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1 Introdution

A loally �nite group U satisfying,

(i) Every �nite group an be embedded into U,

(ii) Any two isomorphi �nite subgroups of U are onjugate in U

is alled a universal loally �nite group.

Philip Hall in [3℄ onstruted the �rst example of universal loally �nite group

of ountably in�nite order. A ountable group satisfying these two properties is

alled Hall's universal group, as Hall proved that suh a ountable loally �nite

group is unique up to isomorphism. But if we allow that the ardinality of the

group ould be of arbitrary, unountable ardinal κ, then A. Maintyre and S.

Shelah proved in [20℄ that, there are 2κ pairwise non-isomorphi universal loally

�nite groups of ardinality κ.

The struture of Hall's universal group has been studied in the past from

di�erent points of view. Hall's universal group is ountable and existentially
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losed in the lass of loally �nite groups suh properties are surveyed by Leinen

in [12℄. Not only the diret limits of �nite groups but also the diret limits of

�nite dimensional algebras and lie algebras are disussed in a very lear and

detailed way by A. Zalesskii in [21℄.

The generalization of the universal loally �nite groups was due to K. Hikin

in [7℄. Let A be a periodi abelian group. A group G is alled a universal loally

�nite entral extension of A provided that the following onditions are satis�ed.

(i) A ≤ Z(G) (the entre of G)

(ii) G is loally �nite

(iii) (A-injetivity). Suppose that A ≤ B ≤ D with A ≤ Z(D), that D/A is

�nite and that ψ : B → G is an A-isomorphism (that is ψ(a) = a for all a ∈ A).
Then there exists an extension ψ : D → G of ψ to an isomorphism of D into G.

Let ULF (A) denote the lass of all groupsG satisfying (i)-(iii). The ountable

universal loally �nite group of Hall is in ULF (1). By [7, Theorem 1℄ if G ∈
ULF (A), then A = Z(G) and G/A is simple.

Although U is a diret limit of �nite simple groups, if for some prime p, the
group Zp×Zp×Zp ≤ A, then G/A is not a diret limit of �nite simple subgroups.

Therefore one may onstrut unountably many pairwise non-isomorphi simple

ountably in�nite loally �nite groups by this method; see [7, Corollary 1℄. Uni-

versal loally �nite entral extensions of A has numerous interesting strutural

properties but we will say no more than onsulting the paper of Hikin; [7℄ see

also; [18℄ and [10℄.

2 Hall's universal group

Hall onstruted his group as a union of a tower of �nite symmetri groups;

G1 ≤ G2 ≤ . . .

where G1 is a symmetri group of order greater than 2 and if Gn is given, then

Gn+1 is the symmetri group on Gn and Gn is embedded into Gn+1 by right

regular representation. One an see easily that in the regular representation

of Gi into Gi+1, atually all the permutations in the image of the elements

of Gi in Gi+1 will be an even permutation. Hene we embed Gi into Alt(Gi).
So in fat, U is a diret limit of �nite simple alternating groups. Then the

question of whether Hall's universal group an be written as a diret limit of

other families of �nite simple groups is answered by F. Leinen in [11℄. He proved

that Hall's universal group an be onstruted as a diret limit of simple linear

groups {PSL(ni,Fq) }, {PSU(ni,Fq) }, {PSp(2ni,Fq) }, {PΩ+(2ni,Fq) },
{PΩ(2ni + 1,Fq) }, {PΩ−(2ni + 2,Fq) }.
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It is natural to ask whether U an be expressed as a union (diret limit) of

the in�nite simple loally �nite groups PSL(ni,Fp), where Fp is the algebrai

losure of the �eld Fp with p elements. It is proved in [16, Theorem 1℄ that the

answer is positive.

Theorem 2.1. (Kuzuuo§lu-Zaleskii) Let p be any �xed prime. The Hall's uni-

versal group is a diret limit of some groups PSL(ni,Fp), i = 1, 2, . . . suh that

all the sequent embeddings are rational maps (morphisms of algebrai groups).

Theorem 2.1 shows, among other things, that the harateristi of the ground

�eld is not an invariant of a diret limit of algebrai groups. In fat, one an

prove a slightly more general result [16, Theorem 2℄.

