Some inverse problems in group theory

G. A. Freiman
School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel
grisha@post.tau.ac.il
M. Herzog
School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel
herzogm@post.tau.ac.il
\section*{P. Longobardi}
Dipartimento di Matematica, Universita' di Salerno, Via Giovanni Paolo II, 132 84084 Fisciano (Salerno), Italy plongobardi@unisa.it
\section*{M. Maj}
Dipartimento di Matematica, Universita' di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano (Salerno), Italy
mmaj@unisa.it
\section*{Y. V. Stanchescu}
Afeka Academic College, Tel Aviv 69107, Israel
and The Open University of Israel, Raanana 43107, Israel
yonis@afeka.ac.il and ionut@openu.ac.il

Abstract. We investigate some inverse problems of small doubling type in nilpotent groups.
Keywords: Inverse problems; small doubling; nilpotent groups; ordered groups.
MSC 2010 classification: Primary 11P70; Secondary 20F05, 20F99, 11B13, 05 E15.

1 Introduction

Let G denote an arbitrary group. If S is a subset of G, we define its square S^{2} by

$$
S^{2}=\left\{x_{1} x_{2} \mid x_{1}, x_{2} \in S\right\}
$$

If G is an additive group, we denote by

$$
2 S=\left\{x_{1}+x_{2} \mid x_{1}, x_{2} \in S\right\}
$$

the sumset of S.

We are concerned with the following general problem: let S be a finite subset with k elements of a group G, determine the structure of S if

$$
\left|S^{2}\right| \leq f(k)
$$

for some function f.
Problems of this kind are called inverse problems.
In particular, we shall consider problems of the following type: determine the structure of S, if $\left|S^{2}\right|$ satisfies the following inequality:

$$
\left|S^{2}\right| \leq \alpha|S|+\beta
$$

for some small $\alpha \geq 1$ and small $|\beta|$.
Such problems are called inverse problems of small doubling type.
Inverse problems of small doubling type have been first investigated by G. A. Freiman in the additive group of the integers.

It is easy to prove that if S is a finite subset of \mathbb{Z} with k elements, then

$$
|2 k-1| \leq|2 S| \leq k(k+1) / 2 .
$$

Moreover $|2 S|=2 k-1$ if and only if S is an arithmetic progression of size k.

In the paper [4] G.A. Freiman proved the following theorem:
Theorem 1.1. Let S be a finite set of integers with $k \geq 3$ elements and suppose that

$$
|2 S| \leq 2 k-1+b,
$$

where $0 \leq b \leq k-3$. Then S is contained in an arithmetic progression of size $k+b$ and difference q,

$$
P=\{a, a+q, a+2 q, \cdots, a+(k+b-1) q\},
$$

where a, q are integers with $q>0$.
In particular, if

$$
|2 S| \leq 3 k-4,
$$

then S is contained in an arithmetic progression of size $2 k-3$,

$$
P=\{a, a+q, a+2 q, \cdots, a+(2 k-4) q\} .
$$

This theorem was the beginning of the "Freiman's structural theory of set addition", the foundations for which were led in Freiman's book "Foundations of a structural theory of set addition" (see [6] and also [20]).

In [4] and in [5] Freiman studied also the case $|2 S| \leq 3|S|-3$ and $|2 S| \leq$ $3|S|-2$. If X is a subset of an abelian semigroup G and Y is a subset of an abelian semigroup G_{1}, a bijection $\varphi: X \longrightarrow Y$ is called a Freiman isomorphism if for any $a, b, c, d \in X, a+b=c+d$ if and only if $\varphi(a)+\varphi(b)=\varphi(c)+\varphi(d)$. X is Freiman isomorphic to Y if there exists a Freiman isomorphism between X and Y.

Freiman proved the following result:
Theorem 1.2. Let S be a finite set of integers with $k \geq 2$ elements and suppose that

$$
|2 S|=3 k-3 .
$$

Then one of the following holds:
(i) S is a subset of an arithmetic progression of size at most $2 k-1$;
(ii) S is a bi-arithmetic progression;
(iii) $|S|=6$ and S is Freiman isomorphic to the set K_{6}, where

$$
K_{6}=\{(0,0),(1,0),(2,0),(0,1),(0,2),(1,1)\} .
$$

Here, a set of the integers $S=I \cup J$ is called a bi-arithmetic progression of length k, with difference d, if both I and J are arithmetic progressions of difference $d,|I|+|J|=k$, and $I+I, I+J, J+J$ are pairwise disjoint.

