then equivalent to the statement of the following

Theorem 2.2 ([52℄). Any square-free 
y
le set X with 1 < |X| < ∞ is de
om-

posable.

Now bra
es 
an be viewed as parti
ular 
y
le sets.

De�nition 5. A 
y
le set A with an abelian group stru
ture is 
alled linear

if it satis�ed the equations

a · (b+ c) = (a · b) + (a · c) (6)

(a+ b) · c = (a · b) · (a · c). (7)

Here the equation of De�nition 3 is 
ontained in Eq. (6) by the symmetry of

a + b. Note that Eqs. (6) and (7) 
an be viewed as re
ipes to redu
e the sums

in expressions like (a1 + · · ·+ an) · (b1 + · · ·+ bm). The inverse b 7→ ba of the left

multipli
ation b 7→ a · b 
oin
ides with the 
orresponding operation of a bra
e:

Proposition 2.3. Every linear 
y
le set is a bra
e, and vi
e versa.

Proof. Passing to the inverse operation, Eq. (6) turns into the �rst equation in

(2), whi
h is equivalent to (B1). As to Eq. (7), the substitution b 7→ ba yields

(a+ ba) · c = b · (a · c). By c 7→ (cb)a, the equation turns into (ba + a) · (cb)a = c,
that is, (cb)a = cb

a+a
. This is the se
ond equation of (2), equivalent to (B2). The

bije
tivity of the left multipli
ation is just (B3).

QED

Thus, every bra
e is a 
y
le set. Conversely, every 
y
le set gives rise to a

bra
e, and this 
lose relationship is deeply 
onne
ted with the me
hanism of the

QYBE.
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Theorem 2.4 ([52, 53℄). Via Eqs. (6) and (7), the operation · of a non-degenera-

te 
y
le set X admits a unique extension to the free abelian group Z
(X)

su
h that

Z
(X)

be
omes a bra
e.

The extension pro
ess is like a knitting pro
edure. The mira
le is that it does

not lead to a 
ontradi
tion.

De�nition 6. A group of I-type [61, 32℄ is a �nitely generated free abelian

group Z
(X)

endowed with a se
ond group stru
ture (Z(X), ◦) with the same

neutral element 0 su
h that

{x ◦ a | x ∈ X} = {x+ a | x ∈ X}

for all a ∈ Z
(X)

.

Thus if we regard Z(X)
as a latti
e-ordered group with positive 
one N(X)

,

the upper neighbours of any a ∈ Z
(X)

are permuted by multipli
ation with the

generators. Groups of I-type were studied, e. g., by Jespers and Okni«ski [37℄.

For a �nite 
y
le set X, the linear extension Z(X)
is a group of I-type. In fa
t,

x ◦ a = xa + a. So the permutation of the upper neighbours of a is just x 7→ xa.
The 
onverse was proved in [54, 56℄.

Proposition 2.5. There is a one-to-one 
orresponden
e between �nite 
y
le sets

and groups of I-type.

An ideal of a bra
e A is an additive subgroup I su
h that a ∈ I and b ∈ A
implies that ab and ba belong to I. As in the 
ase of pseudo-rings, the additive

fa
tor group A/I 
an be made into a bra
e with a well-de�ned multipli
ation

(a + I)(b + I) := ab + I (see [53℄). For any ideal I, the subgroup AI generated

by the produ
ts ax with a ∈ A and x ∈ I is an ideal. Therefore, we have a

des
ending 
hain of ideals

A ⊃ A2 ⊃ A3 ⊃ · · ·

with An+1 := A(An). By 
ontrast, (A2)A need not be an ideal. On the other

hand, the so
le

So
(A) := {a ∈ A |Aa = 0}

is an ideal of A. Note that An = 0 for some n implies that So
(A) 6= 0 whenever

A 6= 0. For a �nite 
y
le set X, the bra
e A(X) := Z
(X)/So
(Z(X)) is �nite, too,

and there is a natural morphism σ : X → A(X). For x, y ∈ X, we have

σ(x) = σ(y) ⇐⇒ Lx = Ly

whi
h shows that σ(x) 
an be identi�ed with the left multipli
ation Lx. The

image σ(X) ⊂ A(X) is again a 
y
le set, the retra
tion of X. If σ is not inje
tive,

the 
y
le set X is 
alled retra
table.
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So there is a sequen
e of retra
tions

X ։ σ(X) ։ σ2(X) ։ σ3(X) ։ · · ·

whi
h stops at an irretra
table 
y
le set σn(X). If σn(X) is trivial, the stru
ture
of X is 
ompletely resolved. The 
orresponding solution of the QYBE is then


alled a multipermutation solution [24℄.

Gateva-Ivanova's �strong 
onje
ture� [29℄ asserts that every square-free non-

degenerate unitary solution of the QYBE is a multipermutation solution. In

terms of 
y
le sets, this 
an be stated as

Gateva-Ivanova's strong 
onje
ture. Every square-free 
y
le set X with

1 < |X| < ∞ is retra
table.

Apart from its impli
ations to the quantum Yang-Baxter equation, the truth

of this statement would determine the stru
ture of a big 
lass of Artin-S
helter

regular rings. The 
onje
ture has been veri�ed in many 
ases. For example, it is

true for bra
es X or if Z
(X)

is a radi
al ring.

Note that a bra
e A is retra
table if and only if its so
le is non-zero. So there

is reason to hope that bra
es will help to de
ide this fundamental 
onje
ture.

3 Bra
es in Di�erential Geometry

We have seen (Proposition 1.3) that bra
es 
an be viewed as a�ne torsors.

Let us pursue this approa
h in the 
lassi
al geometri
 
ontext of �at manifolds.

Let X be an n-dimensional 
onne
ted real manifold with a �at a�ne stru
ture

[49℄, in the sense thatX is 
overed by 
oordinate 
harts into the a�ne n-spa
e An

su
h that the 
oordinate 
hanges between overlapping 
harts are given by a�ne

automorphisms. Fix a point in the universal 
overing X̃ and 
hoose an a�ne

neighbourhood. Atta
h it to an open set of An
, and extend this identi�
ation

to get an a�ne immersion D : X̃ → An
. This developing map D is unique up to

a�ne automorphisms of A
n
. The a�ne manifold X is 
omplete if D is bije
tive,

or equivalently, if any geodesi
 line segment extends to a full geodesi
 (see [6℄).

