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1 Introdution

Let G denote an arbitrary group. If S is a subset of G, we de�ne its square

S2
by

S2 = {x1x2 | x1, x2 ∈ S}.

If G is an additive group, we denote by

2S = {x1 + x2 | x1, x2 ∈ S}

the sumset of S.
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We are onerned with the following general problem: let S be a �nite subset

with k elements of a group G, determine the struture of S if

|S2| ≤ f(k)

for some funtion f .
Problems of this kind are alled inverse problems.

In partiular, we shall onsider problems of the following type: determine the

struture of S, if |S2| satis�es the following inequality:

|S2| ≤ α|S|+ β

for some small α ≥ 1 and small |β|.
Suh problems are alled inverse problems of small doubling type.

Inverse problems of small doubling type have been �rst investigated by G.

A. Freiman in the additive group of the integers.

It is easy to prove that if S is a �nite subset of Z with k elements, then

|2k − 1| ≤ |2S| ≤ k(k + 1)/2.

Moreover |2S| = 2k − 1 if and only if S is an arithmeti progression of size

k.

In the paper [4℄ G.A. Freiman proved the following theorem:

Theorem 1.1. Let S be a �nite set of integers with k ≥ 3 elements and suppose

that

|2S| ≤ 2k − 1 + b,

where 0 ≤ b ≤ k − 3. Then S is ontained in an arithmeti progression of size

k + b and di�erene q,

P = {a, a+ q, a+ 2q, · · · , a+ (k + b− 1)q},

where a, q are integers with q > 0.
In partiular, if

|2S| ≤ 3k − 4,

then S is ontained in an arithmeti progression of size 2k − 3,

P = {a, a+ q, a+ 2q, · · · , a+ (2k − 4)q}.
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This theorem was the beginning of the "Freiman's strutural theory of set

addition", the foundations for whih were led in Freiman's book "Foundations

of a strutural theory of set addition" (see [6℄ and also [20℄).

In [4℄ and in [5℄ Freiman studied also the ase |2S| ≤ 3|S| − 3 and |2S| ≤
3|S| − 2. If X is a subset of an abelian semigroup G and Y is a subset of an

abelian semigroup G1, a bijetion ϕ : X −→ Y is alled a Freiman isomorphism

if for any a, b, c, d ∈ X, a + b = c + d if and only if ϕ(a) + ϕ(b) = ϕ(c) + ϕ(d).
X is Freiman isomorphi to Y if there exists a Freiman isomorphism between X
and Y .

Freiman proved the following result:

Theorem 1.2. Let S be a �nite set of integers with k ≥ 2 elements and suppose

that

|2S| = 3k − 3.

Then one of the following holds:

(i) S is a subset of an arithmeti progression of size at most 2k − 1;
(ii) S is a bi-arithmeti progression;

(iii) |S| = 6 and S is Freiman isomorphi to the set K6, where

K6 = {(0, 0), (1, 0), (2, 0), (0, 1), (0, 2), (1, 1)}.

Here, a set of the integers S = I ∪ J is alled a bi-arithmeti progression

of length k, with di�erene d, if both I and J are arithmeti progressions of

di�erene d, |I|+ |J | = k, and I + I, I + J, J + J are pairwise disjoint.

In [6℄ Freiman investigated also the exat struture of subsets of the additive

group Z
d
, for a positive integer d. A omplete desription of a subset S of the

additive group Z2
with |S| ≥ 4 and |2S| < 4|S| − 6 is due to Y.V. Stanhesu in

[24℄. A best possible result for the group Z
d
and doubling oe�ient d + 4

3 has

been reently obtained in [26℄.

By now, Freiman's theory had been extended tremendously, in many di�erent

diretion, see for example [1℄, [3℄, [7℄, [9℄, [11℄, [14℄, [15℄, [16℄, [17℄, [18℄, [23℄, [24℄,

[25℄, [26℄, the reent survey by T. Sanders [22℄ and the referenes ontained

therein.

In the paper [8℄, we studied small doubling problems for subsets of an ordered

group. We reall that if G is a group and ≤ is a total order relation de�ned on

the set G, we say that (G,≤) is an ordered group if for all a, b, x, y ∈ G, the
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inequality a ≤ b implies that xay ≤ xby, and a group G is orderable if there

exists an order ≤ on G suh that (G,≤) is an ordered group. Obviously the

group of integers with the usual ordering is an ordered group. More generally,

it is possible to prove that an abelian group is orderable if and only if it is

torsion-free (see, for example [2℄ or [13℄).