In [6] Freiman investigated also the exact structure of subsets of the additive group \mathbb{Z}^{d}, for a positive integer d. A complete description of a subset S of the additive group \mathbb{Z}^{2} with $|S| \geq 4$ and $|2 S|<4|S|-6$ is due to Y.V. Stanchescu in [24]. A best possible result for the group \mathbb{Z}^{d} and doubling coefficient $d+\frac{4}{3}$ has been recently obtained in [26].

By now, Freiman's theory had been extended tremendously, in many different direction, see for example [1], [3], [7], [9], [11], [14], [15], [16], [17], [18], [23], [24], [25], [26], the recent survey by T. Sanders [22] and the references contained therein.

In the paper [8], we studied small doubling problems for subsets of an ordered group. We recall that if G is a group and \leq is a total order relation defined on the set G, we say that (G, \leq) is an ordered group if for all $a, b, x, y \in G$, the
inequality $a \leq b$ implies that $x a y \leq x b y$, and a group G is orderable if there exists an order \leq on G such that (G, \leq) is an ordered group. Obviously the group of integers with the usual ordering is an ordered group. More generally, it is possible to prove that an abelian group is orderable if and only if it is torsion-free (see, for example [2] or [13]).

Extending Freiman's results, we proved in [8] the following theorems.

Theorem 1.3. Let (G, \leq) be an ordered group and let $S=\left\{x_{1}, x_{2}, \cdots, x_{k}\right\}$ be a finite subset of G of size $k \geq 3$, with $x_{1}<x_{2} \cdots<x_{k}$. Assume that

$$
t=\left|S^{2}\right| \leq 3 k-4
$$

Then $\langle S\rangle$ is abelian.
Moreover, there exists $g \in G, g>1$, such that $g x_{1}=x_{1} g$ and S is a subset of

$$
\left\{x_{1}, x_{1} g, x_{1} g^{2}, \cdots, x_{1} g^{t-k}\right\}
$$

Theorem 1.4. Let (G, \leq) be an ordered group and let $S=\left\{x_{1}, x_{2}, \cdots, x_{k}\right\}$ be a finite subset of G of size $k \geq 3$, with $x_{1}<x_{2} \cdots<x_{k}$. Assume that

$$
t=\left|S^{2}\right| \leq 3 k-3 .
$$

Then $\langle S\rangle$ is abelian.

Using results of Freiman and Stanchescu, the following theorem can be deduced from Theorem 1 of [10].

Theorem 1.5. Let (G, \leq) be an ordered group and let $S=\left\{x_{1}, x_{2}, \cdots, x_{k}\right\}$ be a finite subset of G of size $k \geq 3$, with $x_{1}<x_{2} \cdots<x_{k}$. Assume that

$$
t=\left|S^{2}\right| \leq 3 k-3
$$

Then $\langle S\rangle$ is abelian and one of the following holds:
(i) S is a subset of a geometric progression $\left\{a, a c, \cdots, a c^{2 k-1}\right\}$;
(ii) S is a bi-geometric progression, i.e. $S=\left\{a, a c, \cdots a c^{i-1}\right\} \cup\left\{b, b c, \cdots, b c^{j-1}\right\}$;
(iii) $k=6$ and $S=\left\{1, c, c^{2}, b, b^{2}, b c\right\}$.

The aim of this paper is to investigate inverse small doubling problems in torsion-free nilpotent groups.

By a result of A.I. Mal'cev and B.H. Neumann, any torsion-free nilpotent group is orderable (see [19] or [21]). Thus the previous results apply to these groups.

The remainder of the paper is organized as follows.

First, in Section 2, we report some useful results from [12] and [8].
In Section 3, we investigate the structure of subsets S of order k of a torsionfree nilpotent group, with $\left|S^{2}\right| \leq 3 k-2$. We study here the case $k=3$, and we report from [12] results concerning the case $k \geq 4$. Notice that, by a result in [10], if S is a subset of a nilpotent torsion-free group, of order bigger that 3 , with $\left|S^{2}\right| \leq 3|S|-2$, then $\langle S\rangle$ is nilpotent of class at most 2 . Thus the problem reduces to the case when G is nilpotent of class at most 2 .

In Section 4 we report results from [12], concerning the structure of subsets S of size k of torsion-free nilpotent groups of class at most 2 , which satisfy $k>4$ and $\left|S^{2}\right|=3 k-1$. In [12] the case $k=4$ was left open. Here we complete the result of [12] by proving the following theorem.