Any element g of the fundamental group π1(X) indu
es an a�ne automorph-

ism α(g) of An
su
h that the diagram

X̃ X̃

A
n

A
n

D

g

D

α(g)


ommutes. The image of the holonomy representation α : π1(X) → A�(An) is


alled the holonomy group of X. If X is 
omplete, X̃ 
an be identi�ed with An
,
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and we have a free properly dis
ontinuous a
tion π1(X) →֒ A�(An) on A
n
whi
h

identi�es X with A
n/π1(X).

There is a number of long-standing unsolved problems related to �at a�ne

manifolds. Re
all that a group is said to virtually solvable if it has a solvable

subgroup of �nite index. A similar terminology is used for other �virtual� prop-

erties.

Milnor's �rst 
onje
ture [49℄: IfX is 
omplete, the fundamental group π1(X)
is virtually solvable.

In his famous solution of Hilbert's 18th problem, Bieberba
h has proved

that X is vrtually abelian (i. e. 
rystallographi
) if π1(X) 
onsists of isometries.

Nevertheless, Milnor's 1977 
onje
ture was disproved by Margulis [45, 46℄. By the

Tits alternative, there are two possibilities: Either π1(X) is virtually poly
y
li


- or it 
ontains a subgroup isomorphi
 to Z∗Z. Margulis proved that the se
ond


ase o

urs in dimension 3.

Compa
t �at a�ne manifolds need not be 
omplete. A simple example is

Zeno's Paradox: The 1-dimensional manifold X = R>0/{2
n | n ∈ Z} is not


omplete.

It is not 
lear whether su
h a paradox still o

urs in the presen
e of a parallel

volume. The latter means that the linear part of the holonomy group 
onsists of

maps with determinant 1.

Markus' 
onje
ture [49℄: Every unimodular 
ompa
t �at a�ne manifold is


omplete.

The original Markus 
onje
ture states that 
ompa
tness implies 
ompleteness

in 
ase of �at Lorentz manifolds. This was proved in 1989 by Carrière [15℄. The

general 
onje
ture is still open. Another open problem is

Auslander's 1964 
onje
ture [4℄: If X is a 
ompa
t 
omplete �at a�ne

manifold, then π1(X) is virtually solvable.

The proof of this in statement in [4℄ is in
orre
t. So the problem remains

unsolved. For dimensions up to six, the 
onje
ture was re
ently proved [1℄. If

X is 
ompa
t and π := π1(X) virtually solvable, Fried and Goldman (see [27℄,

Corollary 1.5) proved that there is a simply transitive subgroup G ⊂ A�(An)
su
h that π ∩ G has �nite index in π and G/(π ∩ G) is 
ompa
t. Sin
e π ∩ G
is �nitely generated and linear, Selberg's lemma implies that π ∩G is virtually

torsion-free. Thus, if Γ is a 
o�nite torsion-free subgroup of π ∩ G, we obtain

a �nite 
overing A
n/Γ ։ A

n/π ∼= X. On the other hand, the simply transitive

a
tion of G on An
lifts to a right-invariant 
omplete a�ne stru
ture on G, su
h

that the 
omplete a�ne solvmanifold Γ\G is a�nely equivalent to the 
overing

spa
e A
n/Γ of X.

The Lie group G is 
alled a 
rystallographi
 hull of Γ. By Proposition 1.3, G
is an R-bra
e. Thus, we obtain:
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Proposition 3.1. Modulo Auslander's 
onje
ture, any 
ompa
t 
omplete �at

a�ne manifold gives rise to an R-bra
e.

Milnor [49℄ proved that every virtually poly
y
li
 torsion-free group is the

fundamental group of a 
omplete �at a�ne manifold X. He asked whether X

an be 
hosen to be 
ompa
t. This led to his se
ond 
onje
ture whi
h 
an be

stated as

Milnor's se
ond 
onje
ture: Every simply 
onne
ted solvable Lie group is

isomorphi
 to the adjoint group of an R-bra
e.

The 
onverse is due to Auslander [5℄. More pre
isely, Milnor ([49℄, The-

orem 3.2) proved the following

Theorem 3.2. A 
onne
ted Lie group G admits a free a
tion by a�ne trans-

formations on An
if and only if G is simply 
onne
ted and solvable.

Milnor's se
ond 
onje
ture was believed to be true for a long while until it was

�nally disproved in 1995 by Benoist [8℄ who 
onstru
ted a non-a�ne nilvariety

by means of an 11-dimensional Lie algebra of nilpoten
y 
lass 10.

A dis
rete version [18℄ of Milnor's se
ond 
onje
ture is equivalent to the fol-

lowing statement: Every �nite solvable group is isomorphi
 to the adjoint group

of a bra
e.

We will return to this question in Se
tion 5.

4 Bra
es and spa
es

The 
lassi�
ation of spa
es with zero 
urvature (with a view toward under-

standing the possible stru
ture of our physi
al spa
e) has been a 
entral part

of the problem to 
lassify Cli�ord-Klein �spa
e forms� [40, 16℄. Killing [40℄ 
on-

stru
ted Eu
lidean spa
e forms as homogenous spa
es R
n/Γ with a Bieberba
h

group Γ. Hermann Weyl [66℄ proved that all Eu
lidean spa
e forms are of that

type. More generally, a�ne spa
e forms are given by 
o
ompa
t properly dis-


ontinuous subgroups Γ ⊂ A�(An), that is, {g ∈ Γ | gC ∩ C 6= ∅} is �nite for


ompa
t subsets C ⊂ An
. These a�ne 
rystallographi
 groups Γ were 
lassi�ed

in dimension 3 by Fried and Goldman [27℄.

Here the stabilizer Γx of any x ∈ A
n
is �nite. If Γ a
ts freely, the quotient

An/Γ is a 
ompa
t 
omplete a�ne manifold. By Se
tion 3, the 
rystallographi


hull G of Γ is the adjoint group of an R-bra
e. The following theorem of Aus-

lander ([5℄, Theorem III.1) relates any R-bra
e A to one with a unipotent adjoint

group. Consider the algebrai
 hull of A◦
, the smallest algebrai
 group G 
ontain-

ing A◦
. The set of unipotent elements of G form a 
onne
ted normal subgroup

U , the unipotent radi
al of G, and G = T ⋉ U with a maximal torus T .
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Proposition 4.1. Let A be an R-bra
e, viewed as an a�ne torsor on A
n
. Let

U be the unipotent radi
al of the algebrai
 hull (Zariski 
losure) of A◦
. Then U

is a simply transitive subgroup of A�(An).