Extending Freiman's results, we proved in [8℄ the following theorems.

Theorem 1.3. Let (G,≤) be an ordered group and let S = {x1, x2, · · · , xk} be

a �nite subset of G of size k ≥ 3, with x1 < x2 · · · < xk. Assume that

t = |S2| ≤ 3k − 4.

Then 〈S〉 is abelian.

Moreover, there exists g ∈ G, g > 1, suh that gx1 = x1g and S is a subset of

{x1, x1g, x1g2, · · · , x1gt−k}.

Theorem 1.4. Let (G,≤) be an ordered group and let S = {x1, x2, · · · , xk} be

a �nite subset of G of size k ≥ 3, with x1 < x2 · · · < xk. Assume that

t = |S2| ≤ 3k − 3.

Then 〈S〉 is abelian.

Using results of Freiman and Stanhesu, the following theorem an be de-

dued from Theorem 1 of [10℄.

Theorem 1.5. Let (G,≤) be an ordered group and let S = {x1, x2, · · · , xk} be

a �nite subset of G of size k ≥ 3, with x1 < x2 · · · < xk. Assume that

t = |S2| ≤ 3k − 3.

Then 〈S〉 is abelian and one of the following holds:

(i) S is a subset of a geometri progression {a, ac, · · · , ac2k−1};

(ii) S is a bi-geometri progression, i.e. S = {a, ac, · · · aci−1} ∪{b, bc, · · · , bcj−1};

(iii) k = 6 and S = {1, c, c2, b, b2, bc}.
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The aim of this paper is to investigate inverse small doubling problems in

torsion-free nilpotent groups.

By a result of A.I. Mal'ev and B.H. Neumann, any torsion-free nilpotent

group is orderable (see [19℄ or [21℄). Thus the previous results apply to these

groups.

The remainder of the paper is organized as follows.

First, in Setion 2, we report some useful results from [12℄ and [8℄.

In Setion 3, we investigate the struture of subsets S of order k of a torsion-

free nilpotent group, with |S2| ≤ 3k − 2. We study here the ase k = 3, and
we report from [12℄ results onerning the ase k ≥ 4. Notie that, by a result

in [10℄, if S is a subset of a nilpotent torsion-free group, of order bigger that 3,

with |S2| ≤ 3|S| − 2, then 〈S〉 is nilpotent of lass at most 2. Thus the problem

redues to the ase when G is nilpotent of lass at most 2.

In Setion 4 we report results from [12℄, onerning the struture of subsets

S of size k of torsion-free nilpotent groups of lass at most 2, whih satisfy k > 4
and |S2| = 3k − 1. In [12℄ the ase k = 4 was left open. Here we omplete the

result of [12℄ by proving the following theorem.

Theorem 1.6. Let G be an ordered nilpotent group of lass 2 and let S be a

subset of G of size k = 4 with 〈S〉 non-abelian. Then |S2| = 3k − 1 = 11 if and

only if one of the following statements holds:

(i) There exist s, t ∈ S ∩ Z(〈S〉), s 6= t;

(ii) S = {a, ac, b, bc, }, with ab = bac2 ;

(iii) S = {a, ac2, b, bc}, with ab = bac ;

(iv) S = {a, ac, ac2, b}, with ab = bac2;

(v) S = {a, ac, b, x}, with ab = bac, ax = xa, bx = xb;

(vi) S = {a, ac, ac2, x}, with ac = ca and there exists exatly one i ∈ {0, 1, 2}
suh that acix = xaci;

(vii) S = {a, ac, b, x}, with c > 1 and either bx = a2, ab = bac, xb = bxc2

and xa = axc, or xb = a2, ba = abc, ax = xac and bx = xbc2.
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2 Some general results.

We start by quoting two useful results.

Proposition 2.1. Let (G,≤) be an ordered nilpotent group of lass 2 and let S
be a subset of G satisfying:

S = {x1, · · · , xk}, x1 < x2 < · · · < xk.

Write T = {x1, · · · , xk−1}. If

xkxk−1 6= xk−1xk,

then

|T 2| ≤ |S2| − 4.

Proof. See [12℄, Lemma 2.1.

QED

Proposition 2.2. Let (G,≤) be an ordered group and let T be a �nite subset of

G of size m. If b ∈ Gr CG(T ), then

|bT ∪ Tb| ≥ m+ 1 .