Theorem 1.6. Let G be an ordered nilpotent group of class 2 and let S be a subset of G of size $k=4$ with $\langle S\rangle$ non-abelian. Then $\left|S^{2}\right|=3 k-1=11$ if and only if one of the following statements holds:
(i) There exist $s, t \in S \cap Z(\langle S\rangle), s \neq t$;
(ii) $S=\{a, a c, b, b c$,$\} , with a b=b a c^{2}$;
(iii) $S=\left\{a, a c^{2}, b, b c\right\}$, with $a b=b a c$;
(iv) $S=\left\{a, a c, a c^{2}, b\right\}$, with $a b=b a c^{2}$;
(v) $S=\{a, a c, b, x\}$, with $a b=b a c, a x=x a, b x=x b$;
(vi) $S=\left\{a, a c, a c^{2}, x\right\}$, with $a c=c a$ and there exists exactly one $i \in\{0,1,2\}$ such that $a c^{i} x=x a c^{i}$;
(vii) $S=\{a, a c, b, x\}$, with $c>1$ and either $b x=a^{2}$, $a b=b a c, x b=b x c^{2}$ and $x a=a x c$, or $x b=a^{2}, b a=a b c, a x=x a c$ and $b x=x b c^{2}$.

2 Some general results.

We start by quoting two useful results.
Proposition 2.1. Let (G, \leq) be an ordered nilpotent group of class 2 and let S be a subset of G satisfying:

$$
S=\left\{x_{1}, \cdots, x_{k}\right\}, \quad x_{1}<x_{2}<\cdots<x_{k}
$$

Write $T=\left\{x_{1}, \cdots, x_{k-1}\right\}$. If

$$
x_{k} x_{k-1} \neq x_{k-1} x_{k},
$$

then

$$
\left|T^{2}\right| \leq\left|S^{2}\right|-4
$$

Proof. See [12], Lemma 2.1.

Proposition 2.2. Let (G, \leq) be an ordered group and let T be a finite subset of G of size m. If $b \in G \backslash C_{G}(T)$, then

$$
|b T \cup T b| \geq m+1
$$

Proof. See [8], Proposition 2.3.

If G is a torsion-free nilpotent group of class 2 , then the following result, concerning the structure of T, holds.

Proposition 2.3. Let G be a torsion-free nilpotent group of class 2 and let T be a subset of G of size m. Moreover, let $b \in G$ satisfy the following conditions: $b t \neq t b$ for all $t \in T$ and $|b T \cup T b|=m+1$. Then $T=\left\{a, a c, \cdots, a c^{m-1}\right\}$, with $b a=a b c$ (in particular $c \in Z(G)$ and $\langle T\rangle$ is abelian).

Proof. See [12], Proposition 2.5.

3 Subsets S with $\left|S^{2}\right| \leq 3|S|-2$.

Let G be a nilpotent torsion-free group. Then, by results of A.I. Mal'cev and B.H. Neumann (see [19] and [21]), G is orderable.

Let S be a finite subset of G with k elements, and suppose that $\left|S^{2}\right| \leq 3 k-2$.
If $k=2$, then $\left|S^{2}\right|=4=3 k-2$ if and only if $\langle S\rangle$ is non-abelian. Hence we may assume that $k \geq 3$.

In this paper we deal with the case $k=3$. In this case the following proposition holds.

Proposition 3.1. Let (G, \leq) be a nilpotent ordered group, and let $S \subseteq G$ with $|S|=3$. Then $\left|S^{2}\right| \leq 7$ if and only if one of the following holds:
(i) $S \cap Z(\langle S\rangle) \neq \emptyset$;
(ii) $S=\{a, a c, b\}$, with $c>1, a c=c a$ and either $a b=b a c$ or $b a=c a b$.

Proof. Write $S=\left\{x_{1}, x_{2}, x_{3}\right\}$ with $x_{1}<x_{2}<x_{3}$ and suppose that $\left|S^{2}\right| \leq 7$. Moreover, let $T=\left\{x_{1}, x_{2}\right\}$. It suffices to prove that if $S \cap Z(\langle S\rangle)=\emptyset$, then (ii) holds.

So suppose that $S \cap Z(\langle S\rangle)=\emptyset$. If $\left|S^{2}\right| \leq 6$, then $\langle S\rangle$ is abelian by Theorem 1.4, a contradiction. Hence $\left|S^{2}\right|=7$. Moreover, we must have either $x_{1} x_{2} \neq x_{2} x_{1}$ or $x_{2} x_{3} \neq x_{3} x_{2}$.