Theorem 2.2. (Kuzuuo§lu-Zaleskii) Let F be a �nite or an in�nite loally �nite

�eld of harateristi p and Gn be one of the lassial simple groups of rank n
over F . Then any in�nite sequene of the groups Gn ontains a subsequene

Gni
, i = 1, 2, . . . suh that the Hall's universal group U is a union of subgroups

Hi, where Hi ⊂ Hi+1, Hi
∼= Gni

and the embeddings Gni
→ Gni+1 indued by

the inlusions Hi ⊂ Hi+1 extend to rational embeddings (morphisms) of algebrai

groups (over Fp) assoiated with the groups Gni
.

To have Theorem 2.1, one should take Fp for F and Gn = PSL(n,Fp).

One of the main harateristi of the universal loally �nite groups whih an

be obtained from the properties (i) and (ii) is the following: If A is a subgroup

of the �nite group B, then every embedding of A into U an be extended to an

embedding of B into U [13, Theorem 6.1 (b)℄. It follows from this property that,

as every ountable loally �nite group an be written as a union of an inreasing

sequene of �nite groups, every ountable loally �nite group has an isomorphi

opy in U . In partiular, a opy of every simple ountable loally �nite group is

ontained in U .

Hall's universal group U satis�es the following properties for whih some of

them are quite unusual; for the proofs see [13, Chapter 6℄.

Proposition 2.3.

(a) Let Cm denote the set of all elements of order m > 1 of U . Then Cm is

a single lass of onjugate elements and U = CmCm. In partiular U is

simple.

The automorphism α of the group G is alled loally inner if for every

�nite set F of elements of G there is an element g = gF of G suh that

fα = fg
for every element f ∈ F .
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(b) If G is any loally �nite universal group, then every automorphism of G
is loally inner. In partiular, the automorphism group of Hall's universal

group satis�es |Aut(U)| = 2ℵ0
.

() If G is any universal loally �nite group and H is any ountably in�nite

loally �nite group, then there exist at least 2ℵ0
distint subgroups of G

isomorphi to H.

(d) Every in�nite loally �nite group G an be embedded into a universal loally

�nite group of ardinality |G|. In partiular there exist universal loally

�nite groups of arbitrary in�nite ardinal.

Perhaps, one of the most striking one, in ontrast to Sylow theory for �nite

groups was disovered by Hikin who proved in [7, Theorem 4℄ that, for every

prime p, every ountably in�nite loally �nite p-group an be embedded into

U as a maximal p-subgroup. Therefore there are unountably many pairwise

non-isomorphi maximal p-subgroups in U .

Could it be possible to have a maximal p-subgroup in U whih is a maximal

subgroup of U? M. D. Molle in [17℄ shows that the answer is positive.

Theorem 2.4. The ountable universal loally �nite group U ontains, for eah

prime p, a maximal subgroup that is a p-group.

One may ask whether U an be written as a diret limit of in�nite simple

�nitary alternating groups? The answer is negative; see [16℄.

Theorem 2.5. The Hall's universal group is not a diret limit of in�nite �nitary

alternating groups.

About the entralizers of elements (subgroups) in Hall's universal group, the

following results were announed by Hartley in [6, Proposition 1.8℄.

Proposition 2.6.

(a) If F is a �nite subgroup of U with trivial enter, then CU (F ) is isomorphi

to U .

(b) If F is a subgroup of U of prime order and M is a subgroup of U with

CU (F ) ≤ M < U, then M ≤ NU (F ) is a maximal subgroup of U .

() If A is a �nite abelian subgroup of U , then CU (A)/A is an in�nite simple

group.
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For the entralizers of subgroups in algebraially losed groups see; [8℄ and

[9, Chapter 2℄.

As Hall's universal group is a union of inreasing sequene of �nite symmetri

groups, every �nite subgroup F of U is ontained in one of the symmetri groups

and the ones ontaining it. The struture of entralizers of subgroups in �nite

symmetri groups is well known; see [1, Chapter 4℄ and [19, Chapter 6℄.

Is it possible to �nd the struture of entralizers of �nite subgroups in U by

using basi group theory?