In other words, the a
tion of U on A
n
gives another R-bra
e with a unipotent

adjoint group U . The group U is isomorphi
 to the nil-shadow of A◦
, de�ned in

[3℄, III.2. Therefore, we 
all the 
orresponding bra
e the nil-shadow of A.
Re
all (Se
tion 2) that a bra
e is retra
table if and only if its so
le is non-

zero. For a bra
e A, the so
le 
onsists of the elements a ∈ A with Aa = 0, that
is, b◦a = b+a for all b ∈ A. Thus, if A is an R-bra
e, viewed as an a�ne torsor,

the so
le 
onsists of the translations. In the language of bra
es, a weak form of

another 
onje
ture of Auslander 
an be stated as

Auslander's se
ond 
onje
ture [5℄: Every non-zero unipotent R-bra
e A is


ontra
table.

Auslander's original 
onje
ture assumes that the adjoint group A◦
is nil-

potent. By [58℄, Theorem 1, this implies that A◦
is unipotent. Furthermore,

Auslander 
laims that there are non-trivial translations in the 
enter of A◦
. Aus-

lander [5℄ mentions S
heunemann's paper [58℄ where the 
onje
ture is proved.

Nine years later, Fried [25℄ gave a 
ounterexample in dimension 4 whi
h shows

that S
heunemann's argument was false. For other 
ounterexamples, see [48, 19℄.

Example 1. A non-unipotent 
ounterexample was given by Auslander himself:

The R-bra
e with group operation



a
b
c


 ◦



x
y
z


 =



a+ bzex−yz + cyeyz−x + x

bex−yz + y
ceyz−x + z




has a trivial so
le. Here the nil-shadow is a 2-dimensional abelian subbra
e.

Fried's 
ounterexample: A unipotent R-bra
e with trivial so
le. Multipli
a-

tion is given by




a
b
c
d







x
y
z
t


 =




−bt+ cz − ctv − dy + dzv − 1
2dtv

2

cv + 1
2dv

2

dv
0




where v := x+ yt− 1
2z

2
.

The adjoint group of this example has a Lie-algebra of maximal nilpoten
y


lass. Su
h Lie-algebras (and groups) are 
alled �liform [62℄. For an R-bra
e A
with �liform adjoint group, Medina and Khakimdjanov [48℄ have shown that

So
(A) 6= 0 if dimA is odd. For even dimension > 4, they were able to extend

Fried's 
ounterexample.
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Flat spa
etimes. In analogy to the Cli�ord-Kleinian problem of Eu
lidean

spa
e forms, Fried [26℄ 
lassi�ed 
ompa
t 
omplete 4-manifolds with zero 
urvatu-

re whi
h are 
overed by the Minkowski spa
e. The 
orresponding bra
es are two

ex
eptional (non-algebrai
) ones and a series of unipotent bra
es Uβ,ε where the

right operation by (x y z t)T is given by the matrix




1 0 0 0

−βz + βεt2

2 1 0 0
−εt 0 1 0

−β2z2

2 + β2εzt2

2 − β2ε2t4

8 − ε2t2

2 βz − βεt2

2 εt 1


 .

The parameters β, ε > 0 are unique up to res
aling (β, ε) 7→ (λβ, λ2ε) with

λ > 0. All these bra
es are retra
table.

5 Bra
es versus radi
al rings

In view of a long-standing ring-theoreti
 tradition, notwithstanding the geo-

metri
 examples of the pre
eding two se
tions (where bra
es arise as groups

with an a�ne 
onne
tion), bra
es may still be regarded as a kind of radi
al

rings where something is missing. Indeed, the 
on
ept of bra
e is one-sided, and

a two-sided bra
e is nothing else than a radi
al ring.

So it is time to point out that this perspe
tive is one-sided, as it evalu-

ates bra
es from the viewpoint of ring theory. A more appropriate 
omparison

should take into a

ount how far the two stru
tures are invariant under nat-

ural operations. We will show that the 
ategory of bra
es is 
losed with respe
t

to semidire
t produ
ts, while this fails to be true in the 
ase of radi
al rings.

Of 
ourse, this failure 
ould not be dete
ted in the 
lassi
al framework of ring

theory where a semidire
t produ
t of radi
al rings does not exist!

Let M be an abelian group. With Ja
obson's 
ir
le operation f ◦ g = fg +
f + g, the ring R(M) of right endomorphisms is a monoid with neutral element

0.

De�nition 7. A module M over a bra
e A is given by a monoid homo-

morphism A◦ → R(M).

Expli
itly, this means that there is a right operation M × A → M whi
h

satis�es x0 = 0 and

(x+ y)a = xa+ ya (8)

x(a ◦ b) = (xa)b+ xa+ xb (9)

for all x, y ∈M and a, b ∈ A.
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Proposition 5.1. Modules over a bra
e A are the same as right A◦
-modules.

Proof. For an A-module, de�ne a new operation x 7→ xa by

xa := xa+ x.

Then x0 = x, and (8) and (9) turn into

(x+ y)a = xa + ya

x(a◦b) = (xa)b.

QED

In parti
ular, any bra
e is a module over itself. By Proposition 5.1, every

(right) module 
an be turned into a left module, and vi
e versa: (ax)a = x.

De�nition 8. We say that a bra
e A a
ts on a bra
e B if there is a map

A×B → B whi
h satis�es

α(a+ b) = αa+ αb

α(ab) = (αa)(αb)

(α ◦ β)a = α(βa)

and 0a = a for all α, β ∈ A and a, b ∈ B.

In other words, the a
tion of A on B is given by a group homomorphism

A→ Aut(B),

whi
h shows that De�nition 8 is quite natural. Less obvious is the following

result (see [55℄, Corollary of Proposition 4) whi
h de�nes a semidire
t produ
t

for bra
es:

Theorem 5.2. Let A be a bra
e whi
h a
ts on a bra
e B. The operations

(a, α) + (b, β) =
(
(α · β)a+ (β · α)b, α+ β

)
(10)

(a, α) ◦ (b, β) = (a ◦ αb, α ◦ β) (11)

with α, β ∈ A and a, b ∈ B make the 
artesian produ
t B×A into a bra
e A⋉B.

Theorem 5.2 has no analogue in ring theory. Indeed, the following example

shows that the semidire
t produ
t of radi
al rings need not be a radi
al ring.