Suppose, first, that $x_{2} x_{3} \neq x_{3} x_{2}$. We must consider the cases: $x_{1} x_{2} \neq x_{2} x_{1}$ and $x_{1} x_{2}=x_{2} x_{1}$.

If

$$
x_{1} x_{2} \neq x_{2} x_{1}
$$

then $\left|T^{2}\right|=4$ and it follows from the ordering in S that $x_{2} x_{3}, x_{3} x_{2}, x_{3}^{2} \notin T$. Since $x_{2} x_{3} \neq x_{3} x_{2}$, the elements $x_{2} x_{3}, x_{3} x_{2}, x_{3}^{2}$ are also distinct from each other and it follows that

$$
S^{2}=T^{2} \dot{\cup}\left\{x_{2} x_{3}, x_{3} x_{2}, x_{3}^{2}\right\} .
$$

Consider $x_{1} x_{3}, x_{3} x_{1}$, and assume, without loss of generality, that $x_{1} x_{3} \leq$ $x_{3} x_{1}$. Then $x_{1} x_{3}<x_{3} x_{2}, x_{2} x_{3}, x_{3}^{2}$, implying that $x_{1} x_{3} \in T^{2}$. Hence either $x_{1} x_{3}=$ x_{2}^{2} or $x_{1} x_{3}=x_{2} x_{1}$.

If $x_{1} x_{3}=x_{3} x_{1}$ and $x_{1} x_{3}=x_{2}^{2}$, then $\left(x_{2}^{2}\right)^{x_{1}}=x_{3} x_{1}=x_{1} x_{3}=x_{2}^{2}$ and $\left(x_{2}\right)^{x_{1}}=x_{2}$, a contradiction.

If, on the other hand, $x_{1} x_{3}=x_{3} x_{1}$ and $x_{1} x_{3}=x_{2} x_{1}$, then $\left(x_{3}\right)^{x_{1}}=x_{3}=$ $x_{2}{ }^{x_{1}}$, again a contradiction. Hence $x_{1} x_{3}<x_{3} x_{1}$.

Moreover, either $x_{3} x_{1} \in T^{2}$ or $x_{3} x_{1}=x_{2} x_{3}$ and $x_{1} x_{3} \in T^{2}$.
If $x_{3} x_{1} \in T^{2}$, then the only possibility is that $x_{3} x_{1}=x_{2}^{2}$ and $x_{1} x_{3}=x_{2} x_{1}$.
In this case

$$
\left\langle x_{1}, x_{2}, x_{3}\right\rangle=\left\langle x_{3}, x_{3}^{x_{1}}\right\rangle=\left\langle x_{3}\right\rangle\left\langle x_{1}, x_{2}, x_{3}\right\rangle^{\prime}=\left\langle x_{3}\right\rangle \operatorname{Frat}\left(\left\langle x_{1}, x_{2}, x_{3}\right\rangle\right)
$$

since in a nilpotent group the derived subgroup is contained in the Frattini subgroup. Therefore $\left\langle x_{1}, x_{2}, x_{3}\right\rangle=\left\langle x_{3}\right\rangle$ is abelian, a contradiction.

Now suppose that $x_{3} x_{1}=x_{2} x_{3}$ and $x_{1} x_{3} \in T^{2}$. In this case, we must have either $x_{1} x_{3}=x_{2}^{2}$ or $x_{1} x_{3}=x_{2} x_{1}$. If $x_{1} x_{3}=x_{2}^{2}$, we get as before the contradiction $\left\langle x_{1}, x_{2}, x_{3}\right\rangle=\left\langle x_{2}, x_{2}^{x_{3}}\right\rangle=\left\langle x_{2}\right\rangle$, while if $x_{1} x_{3}=x_{2} x_{1}$, then $\left\langle x_{1}, x_{2}, x_{3}\right\rangle=$ $\left\langle x_{2}, x_{2}^{x_{3}}, x_{2}^{x_{1}}\right\rangle=\left\langle x_{2}\right\rangle$, again a contradiction.