One may use the well known information about the entralizers of �nite

subgroups in symmetri groups to answer the above question. For this we spell

out some of the salient fats.

Let F be a subgroup of the symmetri group Sym(Ω) where Ω is a �nite

set. Then CSym(Ω)(F ) ats on the set of orbits Σ of F on Ω. One may de�ne

a relation on Σ: If ∆1 and ∆2 in Σ, then ∆1 ∼ ∆2 if and only if ∆1 and ∆2

are permutationally isomorphi F -sets. i.e. there exists a bijetion ϑ : ∆1 → ∆2

suh that, for any δ ∈ ∆1 and h ∈ F we have ϑ(δ.h) = ϑ(δ).h
Clearly this de�nes an equivalene relation on Σ. If ϑ is a bijetion on the

isomorphi orbits∆1 and∆2, then ϑ∪ϑ−1 : ∆1∪∆2 → ∆1∪∆2, and ating trivi-

ally on Ωr (∆1 ∪∆2) de�nes an element in CSym(Ω)(F ). Therefore CSym(Ω)(F )
ats transitively on the isomorphi orbits. If C1, C2, . . . , Cr are the equivalene

lasses of orbits of F on Ω, then

CSym(Ω)(F ) ∼=
r
Dr
i=1

CSym(Γi)(F ) ≀ Sym(ni)

where Γi is a representative of an orbit of F in Ci and ni is the number of orbits

in the lass Ci.
Proposition 2.7. Let F be a �nite subgroup of the Hall's universal group U

and Γ be an orbit of F in U . Then CU (F ) =
∞⋃

i=1
Ci where Ci = CGi

(F ) ∼=

CSym(Γ)(F ) ≀ Sym(ki), ki =
|ni|
|F | and Gi

∼= Sym(ni).

Proof. Let F be a �nite subgroup of U . Then there exists i ∈ N suh that

F ≤ Gi−1
∼= Sym(ni−1) where Gi−1 is ating on a set with ni−1 elements and

ni = (ni−1)! . Then by assumption F has an orbit Γ on the set with ni elements.

Sine F ats by the right regular representation, the orbits of F are all isomorphi

F -sets namely left osets of F in Gi−1. We may write CU (F ) =
∞⋃

i=1
CSym(Gi)(F ).

Then by the above observation for all j ≥ i, we have

CSym(Gj)(F ) ∼= CSym(Γ)(F |Γ) ≀ Sym(kj)

where kj =
nj

|F | .
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QED

Corollary 2.8. Let F be a �nite subgroup of the Hall's universal group U and

Γ be an orbit of F in U with CSym(Γ)(F ) = 1. Then CU (F ) ∼= U .

Proof. By Proposition 2.7 we have CU (F ) =
⋃∞

i=1Ci where Ci
∼= CSym(Γ)(F ) ≀

Sym(ki). Sine eah CSym(Γ)(F ) = 1 we have Ci
∼= Sym(ki). Moreover, Ci is

embedded into Ci+1 by right regular representation and ki's is an inreasing

sequene of integers. Now it is lear that every �nite group an be embedded

into CU (F ) as it is the union of inreasing sequene of �nite symmetri groups.

Let A and B be two �nite isomorphi subgroups of CU (F ). Then A and B are

ontained in Ci for some i. Sine Ci is embedded into Ci+1 by right regular

representation (probably it has more than one orbit), then by [13, Lemma 6.3℄

A and B are onjugate in Ci+1. Hene by de�nition of universal group and

uniqueness of U we have CU (F ) ∼= U .

QED

There are in�nitely many subgroups satisfying CSym(Γ)(F ) = 1. For example

one may take an element α of maximum yle length n, an odd integer, in

the symmetri group and a permutation β of order 2 whih inverts α and let

F = 〈α, β〉. Then CSym(Γ)F = 1.

3 Centralizers of �nite subgroups in groups of type

S(ξ)

Reall that diret limit of the groups G1, G2, . . . , Gn, . . . with the embeddings

ϕij : Gi → Gj where i ≤ j depends not only the groups Gi but also the

embedding ϕij 's, see [15, �7.℄. Observe that, one an obtain the additive group

of rational numbers as a diret limit of in�nite yli groups Gn = 〈 1
n!〉 and also

the dyadi rational numbers as a diret limit of in�nite yli groups Kn = 〈 1
2n 〉.