Proof. See [8℄, Proposition 2.3.

QED

If G is a torsion-free nilpotent group of lass 2, then the following result,

onerning the struture of T , holds.

Proposition 2.3. Let G be a torsion-free nilpotent group of lass 2 and let T
be a subset of G of size m. Moreover, let b ∈ G satisfy the following onditions:

bt 6= tb for all t ∈ T and |bT ∪ Tb| = m+ 1. Then T = {a, ac, · · · , acm−1}, with
ba = abc (in partiular c ∈ Z(G) and 〈T 〉 is abelian).

Proof. See [12℄, Proposition 2.5.

QED
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3 Subsets S with |S2| ≤ 3|S| − 2.

Let G be a nilpotent torsion-free group. Then, by results of A.I. Mal'ev and

B.H. Neumann (see [19℄ and [21℄) , G is orderable.

Let S be a �nite subset of G with k elements, and suppose that |S2| ≤ 3k−2.
If k = 2, then |S2| = 4 = 3k − 2 if and only if 〈S〉 is non-abelian. Hene we

may assume that k ≥ 3.
In this paper we deal with the ase k = 3. In this ase the following propos-

ition holds.

Proposition 3.1. Let (G,≤) be a nilpotent ordered group, and let S ⊆ G with

|S| = 3. Then |S2| ≤ 7 if and only if one of the following holds:

(i) S ∩ Z(〈S〉) 6= ∅;

(ii) S = {a, ac, b}, with c > 1, ac = ca and either ab = bac or ba = cab.

Proof. Write S = {x1, x2, x3} with x1 < x2 < x3 and suppose that |S2| ≤ 7.
Moreover, let T = {x1, x2}. It su�es to prove that if S ∩ Z(〈S〉) = ∅, then (ii)

holds.

So suppose that S ∩Z(〈S〉) = ∅. If |S2| ≤ 6, then 〈S〉 is abelian by Theorem

1.4, a ontradition. Hene |S2| = 7. Moreover, we must have either x1x2 6= x2x1
or x2x3 6= x3x2.

Suppose, �rst, that x2x3 6= x3x2. We must onsider the ases: x1x2 6= x2x1
and x1x2 = x2x1.

If

x1x2 6= x2x1

then |T 2| = 4 and it follows from the ordering in S that x2x3, x3x2, x
2
3 /∈ T .

Sine x2x3 6= x3x2, the elements x2x3, x3x2, x
2
3 are also distint from eah other

and it follows that

S2 = T 2∪̇{x2x3, x3x2, x23}.
Consider x1x3, x3x1, and assume, without loss of generality, that x1x3 ≤

x3x1. Then x1x3 < x3x2, x2x3, x
2
3, implying that x1x3 ∈ T 2

. Hene either x1x3 =
x22 or x1x3 = x2x1.

If x1x3 = x3x1 and x1x3 = x22, then (x22)
x1 = x3x1 = x1x3 = x22 and

(x2)
x1 = x2, a ontradition.

If, on the other hand, x1x3 = x3x1 and x1x3 = x2x1, then (x3)
x1 = x3 =

x2
x1
, again a ontradition. Hene x1x3 < x3x1.
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Moreover, either x3x1 ∈ T 2
or x3x1 = x2x3 and x1x3 ∈ T 2

.

If x3x1 ∈ T 2
, then the only possibility is that x3x1 = x22 and x1x3 = x2x1.

In this ase

〈x1, x2, x3〉 = 〈x3, xx1
3 〉 = 〈x3〉〈x1, x2, x3〉′ = 〈x3〉Frat(〈x1, x2, x3〉)

sine in a nilpotent group the derived subgroup is ontained in the Frattini

subgroup. Therefore 〈x1, x2, x3〉 = 〈x3〉 is abelian, a ontradition.

Now suppose that x3x1 = x2x3 and x1x3 ∈ T 2
. In this ase, we must have

either x1x3 = x22 or x1x3 = x2x1. If x1x3 = x22, we get as before the ontra-

dition 〈x1, x2, x3〉 = 〈x2, xx3
2 〉 = 〈x2〉, while if x1x3 = x2x1, then 〈x1, x2, x3〉 =

〈x2, xx3
2 , x

x1
2 〉 = 〈x2〉, again a ontradition.

So we may assume

x1x2 = x2x1.