128 W. Rump

Example 2. Let R be a dis
rete valuation domain with quotient �eld K and

radi
al p = Rπ. For an integer n > 2, let Γn be a Morita-redu
ed hereditary

R-order with n simple modules, and Jn := RadΓn. For example,

Γ4 =




R p p p

R R p p

R R R p

R R R R


 J4 =




p p p p

R p p p

R R p p

R R R p




Let eij denote the matrix units in Mn(K), and let g be the 
anoni
al generator

of Jn. For n = 4:

e21 =




0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0


 g =




0 0 0 π
1 0 0 0
0 1 0 0
0 0 1 0




Then gJng
−1 = Jn. Therefore, 
onjugation by g is an automorphism σ of Jn,

and 〈σ〉 ⊂ Aut(Jn) is a 
y
li
 subgroup of order n. So the radi
al ring 〈σ〉 with
trivial multipli
ation operates on the radi
al ring Jn, and thus 〈σ〉 ⋉ Jn is a

bra
e. However, a dire
t 
al
ulation shows that left distributivity fails for this

bra
e:

(e32, 1)
(
(−e21, 1) + (0, σ)

)
6= (e32, 1)(−e21, 1) + (e32, 1)(0, σ).

When
e 〈σ〉⋉ Jn is not a radi
al ring.

Eq. (11) shows that every semidire
t produ
t A⋉B of bra
es satis�es

(A⋉B)◦ = A◦
⋉B◦.

Now let us return to the question raised at the end of Se
tion 3, 
on
erning

the solvable groups arising as adjoint group of a bra
e. In [18℄ they are 
alled

involutive Yang-Baxter groups (IYB-groups for short).

Corollary 1. Let A be a bra
e, and let G be an IYB-group a
ting on A◦
by

automorphisms of A. Then G⋉A◦
is an IYB-group.

Corollary 2. Every semidire
t produ
t G⋉A of an IYB group G with an abelian

group A is an IYB group.

Proof. The abelian group A is a radi
al ring with trivial multipli
ation. Every

group automorphism of A is thus a bra
e automorphism.

QED
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For abelian groups G, a bra
e with adjoint group G is a radi
al ring. Usually,

there are several su
h bra
es for a given group G. If G is non-
ommutative, it

frequently happens that A◦ = G holds for a unique bra
e A, for example, if G
is a generalized quaternion 2-group [57℄.

6 Amalgamation of 
y
le sets

Example 2 shows that semidire
t produ
ts of radi
al rings naturally lead to

bra
es. Let us now have a 
loser look upon Eq. (10) whi
h de�nes addition in a

semidire
t produ
t A ⋉ B of bra
es. Subtra
tion 
an be inferred from Eq. (10)

as

(a, α)− (b, β) =
(
(α · −β)a− (α · −β)α(β · −β)b, α− β

)
.

Re
all that b 7→ a ·b is the inverse map of b 7→ ba. Using the formula a◦b = ab+b
whi
h holds in any bra
e, Eq. (10) transforms into

(a, α)(b,β) =
(
(α · β′)(aαb), αβ

)
, (12)

where β′ is the inverse of β in the adjoint group. Now Eq. (12) 
an be rewritten

as

(a, α) · (b, β) =
(
(α · β)a · (β · α)b, α · β

)
, (13)

an expression of Eq. (10) in terms of the 
y
le set stru
ture! This leads to the

following

De�nition 9. We say that a 
y
le set X a
ts on a 
y
le set Y if there is a

map X → S(Y ) into the symmetri
 group S(Y ) whi
h satis�es

α(x · y) = αx · αy (14)

(α · β)αx = (β · α)βx (15)

for α, β ∈ X and x, y ∈ Y .

While the �rst equation is obvious, the se
ond one be
omes 
lear in 
ase that

X is a bra
e: Then (α · β) ◦ α = (β · α) ◦ β = α + β holds for all α, β ∈ X.

Generalizing Theorem 5.2, we have

Theorem 6.1 ([55℄). If a 
y
le set X a
ts on a 
y
le set Y , Eq. (13) makes

Y ×X into a 
y
le set X ⋉ Y .

Firstly, this theorem shows that every semidire
t produ
t of bra
es is a semi-

dire
t produ
t of the underlying 
y
le sets. Se
ondly, in 
ombination with Pro-

position 2.1, Theorem 6.1 
an be used to 
onstru
t non-degenerate unitary set-

theoreti
 solutions of the quantum Yang-Baxter equation by amalgamation of

given solutions.
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Example 3. Let V be the Klein Four group, the additive group of F2⊕F2. Then

the 
y
li
 group C3 = 〈σ〉 a
ts on V by permuting the three non-zero ve
tors.

The semidire
t produ
t C3⋉V is the alternating group A4. An easy 
al
ulation

shows that (a, σ) ∈ C3⋉V has order 6 if a 6= 0. So we get a bra
e A with adjoint

group A4 and additive group C6 × C2.

Example 4. Every bra
e A a
ts on itself. If it a
ts by bra
e automorphisms,

there is a double A ⋉ A whi
h is again a bra
e. The existen
e of a double is

determined by the following 
riterion.

Proposition 6.2. A bra
e A admits a double A⋉A if and only if A3 = 0.

For a ∈ A, let a′ denote the inverse of a in A◦
. We need the following

Lemma. Every ideal of a bra
e A is a normal subgroup of the adjoint group A◦
.

Proof. Let I be an ideal of A. For a ∈ I and b ∈ A, we have b′ ◦ a ◦ b =
(b′a+b′+a)◦b = (b′a+b′+a)b+(b′a+b′+a)+b = (b′a+a)b+(b′a+a) ∈ I. QED

Proof of Proposition 6.2. . The bra
e A a
ts on itself by automorphisms if and

only if (a ◦ b)c = ac ◦ bc, that is, (ab + b)c = (ac)b
c
+ bc for all a, b, c ∈ A. This

is equivalent to (ab)c = (ac)b
c
or, by Eqs. (2), ab◦c = ac◦b

c
. Now this equation


an be written as a = ac◦b
c
◦c′◦b′

, whi
h means that c ◦ bc ◦ c′ ◦ b′ ∈ So
(A) for all
b, c ∈ A. By the lemma, this 
ondition 
an be repa
ed by bc ◦ c′ ◦ b′ ◦ c ∈ So
(A).
Now bc ◦ c′ ◦ b′ =

(
(bc)c

′
+ c′

)
◦ b′ = (c′ + b) ◦ b′ =

(
(c′)b

′
◦ b

)
◦ b′ = (c′)b

′
.