Clearly dyadi rational numbers are not isomorphi to the additive group of

rational numbers. In this sense we may onstrut non-isomorphi groups by

using di�erent embeddings of �nite symmetri groups.

Let α ∈ Sym(n). For a natural number p ∈ N, a permutation dp(α) ∈
Sym(pn) de�ned by (kn + i)d

p(α) = kn + iα, 0 ≤ k ≤ (p− 1) and 1 ≤ i ≤ n
is alled a homogenous p-spreading of the permutation α.

Let ξ be an in�nite sequene of not-neessarily distint primes. By using

homogenous pi-spreadings as embeddings in the following diagram where pi is
the ith prime in the sequene ξ we have the following diret systems

{1} dp1→ Sym(n1)
dp2→ Sym(n2)

dp3→ Sym(n3)
dp4→ . . .
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and

{1} dp1→ An1

dp2→ An2

dp3→ An3

dp4→ . . .

where ni = ni−1pi, i = 1, 2, 3 . . . and Sym(ni) is the symmetri group on ni

letters, Ani
is the alternating group on ni letters and n0 = 1. The diret limit

groups obtained from the above diret systems are denoted by S(ξ) and A(ξ),
respetively. Observe that S(ξ) ≤ Sym(N).

Reall that the formal produt n = 2r23r35r5 . . . of prime powers with 0 ≤
rk ≤ ∞ for all primes k is alled a Steinitz number (supernatural number).

Charaterization of the groups S(ξ) using Steinitz numbers is done by

Kroshko-Sushhansky in [14℄. They proved that there are unountably many

pairwise non-isomorphi simple loally �nite groups of type S(ξ). Now we de-

sribe the struture of the entralizers of arbitrary �nite subgroups in S(ξ).
Let F be a �nite subgroup of S(ξ) ≤ Sym(N). Then F ats on N. The

type of F is de�ned by t(F ) = ((nj1 , r1), (nj2 , r2), . . . , (njk , rk)) where nji is the

smallest positive integer in whih F has an orbit Ωi on the set with nji elements

and there are ri orbits giving equivalent ations of F and nji 's are not neessarily

distint. We say that the ith representation of F appears and appears as ri times

in Sym(nji). For the entralizer of an arbitrary �nite subgroup F of S(ξ), we
prove the following.

Theorem 3.1. (Güven, Kegel, Kuzuuo§lu [2℄) Let F be a �nite subgroup of

the in�nite group S(ξ) and Γ1, . . . ,Γk be the set of orbits of F suh that the

ation of F on any two orbits in Γi is equivalent. Let the type of F be t(F ) =
((nj1 , r1), (nj2 , r2), . . . , (njk , rk)). Then

CS(ξ)(F ) ∼=
k
Dr
i=1

(CSym(Ωi)(F |Ωi
)(CSym(Ωi)(F |Ωi

)̄≀ S(ξi)))

where Char(ξi) =
Char(ξ)

nji

ri and Ωi is a representative of an orbit in the equival-

ene lass Γi for i = 1, . . . , k.

By Proposition 2.3 () Hall's universal group U ontains an isomorphi opy

of S(ξ) and when Char(ξ) = Π 2∞3∞5∞ . . . the group S(ξ) ontains isomorphi

opy of U ; see [6, Proposition 1.17℄. But they are non-isomorphi as the struture

of entralizers of elements are non-isomorphi; see [2℄.

For the diret limits of �nite alternating groups, the following proposition is

of interest.

Proposition 3.2. (Hartley [6, Proposition 1.22℄) Let G be the union of a tower

of alternating groups, G1 ≤ G2 ≤ G3 . . . and the sequene ti ≥ 2 for in�nitely
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many i where ti is the natural representation of Gi−1 repeated ti times diagonally

as above. Then the diret limit group G is not isomorphi to Alt(N).