In this ase x2x3, x3x2, x1x3, x3x1, x
2
3 /∈ 〈x1, x2〉, sine otherwise we get the

ontradition x3x2 = x2x3. Therefore the elements x21, x1x2, x
2
2, x1x3, x2x3, x

2
3

are all di�erent. Sine |S2| = 7 and x2x3 6= x3x2, we must have either x2x3 =
x3x1 or x3x2 = x1x3. Thus, if we denote x1 = a, x2 = ac, x3 = b , then (ii) holds,

as required.

Similarly, if instead of x2x3 6= x3x2 we assume that x1x2 6= x2x1, then we

may also assume that x2x3 = x3x2 and we get the result by onsidering the

order opposite to ≤.

Conversely, if S = {a, b, c}, with ab = ba and ac = ca, then

S2 = {a2, b2, c2, ab, ac, bc, cb}
has order at most 7. If S = {a, ac, b}, with ac = ca and, for example, ab = bac,
then

S2 = {a2, a2c, a2c2, ab, acb, ba, b2}
and again |S2| ≤ 7.

QED

Now let S be a �nite subset with k elements of a nilpotent ordered group,

with k ≥ 4 and assume that |S2| ≤ 3k − 2. Then, by Theorem 2 of [10℄, 〈S〉 is

nilpotent of lass 2 at most.

If 〈S〉 is abelian, then by [10℄, either |S| = 4 and in this ase the size of S2
is

always at most 10, or S is Freiman isomorphi to a subset of Z and the struture

of S an be desribed using Freiman's results in [4℄ , or S is Freiman isomorphi

to a subset of Z
2
. In the latter ase, the struture of S an be desribed using

results of Freiman and of Stanhesu (see [4℄ and [24℄).

If 〈S〉 is nilpotent of lass exatly 2, then the struture of S follows from the

following theorem.
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Theorem 3.2. Let G be a torsion-free nilpotent group of lass 2 and let S ⊆ G
be non-abelian and of order k ≥ 4. Then |S2| = 3k − 2 if and only if

S = {a, ac, · · · , aci, b, bc, bc2, · · · , bcj},

with 1 + i+ 1 + j = k and ab = bac.

Proof. Suppose that S = {a, ac, · · · , aci, b, bc, bc2, · · · , bcj}, with 1+i+1+j = k
and ab = bac. Write A = {a, ac, · · · , aci}, B = {b, bc, · · · , bcj}. Then we have:

S = A∪̇B, S2 = A2∪̇B2∪̇(AB ∪ BA), AB ∪ BA = {ba, bac, · · · , baci+j+1},
|A2| = 2(i + 1) − 1, |B2| = 2(j + 1) − 1, |AB ∪ BA| = i + j + 2 and |S2| =
2i+ 2j + 2 + i+ j + 2 = 3k − 2, as required.

For the onverse see the proof of Theorem 2 in [12℄.

QED

4 Subsets S with |S2| ≤ 3|S| − 1.

Let S be a subset of a torsion-free nilpotent group G with |S| = k and

|S2| ≤ 3k− 1. Let ≤ be an order in G suh that (G,≤) is an ordered group. By

Theorem 3 of [10℄, if k ≥ 8, then 〈S〉 is nilpotent of lass at most 2. Therefore,
we �rst studied the ase when G is nilpotent of lass 2.

Suppose that S is a subset of a torsion-free nilpotent group G of lass 2, with
|S| = k and |S2| ≤ 3k − 1. In [12℄ we proved the following result.

Theorem 4.1. Let G be an ordered nilpotent group of lass 2 and let S be a

subset of G of size k ≥ 5, with 〈S〉 non-abelian. Then |S2| = 3k − 1 if and only

if one of the following holds:

(i)

S = {a, ac, · · · , aci−1, b, bc, · · · , bcj−1},
with ab = bac2 and i+ j = k;

(ii)

S = {a, ac2, b, bc, · · · , bcj}, j ≥ 2.

with ab = bac.

If |S| = 3, it is easy to show that |S2| ≤ 8 if and only if S = {x, y, z}, with
either xy = yx or xy = z2.

In this setion we prove Theorem 1.6, onerning the struture of a subset

S satisfying |S| = 4 and |S2| ≤ 11. Thus the desription of the struture of S,
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if S is a subset of size k ≥ 2 of a torsion-free nilpotent group of lass 2 with

|S2| ≤ 3k − 1, is omplete.