So the 
ondition turns into (c′)b
′
◦ c ∈ So
(A). Sin
e (c′)c + c = c′ ◦ c = 0,

the substitution b′ = c ◦ d ◦ c′ gives (c′)b
′
◦ c = (−c)d◦c

′
◦ c = (−c)d◦c

′
◦c + c =

(−c)d + c = (−c)d − c + c = (−c)d. So the 
ondition states that A2 ⊂ So
(A),
that is, A3 = 0. QED

7 Chevalley groups

The adjoint group of a �nite dimensional R-bra
e is solvable. So there is no way

to make a simple Lie group into a bra
e. On the other hand, Proposition 4.1

shows that every R-bra
e A gives rise to a unipotent R-bra
e where the adjoint

group is repla
ed by the nil-shadow of A. In this se
tion, we will show that the

unipotent part of a Chevalley group of type A-D has a natural stru
ture of a

bra
e.

Remark. For a �nite Chevalley group G over a prime �eld Fp, it may happen

that G itself is a bra
e: In Example 3, we proved that PSL2(3) = A4 is the

adjoint group of a bra
e with additive group C6 ×C2. Of 
ourse, a �nite non-p-
group G 
annot be the adjoint group of an Fp-bra
e.
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Let g = g+⊕h⊕g− be a simple Lie algebra over a �eld K. The 
orresponding

Chevalley group of adjoint type is the subgroup of Aut(g) generated by the root

subgroups Xα := {xα(t) | t ∈ K}, where xα(t) := exp(t ad eα) for any root α
with root ve
tor eα ∈ g. Consider the unipotent subgroup

X(g+) := 〈xα(t) | α ∈ Φ+〉

generated by the Xα with α positive. The Chevalley groups of type A-D 
an be

represented as 
lassi
al groups. Using their matrix representation, we have

Proposition 7.1. For every simple Lie algebra g of type A-D, g+ is a bra
e

with adjoint group X(g+).

Type An. The Lie algebra sln+1(K) 
orresponds to the matrix group SLn+1(K)
with unipotent partX(sln+1(K)+) = Un+1(K), the group of unipotent lower tri-

angular matri
es of size n + 1. The Lie algebra un+1(K) of Un+1(K) 
oin
ides
with the radi
al of the lower triangular matrix ring. Hen
e un+1(K) is a K-bra
e

with adjoint group Un+1(K). The 
orresponding bije
tive 1-
o
y
le is given by

δ : Un+1(K) → un+1(K)

with δ(g) := g− 1. In parti
ular, there are bra
es of type A for �nite �elds K of


hara
teristi
 p > 0. Here Un+1(K) is a Sylow p-subgroup of SLn+1(K).

For the unipotent groups U of type B-D, the a�ne stru
ture is given by a

bije
tive 1-
o
y
le γ : U → A indu
ed by δ via a 
ommutative diagram

U Um(K)

A um(K)

γ δ

p

(16)

with a Um(K)-linear epimorphism p. In any 
ase, γ = pδ|U is a 1-
o
y
le. Thus,

to obtain γ, it is enough to �nd a fa
tor module A of um(K) with γ bije
tive.

We will show that this 
an be done in a natural way.

Type Bn: The odd orthogonal group Ω2n+1(K) 
onsisting of the (2n+1, 2n+
1)-matri
es A with AJAT = J , where

J =




O

1

. .
.

1
2

1
. .
.

1 O


 .
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Pre
isely, the simply 
onne
ted group Ω2n+1(K) is the 
ommutator group of the

orthogonal group O2n+1(K) with respe
t to J , and PΩ2n+1(K) is the Chevalley
group of adjoint type.

For n = 2, the unipotent part U 
onsists of the matri
es

A =




1 0 0 0 0
−d 1 0 0 0

2bd−2c −2b 1 0 0
db2−2bc−a −b2 b 1 0
−ad−c2 a c d 1




(17)

�
�
��

❅
❅

❅❅

with a, b, c, d ∈ K. The subspa
e

M := Ke21 ⊕Ke31 ⊕Ke32 ⊕Ke41 ⊕Ke42 ⊕Ke51

of u5(K) is a right U5(K)-submodule, and the epimorphism

p : u5(K) ։ u5(K)/M ∼= g+

provides a bije
tive 1-
o
y
le γ = pδ|U : U → g+ whi
h makes g+ into a bra
e

with adjoint group U .

Type Cn: The symple
ti
 group Sp2n(K). With

J =



O

1

. .
.

1
−1

. .
.

−1 O


 ,

this group 
onsists of the (2n, 2n)-matri
es A whi
h satisfy AJAT = J . For
n = 3, the unipotent part U 
onsists of the matri
es

A =




1 0 0 0 0 0
−i 1 0 0 0 0

gi−h −g 1 0 0 0
f+dgi−dh−ei e−dg d 1 0 0
c+fg−bi−eh b e g 1 0

a c f h i 1




(18)

✟✟✟✟✟✟✟✟

❅
❅

❅
❅

with a, b, c, d, e, f, g, h, i ∈ K. As in 
ase B, the parameters 
an be found in a

triangle-shaped part of the matrix A. So we 
an apply exa
tly the same method

to obtain a 
anoni
al bra
e stru
ture on the nilpotent Lie algebra g+ with adjoint

group U .
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Type Dn: The even orthogonal group Ω2n(K) of (2n, 2n)-matri
es A with

AJAT = J , where

J =



O

1

. .
.

1
1

. .
.

1 O


 .

For n = 3, the matri
es in the unipotent part U of Ω2n(K) are of the form

A =




1 0 0 0 0 0
−f 1 0 0 0 0
df−e −d 1 0 0 0
bf−c −b 0 1 0 0

bdf−be−cd−a −bd b d 1 0
−af−ce a c e f 1




(19)

�
�
�

��

❅
❅

❅
❅❅

with a, b, c, d, e, f ∈ K. Again, the parameters are lo
ated in a triangle-shaped

part of A, and there is a 
anoni
al bra
e g+ with adjoint group U .

Note that for all 
ases A-D, the unipotent group U is a subgroup of the

Chevalley group Ga of adjoint type as well as a subgroup of its simply 
onne
ted


overing σ : Gu ։ Ga: The kernel of σ is just the 
enter of Gu.