So we may assume

$$
x_{1} x_{2}=x_{2} x_{1}
$$

In this case $x_{2} x_{3}, x_{3} x_{2}, x_{1} x_{3}, x_{3} x_{1}, x_{3}^{2} \notin\left\langle x_{1}, x_{2}\right\rangle$, since otherwise we get the contradiction $x_{3} x_{2}=x_{2} x_{3}$. Therefore the elements $x_{1}^{2}, x_{1} x_{2}, x_{2}^{2}, x_{1} x_{3}, x_{2} x_{3}, x_{3}^{2}$ are all different. Since $\left|S^{2}\right|=7$ and $x_{2} x_{3} \neq x_{3} x_{2}$, we must have either $x_{2} x_{3}=$ $x_{3} x_{1}$ or $x_{3} x_{2}=x_{1} x_{3}$. Thus, if we denote $x_{1}=a, x_{2}=a c, x_{3}=b$, then (ii) holds, as required.

Similarly, if instead of $x_{2} x_{3} \neq x_{3} x_{2}$ we assume that $x_{1} x_{2} \neq x_{2} x_{1}$, then we may also assume that $x_{2} x_{3}=x_{3} x_{2}$ and we get the result by considering the order opposite to \leq.

Conversely, if $S=\{a, b, c\}$, with $a b=b a$ and $a c=c a$, then

$$
S^{2}=\left\{a^{2}, b^{2}, c^{2}, a b, a c, b c, c b\right\}
$$

has order at most 7. If $S=\{a, a c, b\}$, with $a c=c a$ and, for example, $a b=b a c$, then

$$
S^{2}=\left\{a^{2}, a^{2} c, a^{2} c^{2}, a b, a c b, b a, b^{2}\right\}
$$

and again $\left|S^{2}\right| \leq 7$.

Now let S be a finite subset with k elements of a nilpotent ordered group, with $k \geq 4$ and assume that $\left|S^{2}\right| \leq 3 k-2$. Then, by Theorem 2 of $[10],\langle S\rangle$ is nilpotent of class 2 at most.

If $\langle S\rangle$ is abelian, then by [10], either $|S|=4$ and in this case the size of S^{2} is always at most 10, or S is Freiman isomorphic to a subset of \mathbb{Z} and the structure of S can be described using Freiman's results in [4], or S is Freiman isomorphic to a subset of \mathbb{Z}^{2}. In the latter case, the structure of S can be described using results of Freiman and of Stanchescu (see [4] and [24]).

If $\langle S\rangle$ is nilpotent of class exactly 2 , then the structure of S follows from the following theorem.

Theorem 3.2. Let G be a torsion-free nilpotent group of class 2 and let $S \subseteq G$ be non-abelian and of order $k \geq 4$. Then $\left|S^{2}\right|=3 k-2$ if and only if

$$
S=\left\{a, a c, \cdots, a c^{i}, b, b c, b c^{2}, \cdots, b c^{j}\right\}
$$

with $1+i+1+j=k$ and $a b=b a c$.
Proof. Suppose that $S=\left\{a, a c, \cdots, a c^{i}, b, b c, b c^{2}, \cdots, b c^{j}\right\}$, with $1+i+1+j=k$ and $a b=b a c$. Write $A=\left\{a, a c, \cdots, a c^{i}\right\}, B=\left\{b, b c, \cdots, b c^{j}\right\}$. Then we have: $S=A \dot{\cup} B, S^{2}=A^{2} \dot{\cup} B^{2} \dot{\cup}(A B \cup B A), A B \cup B A=\left\{b a, b a c, \cdots, b a c^{i+j+1}\right\}$, $\left|A^{2}\right|=2(i+1)-1,\left|B^{2}\right|=2(j+1)-1,|A B \cup B A|=i+j+2$ and $\left|S^{2}\right|=$ $2 i+2 j+2+i+j+2=3 k-2$, as required.

For the converse see the proof of Theorem 2 in [12].

4 Subsets S with $\left|S^{2}\right| \leq 3|S|-1$.

Let S be a subset of a torsion-free nilpotent group G with $|S|=k$ and $\left|S^{2}\right| \leq 3 k-1$. Let \leq be an order in G such that (G, \leq) is an ordered group. By Theorem 3 of [10], if $k \geq 8$, then $\langle S\rangle$ is nilpotent of class at most 2 . Therefore, we first studied the case when G is nilpotent of class 2 .

Suppose that S is a subset of a torsion-free nilpotent group G of class 2 , with $|S|=k$ and $\left|S^{2}\right| \leq 3 k-1$. In [12] we proved the following result.