It is still an open problem to desribe S, if S is a subset of any torsion-free

nilpotent group with |S| ≤ 7 and |S2| = 3k − 1.

In order to prove Theorem 1.6, we start with the following Lemmas.

Lemma 4.2. Let G be an ordered nilpotent group of lass 2 and let S be a subset

of G of size 4, with 〈S〉 non-abelian and |S2| = 11. Suppose that S = T ∪ {b},
with 〈T 〉 abelian. Then one of the following holds:

(i) There exist s, t ∈ S ∩ Z(〈S〉), s 6= t;

(ii) S = {a, ac, ac2, b}, with ab = bac2;

(iii) S = {a, ac, b, x}, with ab = bac, ax = xa, bx = xb;

(iv) S = {a, ac, ac2, x},

with ac = ca and there exists exatly one i ∈ {0, 1, 2} suh that acix = xaci.

Proof. Obviously b2 /∈ T 2
and (bT ∪ Tb) ∩ T 2 = ∅, sine b /∈ CG(T ). Therefore

|S2| = |T 2| + |bT ∪ Tb| + 1. Moreover, sine |T | = 3 and b /∈ CG(T ), it follows
by Proposition 2.2 that |bT ∪ Tb| ≥ 4.

If |bT ∪ Tb| ≥ 5, then |T 2| ≤ 5 = 3 · 3 − 4. Thus, by Theorem 1.3, T =
{a, ac, ac2} with ac = ca. Hene, in this ase, we have |T 2| = 5, |bT ∪ Tb| = 5
and |bT ∩ Tb| = 1.

If acib = baci for some i ∈ {0, 1, 2}, then this is true for exatly one i sine
|bT ∩ Tb| = 1 and (iv) holds.

If acib = bacj , with i 6= j, then [aci, b] = cj−i
. Thus cj−i ∈ Z(G) and

c ∈ Z(G). In this ase [a, b] = cv, for some integer v and ab = bacv. Therefore,
as bT ∪ Tb = {ba, bac, bac2, bacv, bacv+1, bacv+2} is of size 5, we get v = 2 and S
has the struture in (ii).

Now suppose |bT ∪ Tb| = 4. Then |T 2| = 6 and |bT ∩ Tb| = 2. Moreover,

T ∩CG(b) 6= ∅, sine otherwise T = {a, ac, ac2} by Proposition 2.3 and |T 2| = 5,
whih is not the ase. Therefore 0 < |T ∩ CG(b)| ≤ 2. If there exist s, t ∈
T ∩ CG(b), s 6= t, then s, t ∈ Z(〈S〉), and (i) holds. So assume that there exists

exatly one s ∈ T suh that sb = bs. Then there exist xi, xj ∈ T , xi 6= xj suh

that bxi = xjb, sine |bT ∩ Tb| = 2. Thus xi = b−1xjb = xjc, where c ∈ Z(G).
Obviously xi, xj 6= s, so denoting a = xj and x = s, we get T = {a, ac, x}, where
xb = bx, ab = bac, ax = xa and (iii) holds.

QED
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Lemma 4.3. Let G be an ordered nilpotent group of lass 2 and let S be a

subset of G of size 4, with 〈S〉 non-abelian and |S2| = 11. Suppose that there

exists z ∈ S ∩ Z(〈S〉). Then G satis�es the hypothesis of Lemma 4.2.

Proof. Write S = T ∪̇{z}. Then S2 = T 2 ∪ {z2} ∪ zT . Obviously z2 /∈ zT .
Suppose that z2 ∈ T 2

, implying that z2 = xixj , where xi, xj ∈ T . If xi = xj ,
then z = xi sine G is torsion-free and z ∈ T , a ontradition. Hene xi 6= xj ,
xjxi = xixj , {xi, xj , z} is abelian and we have the result.

So we may assume that {z2} ∩ T 2 = ∅.
If zT ∩T 2 = ∅, then |T 2| = 11−1−3 ≤ 7 and by Proposition 3.1 there exist

di�erent elements xi, xj ∈ T suh that xixj = xjxi. Thus {xi, xj , z} is abelian

and we have the result.

So we may also assume that zT ∩ T 2 6= ∅, whih implies that

zxi = xhxk

for some xi, xh, xk ∈ T . If xh = xk, then {xi, xh, z} is abelian and we have the

result.

So we may assume that

T = {xi, xh, xk}.

We laim that we may suppose that zxh /∈ T 2
.