The above matrix representations exhibit the root subgroups of U . These are

bije
tively asso
iated to the entries of the triangle-shaped region in the matri
es

A.
Remark. In 
ontrast to 
ase A, the bra
es of type B,C,D are not radi
al rings.

To verify this for B2, 
onsider x := e54 − e21, y := e43 − 2e32 − e42 ∈ g+. Then

x(y + y) 6= xy + xy.

8 The ex
eptional group G2

The 14-dimensional ex
eptional simple Lie group G2 has a faithful matrix rep-

resentation of dimension 7. As a real group, G2 is the automorphism group of

the division algebra O of o
tonions. The a
tion of G2 on the imaginary part

Im(O) of O yields an embedding into the orthogonal group O(Im(O)):

G2 →֒ O7(R).

Compa
t Riemannian manifolds with G2-holonomy were 
onstru
ted in 1994

by D. Joy
e. They 
arry the hidden dimensions in 11-dimensional supergravity

theory.

A

ording to the root system of G2, the unipotent part U of G2 is of dimen-

sion 6. Using Wildberger's basis [67℄ for g2, the matri
es in U 
an be put into

the form
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


1 0 0 0 0 0 0
e 1 0 0 0 0 0

ef−d f 1 0 0 0 0
2c 2d 2e 1 0 0 0

ce−b de−c e2 e 1 0 0
a−bf+cef−cd def−cf−d2 e2f−de−c ef−d f 1 0
c2+ae−bd a b c d e 1




✟✟✟✟✟

�
��

❅
❅

❅
❅❅

where the parameters a, b, c, d, e, f are lo
ated in a stre
hed triangle-shaped part.

As above, we obtain a bra
e A with A◦ = U . Now the operation x 7→ x ◦ a in A
yields an a�ne matrix representation for U :




1 0 0 0 0 0 0
f 1 0 0 0 0 0
2d 2e 1 0 0 0 0

de−c e2 e 1 0 0 0
def−cf−d2 e2f−de−c ef−d f 1 0 0

0 0 0 0 0 1 0
a b c d e f 1




(20)

Here the matri
es take a very simple form. The parameters a, b, c, d, e, f , indi
-
ating the root subgroups, appear in the last row. They 
orrespond, respe
tively,

to the roots

2α+ 3β, α+ 3β, α+ 2β, α+ β, β, α,

where α denotes the long root. So we obtain

Theorem 8.1. The positive part of a simple Lie algebra g of type A,B,C,D,G

over a �eld K is a bra
e with adjoint group X(g+).

With some patien
e, a similar 
onstru
tion should yield a bra
e with adjoint

group the unipotent part of F4, the automorphism group of the ex
eptional

Jordan algebra of 3× 3 self-adjoint matri
es over O. For the remaining type E,

the representations given in [68℄ may be useful. Already for E6, the matri
es are

too large to be depi
ted.

On the other hand, the above example for G2 shows that Wildberger's mar-

vellous basis [67℄ is not optimal for our purpose. We leave it as a 
hallenge to
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�nd a 
anoni
al 
onstru
tion of the diagram (16) simultaneously for all Cheval-

ley groups, in
luding the ex
eptional ones. We shall return to this problem in

Se
tion 10. Using the bra
e stru
ture in 
ases A-D, the matri
es (17)-(19) 
ould

also be given in a form like (20), at the expense of in
reasing the dimension of

the representation. The triangle-shaped area then turns into a straight line.

9 Right symmetri
 algebras

Let A be an R-bra
e with adjoint group G = A◦
, viewed as an a�ne torsor. The

additive group (A,+) is an R-ve
tor spa
e R
n
, and the map x 7→ x ◦ a yields a

simply transitive a
tion α : G→ A�(A) on A as an a�ne spa
e. The di�erential

of α gives an a�ne representation dα : g → a�(A) of the Lie algebra g whi
h �ts

into a 
ommutative diagram

g a�(A)

G A�(A)

exp

dα

exp

α

The identi�
ation g = A turns g into a right module over itself. This gives a

bilinear map g× g → g with

[a, b] = ab− ba

a[b, c] = (ab)c− (ac)b

for all a, b, c ∈ g. Hen
e

(ab)c− a(bc) = (ac)b− a(cb) (21)

for all a, b, c ∈ g.

De�nition 10. A (non-asso
iative) algebra satisfying Eq. (21) is 
alled a

right symmetri
 algebra.

With [a, b] := ab− ba, Eq. (21) 
an be written as

[Rb, Rc] = R[b,c],

another version of the Ja
obi identity!

In fa
t, every right symmetri
 algebra (RSA) is a Lie algebra with bra
ket

[a, b] := ab−ba. Therefore, we also speak of a Lie algebra with a right symmetri


stru
ture. The 
on
ept was introdu
ed by Vinberg [64℄ in 
onne
tion with his
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theory of 
onvex homogenous 
ones. Right symmetri
 algebras and their left-

hand version (LSA's) arise in very many areas of mathemati
s and physi
s (see,

e. g., [12℄). Let us mention just a few typi
al examples.

Gerstenhaber proved in his fundamental paper [33℄ that the Ho
hs
hild 
om-

plex of an asso
iative ring is a (graded) right symmetri
 algebra. The free RSA

with one generator has the rooted trees as a basis. It was dis
overed 1857 by Cay-

ley [17℄ in his analysis of di�erential operators. Chapoton and Livernet ([20℄, 3.1)

identi�ed this RSA with a Lie algebra 
onsidered by Connes and Kreimer [21℄

in 
onne
tion with renormalization of quantum �eld theories. More generally,

every 
lass of graphs (e. g. Feynman graphs) yields an RSA.

Let P be a non-empty open 
onvex 
one in R
n
with a transitive a
tion of its

automorphism group Aut(P ) := {α ∈ GLn(R)|α(P ) = P}. By [64℄, Theorem I.1,

G := Aut(P ) de
omposes into G = GxT , where Gx is the stabilizer of some

x ∈ P and T is a maximal 
onne
ted split solvable subgroup whi
h a
ts simply

transitively on P . The orbit map g 7→ xg is a di�eomorphism T −→∼ P whi
h

indu
es a linear isomorphism ρ : t −→∼ R
n
from the Lie algebra t of T onto R

n
.