One an see from [14℄, that if we take the prime deomposition of the sequene

(t1, t2, . . . , ti, . . .), then the above group G will be isomorphi to A(ξ) where ξ is

the sequene obtained from ti.
One may use our results about the struture of the entralizers of elements or

entralizers of subgroups in S(ξ) to deide easily that, suh diret limit groups

annot be isomorphi to Alt(N), as the struture of the entralizers of elements

are ompletely di�erent in diret limit group S(ξ) and Alt(N); see [2℄.

4 Centralizers of �nite subgroups in FSym(κ)(ξ)

By using similar tehnique as in [14℄, we may onstrut unountably many

simple loally �nite groups for any in�nite ardinal κ. Let FSym(κ) denote the

�nitary symmetri group and Alt(κ) denote the alternating group on the set κ.
Let Π be the set of sequenes of prime numbers and ξ ∈ Π. Then ξ is a sequene

of not neessarily distint primes.

Let α ∈ FSym(κ), respetively (Alt(κ)). For a natural number p ∈ N, a
permutation dp(α) ∈ FSym(κp) de�ned by (κs + i)d

p(α) = κs + iα, i ∈ κ
and 0 ≤ s ≤ p − 1 is alled homogeneous p-spreading of the permutation

α. We divide the ordinal κp into p equal parts and on eah part we repeat the

permutation diagonally as in the �nite ase. So if

α =

(
1 . . . n

i1 . . . in

)

∈ FSym(κ),

then the homogeneous p−spreading of the permutation α is

d
p
(α) =

(

1 . . . n κ + 1 . . . κ + n . . . κ(p − 1) + 1 . . . κ(p − 1) + n

i1 . . . in κ + i1 . . . κ + in . . . κ(p − 1) + i1 . . . κ(p − 1) + in

)

with the obvious meaning that the elements in κpr supp(dp(α)) are �xed.

We ontinue to take the embeddings using homogeneous p-spreadings with

respet to the given sequene of primes in ξ. From the given sequene of embed-

dings, we have diret systems and hene diret limit groups FSym(κ)(ξ) and

Alt(κ)(ξ) respetively. Observe that FSym(κ)(ξ) and Alt(κ)(ξ) are subgroups

of Sym(κω) where ω is the �rst in�nite ordinal.

Let F be a �nite subgroup of FSym(κ)(ξ) ≤ Sym(κω). Then F ats on κω.
The type of F is de�ned by t(F ) = ((nj1 , r1), (nj2 , r2), . . . , (njk , rk)) where nji

is the smallest positive integer in whih F has an orbit Ωi on the set with κnji

elements and there are ri orbits giving equivalent representations of F and nji 's
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are not neessarily distint. We say that the ith representation of F appears and

appears as ri times in FSym(κnji). For the entralizer of an arbitrary �nite

subgroup F of FSym(κ)(ξ), we prove the following.

Theorem 4.1. (Güven, Kegel, Kuzuuo§lu [2℄) Let ξ be an in�nite sequene of

not neessarily distint primes. Let F be a �nite subgroup of FSym(κ)(ξ) and

Γ1, . . . ,Γk be the set of orbits of F suh that the ation of F on any two orbits

in Γi is equivalent. Let the type of F be t(F ) = ((nj1 , r1), (nj2 , r2), . . . , (njk , rk)).
Then

CFSym(κ)(ξ)(F ) ∼=
k

(Dr
i=1

CSym(Ωi)(F )(CSym(Ωi)(F )̄≀ S(ξi))× FSym(κ)(ξ′)

where Char(ξi) =
Char(ξ)

nji

ri and Char(ξ′) = Char(ξ)
nj1

and Ωi is a representative

of an orbit in the equivalene lass Γi for i = 1, . . . , k.

The following theorem gives the haraterization of the groups FSym(κ)(ξ)
in terms of the lattie of Steinitz numbers. Therefore for any given in�nite ar-

dinal κ, there exists unountably many pairwise non-isomorphi loally �nite

simple groups.

Theorem 4.2. Let κ be a �xed in�nite ardinal. There is a lattie isomorphism

between the lattie of groups Σ = {FSym(κ)(ξ) | ξ ∈ Π } ordered with respet

to being a subgroup and the lattie S of Steinitz numbers ordered with respet to

division in Steinitz numbers.
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