Theorem 4.1. Let G be an ordered nilpotent group of class 2 and let S be a subset of G of size $k \geq 5$, with $\langle S\rangle$ non-abelian. Then $\left|S^{2}\right|=3 k-1$ if and only if one of the following holds:
(i)

$$
S=\left\{a, a c, \cdots, a c^{i-1}, b, b c, \cdots, b c^{j-1}\right\},
$$

with $a b=b a c^{2}$ and $i+j=k$;
(ii)

$$
S=\left\{a, a c^{2}, b, b c, \cdots, b c^{j}\right\}, j \geq 2 .
$$

with $a b=b a c$.

If $|S|=3$, it is easy to show that $\left|S^{2}\right| \leq 8$ if and only if $S=\{x, y, z\}$, with either $x y=y x$ or $x y=z^{2}$.

In this section we prove Theorem 1.6, concerning the structure of a subset S satisfying $|S|=4$ and $\left|S^{2}\right| \leq 11$. Thus the description of the structure of S,
if S is a subset of size $k \geq 2$ of a torsion-free nilpotent group of class 2 with $\left|S^{2}\right| \leq 3 k-1$, is complete.

It is still an open problem to describe S, if S is a subset of any torsion-free nilpotent group with $|S| \leq 7$ and $\left|S^{2}\right|=3 k-1$.

In order to prove Theorem 1.6, we start with the following Lemmas.

Lemma 4.2. Let G be an ordered nilpotent group of class 2 and let S be a subset of G of size 4 , with $\langle S\rangle$ non-abelian and $\left|S^{2}\right|=11$. Suppose that $S=T \cup\{b\}$, with $\langle T\rangle$ abelian. Then one of the following holds:
(i) There exist $s, t \in S \cap Z(\langle S\rangle), s \neq t$;
(ii) $S=\left\{a, a c, a c^{2}, b\right\}$, with $a b=b a c^{2}$;
(iii) $S=\{a, a c, b, x\}$, with $a b=b a c, a x=x a, b x=x b$;
(iv) $S=\left\{a, a c, a c^{2}, x\right\}$,
with $a c=c a$ and there exists exactly one $i \in\{0,1,2\}$ such that $a c^{i} x=x a c^{i}$.
Proof. Obviously $b^{2} \notin T^{2}$ and $(b T \cup T b) \cap T^{2}=\emptyset$, since $b \notin C_{G}(T)$. Therefore $\left|S^{2}\right|=\left|T^{2}\right|+|b T \cup T b|+1$. Moreover, since $|T|=3$ and $b \notin C_{G}(T)$, it follows by Proposition 2.2 that $|b T \cup T b| \geq 4$.

If $|b T \cup T b| \geq 5$, then $\left|T^{2}\right| \leq 5=3 \cdot 3-4$. Thus, by Theorem $1.3, T=$ $\left\{a, a c, a c^{2}\right\}$ with $a c=c a$. Hence, in this case, we have $\left|T^{2}\right|=5,|b T \cup T b|=5$ and $|b T \cap T b|=1$.

If $a c^{i} b=b a c^{i}$ for some $i \in\{0,1,2\}$, then this is true for exactly one i since $|b T \cap T b|=1$ and (iv) holds.

If $a c^{i} b=b a c^{j}$, with $i \neq j$, then $\left[a c^{i}, b\right]=c^{j-i}$. Thus $c^{j-i} \in Z(G)$ and $c \in Z(G)$. In this case $[a, b]=c^{v}$, for some integer v and $a b=b a c^{v}$. Therefore, as $b T \cup T b=\left\{b a, b a c, b a c^{2}, b a c^{v}, b a c^{v+1}, b a c^{v+2}\right\}$ is of size 5 , we get $v=2$ and S has the structure in (ii).

Now suppose $|b T \cup T b|=4$. Then $\left|T^{2}\right|=6$ and $|b T \cap T b|=2$. Moreover, $T \cap C_{G}(b) \neq \emptyset$, since otherwise $T=\left\{a, a c, a c^{2}\right\}$ by Proposition 2.3 and $\left|T^{2}\right|=5$, which is not the case. Therefore $0<\left|T \cap C_{G}(b)\right| \leq 2$. If there exist $s, t \in$ $T \cap C_{G}(b), s \neq t$, then $s, t \in Z(\langle S\rangle)$, and (i) holds. So assume that there exists exactly one $s \in T$ such that $s b=b s$. Then there exist $x_{i}, x_{j} \in T, x_{i} \neq x_{j}$ such that $b x_{i}=x_{j} b$, since $|b T \cap T b|=2$. Thus $x_{i}=b^{-1} x_{j} b=x_{j} c$, where $c \in Z(G)$. Obviously $x_{i}, x_{j} \neq s$, so denoting $a=x_{j}$ and $x=s$, we get $T=\{a, a c, x\}$, where $x b=b x, a b=b a c, a x=x a$ and (iii) holds.