The binary operation

a∆b := aρ−1(b)

on R
n
makes R

n
into a right symmetri
 algebra (
f. [64℄, Chapter 2). Moreover,

Vinberg [64℄ has 
hara
terized the RSA's whi
h arise in this way. (To be sure,

Vinberg [64℄ introdu
ed left symmetri
 algebras, whi
h is just a matter of taste!)

A homogenous 
one P ⊂ R
n
is 
alled symmetri
 if

∀y ∈ P : 〈x, y〉 > 0 ⇐⇒ x ∈ P

holds for all x ∈ R
n
. By the famous Koe
her-Vinberg theorem [41, 63℄, there is a

one-to-one 
orresponden
e between symmetri
 
ones P and formal real Jordan

algebras, that is, real Jordan algebras for whi
h x2+y2 = 0 implies that x = y =
0. The 
one asso
iated to a formal real Jordan algebra 
onsists of the non-zero

squares.

Right symmetri
 algebras are the Lie-theoreti
 analogue of bra
es:

Proposition 9.1. Right symmetri
 algebra stru
tures with underlying Lie al-

gebra g are equivalent to 1-
o
y
les of g.

Proof. Let A be a right module of g, and let q : g → A be a 1-
o
y
le, that is,

q[a, b] = q(a)b − q(b)a for all a, b ∈ g. Assume that q is bije
tive, and de�ne a

multipli
ation on g by

ab = q−1(q(a)b). (22)

A straightforward veri�
ation shows that Eq. (22) makes g into an RSA. Con-

versely, the right multipli
ation of an RSA g is a g-module stru
ture, su
h that

the identity map g → g is a 1-
o
y
le.

QED
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Thus, in parti
ular, every formal real Jordan algebra A is a Lie-theoreti


�bra
e�. Let I(A) denote the set of idempotents e ∈ A for whi
h the spa
e

{a ∈ A | ea = a} is one-dimensional. For simple A, Ulri
h Hirzebru
h [34℄

has shown that a formal real Jordan algebra is 
ompletely 
hara
terized by

the topologi
al spa
e I(A) whi
h is a two-fold homogenous 
losed Riemannian

manifold. Hsien-Chung Wang 
lassi�ed these manifolds [65℄: For odd dimension,

I(A) is a Cli�ord-Klein spa
e form, while for even dimension, I(A) is either

an n-sphere, a real, 
omplex or quaternioni
 proje
tive spa
e, or the Cayley

proje
tive plane of dimension 16.

For every R-bra
e A, the 
orresponding bije
tive 1-
o
y
le A◦ → Rn
indu
es

a bije
tive 1-
o
y
le Lie(A◦) → Rn
, whi
h gives a right symmetri
 algebra stru
-

ture on Lie(A◦). The 
onverse does not hold, unless A is 
omplete, that is, the

maps x 7→ ax+x are bije
tive for ea
h a ∈ A. By [59℄, Theorem 1, A is 
omplete

if and only if the left multipli
ations x 7→ ax are nilpotent. So we have

Proposition 9.2. R-bra
es are equivalent to right symmetri
 algebras g su
h

that the left multipli
ations La in g are nilpotent.

10 Hall algebras

Let g be a simple Lie algebra with root ve
tors eα, α ∈ Φ+
, su
h that

[eα, eβ ] = Nαβeα+β whenever α, β, α + β ∈ Φ+
, and Nαβ ∈ Z. The examples of

Se
tions 7 and 8 suggest that there exists a right symmetri
 algebra stru
ture

on g+ su
h that the positive root ve
tors form a monomial basis.

An obvious 
andidate for an RSA basis 
omes from the asso
iated Hall al-

gebra. The positive roots α ∈ Φ+

an be asso
iated to the inde
omposable

representations Mα of a hereditary algebra A over a �eld K su
h that A and g

are of the same Dynkin type. Assume that q := |K| <∞.

The Hall algebra H (A) has a basis B 
onsisting of the isomorphism 
lasses

[M ] of �nite dimensional A-modules M . The stru
ture 
onstants FN
LM ∈ N of

H (A) 
ount the number of submodules M ′
of N with M ′ ∼=M and N/M ′ ∼= L.

Ringel [50℄ proved that H (A) is isomorphi
 to the positive part U+
q (g) of the

Drinfeld-Jimbo quantum group Uq(g). For α, β, α + β ∈ Φ+
, he found a �nite

list of polynomials [51℄ whi
h o

ur as Hall polynomials ϕαβ ∈ Z[x] su
h that

F
Mα+β

MαMβ
= ϕαβ(q).

The stru
ture 
onstants Nαβ of g are obtained by passing to q = 1:

Nαβ = ϕαβ(1)− ϕβα(1). (23)
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This wonderful formula suggests that a produ
t like

eαeβ = ϕαβ(1)eα+β

might give the desired RSA stru
ture on g+. Let us 
he
k this for D4:

γ

α β δ

(24)

The linear part of the Chevalley group matri
es is




0 0 0 0 0 0 0 0
−a 0 0 0 0 0 0 0
−e −b 0 0 0 0 0 0
−h −f −c 0 0 0 0 0
−i −g −d 0 0 0 0 0
−k −j 0 d c 0 0 0
−l 0 j g f b 0 0
0 l k i h e a 0




✧
✧

✧
✧
✧

✧
✧✧

❝
❝

❝
❝

❝
❝

with a, b, c, d, e, f, g, h, i, j, k, l ∈ K 
orresponding to the 12 positive roots (in this

order): α, β, γ, δ, α+β, β+γ, β+δ, α+β+γ, α+β+δ, β+γ+δ, α+β+γ+δ, α+2β+γ+δ.
A

ordingly, the multipli
ation table of the RSA looks as follows:

a b c d e f g h i j k l

a e h i k

b f g

c

d

e h i −l

f −j

g −j

h −k −l

i −k −l

j

k −l

l

Now let us return to Eq. (23), Here ϕλµ 6= 0 if and only if there exists a short

exa
t sequen
e

0 → Mµ → Mλ+µ → Mλ → 0.
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If ϕλµ 6= 0, then ϕµλ = 0. At �rst glan
e, it looks extremely plausible that the

stru
ture 
onstants of the RSA are just ϕλµ(1).
Unfortunately, this is not the 
ase! The orientation of the Dynkin diagram

(24) is required in order to have ϕλµ(1) 6= 0 if and only if eλeµ 6= 0; however,
this just fails for the produ
t eα+β+γ+δeβ , that is, the downward leftmost entry

of the table. Note that the Hall algebra ansatz 
annot be 
orre
ted by passing

to the LSA.