Indeed, if that is not the ase, then one of the following holds: zxh = x2i , or
zxh = x2k, or zxh = xixk or zxh = xkxi.

In the �rst ase, {xi, xh, z} is abelian and the result holds. Similarly in the

seond ase {z, xh, xk} is abelian. If zxh = xixk, then zxi = xhxk implies that

z2xh = zxixk = xhx
2
k. Thus x

2
k = z2 and z = xk ∈ T , a ontradition. Finally, if

zxh = xkxi, then we have zxhxk = xkxixk. Thus z2xi = x2kxiz1, for a suitable

z1 ∈ Z(G), sine G has lass 2. Therefore x2k ∈ Z(G) and hene xk ∈ Z(G),
whih implies the result. The proof of our laim is omplete.

Arguing similarly, we may suppose that also zxk /∈ T 2
. Thus |zT ∩ T 2| = 1

and |T 2| = 8. Then, as remarked above, one of the following two ases must hold:

either there exist two ommuting elements s, t ∈ T or there exist xl, xm, xn ∈ T
suh that x2l = xmxn. In the �rst ase, {s, t, z} is abelian, as required.

Now assume that x2l = xmxn. If xl = xi, then {xm, xn} = {xh, xk}. Thus
mod Z(〈S〉) we have x2i = xhxk = xiz, hene xi ∈ Z(〈S〉), and we have the

result. If xl 6= xi, then xl ∈ {xh, xk} and either xm or xn is equal to xi. Suppose,
without loss of generality, that xm = xi and xl = xh. Then xn = xk and mod

Z(〈S〉) we have x2i = x2hx
2
k = x2l x

2
k = xix

3
k. Thus [xi, xk] = 1 and {xi, xk, z} is

abelian, as required.

QED
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Lemma 4.4. Let G be an ordered nilpotent group of lass 2 and let S be a subset

of G with 〈S〉 non-abelian of size 4 and |S2| = 11. Suppose that S = T ∪̇{s} and

there exists c ∈ T ∩ Z(〈T 〉). Then G satis�es the hypothesis of Lemma 4.2.

Proof. If [s, c] = 1, then c ∈ Z(〈S〉)∩S and we are done by Lemma 4.3. So assume

that [s, c] 6= 1. Then {s, s2}∩〈T 〉 = ∅ and [s, c] 6= 1, implying that {s2}∩T 2 = ∅
and ({s2} ∪ T 2) ∩ (sT ∪ Ts) = ∅. Moreover, |sT ∪ Ts| ≥ 4 by Proposition 2.2.

Then it follows from S2 = T 2∪̇(sT ∪ Ts)∪̇{s2} that |T 2| ≤ 6 = 3 · 3− 3. Hene
T is abelian by Theorem 1.4, as required.

QED

Lemma 4.5. Let G be an ordered nilpotent group of lass 2 and let S be a

subset of G of size 4, with 〈S〉 non-abelian and |S2| = 11. Suppose that S =
{a, ac} ∪ {b, bd}, where ab 6= ba and c, d ∈ Z(〈S〉). Then one of the following

holds:

(i) S = {a, ac, b, bc}, with ab = bac2;

(ii) S = {a, ac, b, bc2}, with ab = bac , or S = {a, ad2, b, bd}, with ab = bad.

Proof. Assume, without loss of generality, that c > 1 (otherwise hange a with

a1 = ac and a = a1c
−1
) and, similarly, that d > 1. Also suppose, without loss

of generality, that ba < ab.
We have

S2 ⊇ {a, ac}2∪̇{b, bd}2∪̇{ba, ab, abc, abd, abcd}.

Clearly |{a, ac}2∪̇{b, bd}2| = 6 and sine ab 6= ba, we also have

bac, bac2 /∈ {a, ac}2∪̇{b, bd}2.

First, suppose that c = d. Then ba < ab < abc < abc2 and if bac ∈
{ba, ab, abc, abc2}, then bac = ab. In this ase S = {a, ac, b, bc} and by The-

orem 3.2 S2
is of size 10, a ontradition. Hene bac /∈ {ba, ab, abc, abc2} and

S2 = {a, ac}2∪̇{b, bc}2∪̇{ba, ab, abc, abc2, bac}.

Then bac2 ∈ {ba, ab, abc, abc2, bac} and the only possibility is bac2 = ab. Hene
(i) holds.