Lemma 4.3. Let G be an ordered nilpotent group of class 2 and let S be a subset of G of size 4 , with $\langle S\rangle$ non-abelian and $\left|S^{2}\right|=11$. Suppose that there exists $z \in S \cap Z(\langle S\rangle)$. Then G satisfies the hypothesis of Lemma 4.2.
Proof. Write $S=T \dot{\cup}\{z\}$. Then $S^{2}=T^{2} \cup\left\{z^{2}\right\} \cup z T$. Obviously $z^{2} \notin z T$. Suppose that $z^{2} \in T^{2}$, implying that $z^{2}=x_{i} x_{j}$, where $x_{i}, x_{j} \in T$. If $x_{i}=x_{j}$, then $z=x_{i}$ since G is torsion-free and $z \in T$, a contradiction. Hence $x_{i} \neq x_{j}$, $x_{j} x_{i}=x_{i} x_{j},\left\{x_{i}, x_{j}, z\right\}$ is abelian and we have the result.

So we may assume that $\left\{z^{2}\right\} \cap T^{2}=\emptyset$.
If $z T \cap T^{2}=\emptyset$, then $\left|T^{2}\right|=11-1-3 \leq 7$ and by Proposition 3.1 there exist different elements $x_{i}, x_{j} \in T$ such that $x_{i} x_{j}=x_{j} x_{i}$. Thus $\left\{x_{i}, x_{j}, z\right\}$ is abelian and we have the result.

So we may also assume that $z T \cap T^{2} \neq \emptyset$, which implies that

$$
z x_{i}=x_{h} x_{k}
$$

for some $x_{i}, x_{h}, x_{k} \in T$. If $x_{h}=x_{k}$, then $\left\{x_{i}, x_{h}, z\right\}$ is abelian and we have the result.

So we may assume that

$$
T=\left\{x_{i}, x_{h}, x_{k}\right\} .
$$

We claim that we may suppose that $z x_{h} \notin T^{2}$.
Indeed, if that is not the case, then one of the following holds: $z x_{h}=x_{i}^{2}$, or $z x_{h}=x_{k}^{2}$, or $z x_{h}=x_{i} x_{k}$ or $z x_{h}=x_{k} x_{i}$.

In the first case, $\left\{x_{i}, x_{h}, z\right\}$ is abelian and the result holds. Similarly in the second case $\left\{z, x_{h}, x_{k}\right\}$ is abelian. If $z x_{h}=x_{i} x_{k}$, then $z x_{i}=x_{h} x_{k}$ implies that $z^{2} x_{h}=z x_{i} x_{k}=x_{h} x_{k}^{2}$. Thus $x_{k}^{2}=z^{2}$ and $z=x_{k} \in T$, a contradiction. Finally, if $z x_{h}=x_{k} x_{i}$, then we have $z x_{h} x_{k}=x_{k} x_{i} x_{k}$. Thus $z^{2} x_{i}=x_{k}^{2} x_{i} z_{1}$, for a suitable $z_{1} \in Z(G)$, since G has class 2 . Therefore $x_{k}^{2} \in Z(G)$ and hence $x_{k} \in Z(G)$, which implies the result. The proof of our claim is complete.

Arguing similarly, we may suppose that also $z x_{k} \notin T^{2}$. Thus $\left|z T \cap T^{2}\right|=1$ and $\left|T^{2}\right|=8$. Then, as remarked above, one of the following two cases must hold: either there exist two commuting elements $s, t \in T$ or there exist $x_{l}, x_{m}, x_{n} \in T$ such that $x_{l}^{2}=x_{m} x_{n}$. In the first case, $\{s, t, z\}$ is abelian, as required.