Ringel has shown that the stru
ture 
onstants ϕλµ at q = 1 yield the universal
enveloping algebra:

H (A)q=1 = U(g+)

whi
h is asso
iative. Indeed, any asso
iative algebra is an RSA. However, su
h

an RSA must be a radi
al ring, in 
ontrast to the bra
es of type B-D.

11 Finite p-groups

For every p-group G, the lower 
entral series

G = G1 ⊃ G2 ⊃ G3 ⊃ · · ·

gives rise to a Lie ring L(G) :=
⊕

Gi/Gi+1 with Lie bra
ket

[xGi, yGj ] := (x−1y−1xy)Gi+j .

One may wonder if the natural bije
tion G → L(G) would lead to a bra
e

stru
ture. If yes, this would imply that every �nite p-group is an IYB-group.

Alternatively, we 
ould try to �nd a 
omplete RSA stru
ture on L(G). Or
we let G a
t on the Fp-spa
e L(G) and look for a triangle-shaped region in the

matri
es as done for the Sylow subgroup of a �nite Chevalley group.

However, there are several obstru
tions: First, the group G 
annot be re-


overed by its Lie ring. Se
ond, even if G is abelian, G need not admit a bije
tive

1-
o
y
le onto an Fp-ve
tor spa
e. In fa
t:

Proposition 11.1. Let p be an odd prime. Then the additive group of any bra
e

with adjoint group Cp2 is 
y
li
.

Proof. Let F2
p be a right Cp2-module and π : Cp2 → F2

p a bije
tive 1-
o
y
le. If

Cpn = 〈c〉, then π(ci+1) = π(ci)c + π(c). With v := π(ci), this shows that

v, v + vc, v + vc + vc
2
, v + vc + vc

2
+ vc

3
, . . .

runs through all of F
2
p. On the other hand, (c−1)p

n
= cp

n
−1 = 0 implies that the

automorphism x 7→ xc is unipotent. So we 
an assume that this automorphism γ
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is given by a matrix

(

1 a
0 1

)

. For a positive integer m, an easy 
al
ulation shows

that

1 + γ + γ2 + · · ·+ γm−1 =
(

m
(

m
2

)

0 m

)

.

Hen
e 1 + γ + γ2 + · · ·+ γp−1 = 0, a 
ontradi
tion.

QED

Example 5. For p = 2, there is a unique bra
e A with 
y
li
 adjoint group

and the Klein four-group as additive group. Assume that the adjoint group is

generated by a. Then b := a2 = a◦a /∈ {0, a}. Hen
e A = F2a⊕F2b. Furthermore,

b2 = b ◦ b = 0 and a ◦ b = b ◦ a = a ◦ a ◦ a = a+ b. Hen
e ab = ba = 0, and thus

A is a unique radi
al ring.

12 Nilpotent bra
es

Let g be a �liform R-linear Lie algebra of dimension n > 1. Benoist [8℄ has
shown that the minimal dimension µ(g) of a faithful g-module satis�es µ(g) > n.
He 
onstru
ted a �liform Lie algebra n of dimension 11 with µ(n) > 12. So there


annot be an RSA stru
ture, as this would require a faithful representation

of dimension 12 (see also [13℄). In parti
ular, this disproves Milnor's se
ond


onje
ture.

Vergne [62℄ has shown that �liform Lie algebras of dimension > 8 are de-

formations of the standard graded �liform Lie algebra L(n) = Re0 ⊕ · · · ⊕ Ren
with non-zero bra
kets [e0, ei] = ei+1 for i ∈ {1, . . . , n− 1}. Burde [11℄ repla
ed

Benoist's example by a family of 10-dimensional Lie algebras, given as deform-

ations of L(9). The simplest one

†
seems to be L(9) with additional non-zero

bra
kets

[e1, e2] = e4 + e5 [e1, e3] = e5 + e6 [e1, e4] = 2e6 + 3e7 + 25e8
[e1, e5] = 3e7 + 5e8 + 50e9 [e1, e6] = 7e8 + 5e9 [e1, e7] = 14e9
[e1, e8] = −e9 [e2, e3] = −e6 − 2e7 − 25e8 [e2, e4] = −e7 − 2e8 − 25e9
[e2, e5] = −4e8 [e2, e6] = −7e9 [e2, e7] = e9
[e3, e4] = 3e8 − 2e9 [e3, e5] = 3e9 [e3, e6] = −e9
[e4, e5] = e9.

As in the previous examples, the veri�
ation that every faithful module must be of

dimension > 11 is based on 
omputer 
al
ulations.

Postponing the task of �nding an independent proof, let us sket
h how su
h ex-

amples 
an be transformed into �nite bra
es with a p-group as adjoint group. Note

�rst that the stru
ture 
onstants of the above Lie algebra are integral, involving the

†
We owe thanks to D. Burde who pointed out that a 
ondition was missing in the example

on our slides for the AGTA-
onferen
e (Porto Cesareo 2013) whi
h was given by a monomial

basis.
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prime numbers 2, 3, 5, and 7. In order to make use of Lazard's 
orresponden
e [44℄,

one has to 
hoose p > 11. Lazard's 
orresponden
e re�nes the Mal
ev 
orresponden
e

whi
h relates torsion-free radi
able nilpotent groups, that is, groups with unique k-th
roots, to nilpotent Lie Q-algebras. This simply works sin
e exponentials have �nitely

many terms in the nilpotent 
ase. The group operation is uniquely given by the Baker-

Campbell-Hausdor� formula. Sin
e p ex
eeds the nilpoten
y 
lass, Q 
an be repla
ed

by the �nite �eld Fp. So Burde's example yields a p-group G of order p10 with nilpo-

ten
y 
lass 9. Suppose that G is the adjoint group of a bra
e A. The 1-
o
y
le G → A
would then lead to a 
omplete RSA stru
ture of g via Lazard's 
orresponden
e. As g is

10-dimensional, this gives an 11-dimensional faithful representation of g. In parti
ular,

the RSA stru
ture would yield a bije
tive 1-
o
y
le of g. For the adjoint representation,

this 
an be ruled out for all p.
To remove any doubts that a �nite p-group need not be IYB, all 10-dimensional

representations have to be taken into a

ount. At present, notwithstanding the spe
ial

stru
ture of g, we are not able to do this by hand.
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