Now suppose that c 6= d and for example, let c < d. We have ba < ab <
abc < abd < abcd, so

S2 = {a, ac}2∪̇{b, bc}2∪̇{ba, ab, abc, abd, abcd}.
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Hene the elements bac, bad are in {ba, ab, abc, abd, abcd}, and from bac < bad
we dedue that the only possibility is that bac = ab and bad = abc. Thus

bad = bac2 and d = c2, yielding (ii). Similarly, if c > d, then c = d2, ab = bad
and (ii) holds.

QED

Lemma 4.6. Let G be an ordered nilpotent group of lass 2 and let S be a subset

of G of size 4, with 〈S〉 non-abelian and |S2| = 11. Write S = {x1, x2, x3, x4},
where x1 < x2 < x3 < x4, and suppose that x1x2 = x2x1 and x3x4 = x4x3.
Then S satis�es the hypothesis of one of the previous Lemmas.

Proof. Write A = {x1, x2}, B = {x3, x4}, Y = x2{x3, x4} ∪ {x3, x4}x2, Z =
Z(〈S〉). The order in S obviously implies that A2 ∩ B2 = ∅ = A2 ∩ Y . We

may also assume B2 ∩ Y = ∅, sine otherwise the onditions of Lemma 4.4 are

satis�ed, as required. Indeed, if B2 ∩ Y 6= ∅, then one of the following equalities

must hold: x2x4 = x4x3, x2x4 = x23, x4x2 = x23 and x4x2 = x3x4. In eah of

these ases [x3, x2] = 1 and if T = {x2, x3, x4}, then x3 ∈ T ∩Z(〈T 〉, as required
in Lemma 4.4.

If x1Z = x2Z and x3Z = x4Z, then the onditions of Lemma 4.5 are satis�ed,

as required. So we may assume, without loss of generality, that

x3Z 6= x4Z.

We laim that we may assume that x2{x3, x4} ∩ {x3, x4}x2 = ∅. In fat, if

x2x3 = x3x2 or x2x4 = x4x2, then we are in the onditions of Lemma 4.4, and if

x2x4 = x3x2 then x4 = x−1
2 x3x2 = x3z with z ∈ Z and we get the ontradition

x3Z = x4Z. Similarly if x2x3 = x4x2. The proof of our laim is omplete. It

follows that |Y | = 4.

Now onsider the elements x1x4 and x4x1. We may suppose that they are

di�erent, sine otherwise x1 ∈ Z(〈x1, x2, x4〉) and the onditions of Lemma 4.4

are satis�ed.

Assume, without loss of generality, that x1x4 < x4x1.

We laim that x1x4 /∈ Y . Indeed, if x1x4 = x2x3, then x−1
2 x1 = x3x

−1
4 ∈ Z,

yielding x1Z = x2Z and x3Z = x4Z, whih is not the ase. A similar ontradi-

tion is reahed if x1x4 = x3x2. Sine x1x4 < x4x1, we also have x1x4 < x4x2.
Thus x1x4 /∈ Y , as laimed.

We may also assume that x1x4 /∈ A2 ∪ B2
, sine if for example x1x4 = x23,

then [x3, x1] = 1 and the onditions of Lemma 4.4 are satis�ed.

Taking into aount that |Y | = 4 and |A2| = |B2| = 3, we may onlude that

S2 = A2∪̇B2∪̇Y ∪̇{x1x4}.
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Now onsider the elements x1x3 and x3x1. As before we may suppose that

x1x3 6= x3x1 and x1x3, x3x1 /∈ A2∪B2
. Thus x1x3, x3x1 ∈ Y . Arguing as before,

x1x3 = x2x4 implies that x−1
2 x1 = x4x

−1
3 ∈ Z and x3Z = x4Z, whih is not the

ase, and a similar ontradition is reahed if x1x3 = x4x2, sine x4x2Z = x2x4Z.
The only possibility whih remains is x1x3 = x3x2.

But now onsider x3x1. Obviously x3x1 < x3x2 = x1x3, so x3x1 6= x1x4,
x2x3, x2x4. Hene x3x1 /∈ S2

, a �nal ontradition.

QED

Now we an prove Theorem 1.6.

Proof of Theorem 1.6. Suppose that |S| = 4 and |S2| = 11.

Write S = {x1, x2, x3, x4}, T = {x1, x2, x3} and x1 < x2 < x3 < x4.

Suppose that x3x4 6= x4x3. Then by Proposition 2.1 we have |T 2| ≤ 11−4 =
7.

If |T 2| ≤ 6, then T is abelian by Theorem 1.4, and S has the required

struture by Lemma 4.2.

So assume that |T 2| = 7 and apply Proposition 3.1. If T ∩ Z(〈T 〉) 6= ∅,
then S has the required struture by Lemma 4.4. Therefore, we may assume,

without loss of generality, that T = {a, ac, b}, with c > 1 and ab = bac. Write

x4 = x. If ax = xa, then {a, ac, x} is abelian sine c ∈ Z(G) and again we are

in the situation of Lemma 4.2. Hene, suppose that ax 6= xa. If x = bz with

z ∈ Z(G), then S has the required struture by Lemma 4.5. So assume that

xZ(G) 6= bZ(G). Notie that then if xa, or xac, or ax or acx is in T 2
, then the

only possibility is that it is equal to b2. Similarly, if bx or xb is in T 2
, then it

belongs to the set {a2, a2c, a2c2}. Now, if ax, xa ∈ T 2
, then ax = b2 = xa, a

ontradition. Therefore one of the elements ax, xa is not in T 2
. Similarly, one

of the elements axc, xac is not in T 2
.

Assume, without loss of generality, that ax /∈ T 2
. Assume �rst that xa ∈ T 2

.

Then

xa = b2,

in whih ase xb 6= bx, sine otherwise b ∈ CG(a), a ontradition. Moreover

xb, bx /∈ T 2
, sine otherwise bxZ(G) = a2Z(G), yielding b3Z(G) = bxaZ(G) =

a3Z(G) and ba = ab, a ontradition. Notie, also, that xb 6= ax, sine otherwise
xbZ(G) = axZ(G) = xaZ(G) and ab = ba, a ontradition. Thus

S2 = T 2 ∪ {x2, bx, xb, ax},

implying that axc ∈ T 2
. Hene axc = b2 = xa and xac /∈ T 2

. It follows that

xac = axc2 ∈ {bx, ax}. If axc2 = bx, then b = ac2 and [a, b] = 1, a ontradition.
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If, on the other hand, xac = ax, then xac2 = axc = xa and c2 = 1, again a

ontradition.

Therefore we may assume that x2, ax, xa /∈ T 2
and, arguing similarly, axc,

xac /∈ T 2
. Hene either ax = xac or xa = axc. Sine both these equalities

ould not hold together, if follows that S2 = T 2 ∪ {x2, ax, xa, axc, xac} and

bx, xb ∈ T 2
. Assume, for example, that bx ≤ xb. Then it is easy to see that the

only possibility is bx = a2, [b, x] = [a, x]2, xb = a2c2, and (vii) holds.

Now assume that x3x4 = x4x3. Ating similarly, while onsidering the order

opposite to <, we may assume that x1x2 = x2x1. Then Lemma 4.6 applies and

S has the required struture.

Conversely, suppose that one of (i), (ii), (iii), (iv), (v), (vi), (vii) holds.

First suppose that (i) holds and write S = {s, t, a, b}, where s, t ∈ Z(〈S〉) and
ab 6= ba. Then we have S2 = {s2, t2, st, sa, sb, ta, tb, a2, b2, ab, ba}, and |S2| = 11,
as required.

If either (ii) or (iii) or (iv) holds, then it is easy to verify diretly that

|S2| = 11.
Suppose that (v) holds, and write T = {a, ac, b}. Then |T 2| = 7 and S2 =

T 2∪̇xT ∪̇{x2}. Thus |S2| = 7 + 3 + 1 = 11, as required.
Now suppose that (vi) holds and write T = {a, ac, ac2}. Then |T 2| = 5,

|xT ∩ Tx| = 1 and |Tx ∪ xT | = 3+ 3− 1 = 5. Sine S2 = T 2∪̇(xT ∪ Tx)∪̇{x2},
it follows that |S2| = 5 + 5 + 1 = 11 as required.

Finally suppose that (vii) holds and write T = {a, ac, b}. Suppose, for ex-

ample, that bx = a2, ab = bac, xb = bxc2 and xa = axc. Then |T 2| =
7 and Tx ∪ xT = {bx = a2, ax, axc = xa, a2c2 = xb, axc2 = xac}. Thus

(Tx∪ xT )∩ T 2 = {a2, a2c2} and |S2| = 7+ 5− 2 + 1 = 11, as required. QED
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