Now assume that $x_{l}^{2}=x_{m} x_{n}$. If $x_{l}=x_{i}$, then $\left\{x_{m}, x_{n}\right\}=\left\{x_{h}, x_{k}\right\}$. Thus $\bmod Z(\langle S\rangle)$ we have $x_{i}^{2}=x_{h} x_{k}=x_{i} z$, hence $x_{i} \in Z(\langle S\rangle)$, and we have the result. If $x_{l} \neq x_{i}$, then $x_{l} \in\left\{x_{h}, x_{k}\right\}$ and either x_{m} or x_{n} is equal to x_{i}. Suppose, without loss of generality, that $x_{m}=x_{i}$ and $x_{l}=x_{h}$. Then $x_{n}=x_{k}$ and mod $Z(\langle S\rangle)$ we have $x_{i}^{2}=x_{h}^{2} x_{k}^{2}=x_{l}^{2} x_{k}^{2}=x_{i} x_{k}^{3}$. Thus $\left[x_{i}, x_{k}\right]=1$ and $\left\{x_{i}, x_{k}, z\right\}$ is abelian, as required.

Lemma 4.4. Let G be an ordered nilpotent group of class 2 and let S be a subset of G with $\langle S\rangle$ non-abelian of size 4 and $\left|S^{2}\right|=11$. Suppose that $S=T \dot{\cup}\{s\}$ and there exists $c \in T \cap Z(\langle T\rangle)$. Then G satisfies the hypothesis of Lemma 4.2.

Proof. If $[s, c]=1$, then $c \in Z(\langle S\rangle) \cap S$ and we are done by Lemma 4.3. So assume that $[s, c] \neq 1$. Then $\left\{s, s^{2}\right\} \cap\langle T\rangle=\emptyset$ and $[s, c] \neq 1$, implying that $\left\{s^{2}\right\} \cap T^{2}=\emptyset$ and $\left(\left\{s^{2}\right\} \cup T^{2}\right) \cap(s T \cup T s)=\emptyset$. Moreover, $|s T \cup T s| \geq 4$ by Proposition 2.2. Then it follows from $S^{2}=T^{2} \dot{(}(s T \cup T s) \dot{\cup}\left\{s^{2}\right\}$ that $\left|T^{2}\right| \leq 6=3 \cdot 3-3$. Hence T is abelian by Theorem 1.4, as required.

Lemma 4.5. Let G be an ordered nilpotent group of class 2 and let S be a subset of G of size 4 , with $\langle S\rangle$ non-abelian and $\left|S^{2}\right|=11$. Suppose that $S=$ $\{a, a c\} \cup\{b, b d\}$, where $a b \neq b a$ and $c, d \in Z(\langle S\rangle)$. Then one of the following holds:
(i) $S=\{a, a c, b, b c\}$, with $a b=b a c^{2}$;
(ii) $S=\left\{a, a c, b, b c^{2}\right\}$, with $a b=b a c$, or $S=\left\{a, a d^{2}, b, b d\right\}$, with $a b=b a d$.

Proof. Assume, without loss of generality, that $c>1$ (otherwise change a with $a_{1}=a c$ and $a=a_{1} c^{-1}$) and, similarly, that $d>1$. Also suppose, without loss of generality, that $b a<a b$.

We have

$$
S^{2} \supseteq\{a, a c\}^{2} \dot{\cup}\{b, b d\}^{2} \dot{\cup}\{b a, a b, a b c, a b d, a b c d\} .
$$

Clearly $\left|\{a, a c\}^{2} \dot{\cup}\{b, b d\}^{2}\right|=6$ and since $a b \neq b a$, we also have

$$
b a c, b a c^{2} \notin\{a, a c\}^{2} \dot{\cup}\{b, b d\}^{2} .
$$

First, suppose that $c=d$. Then $b a<a b<a b c<a b c^{2}$ and if $b a c \in$ $\left\{b a, a b, a b c, a b c^{2}\right\}$, then $b a c=a b$. In this case $S=\{a, a c, b, b c\}$ and by Theorem 3.2 S^{2} is of size 10 , a contradiction. Hence $b a c \notin\left\{b a, a b, a b c, a b c^{2}\right\}$ and

$$
S^{2}=\{a, a c\}^{2} \dot{\cup}\{b, b c\}^{2} \dot{\cup}\left\{b a, a b, a b c, a b c^{2}, b a c\right\} .
$$

Then $b a c^{2} \in\left\{b a, a b, a b c, a b c^{2}, b a c\right\}$ and the only possibility is $b a c^{2}=a b$. Hence (i) holds.

Now suppose that $c \neq d$ and for example, let $c<d$. We have $b a<a b<$ $a b c<a b d<a b c d$, so

$$
S^{2}=\{a, a c\}^{2} \dot{\cup}\{b, b c\}^{2} \dot{\cup}\{b a, a b, a b c, a b d, a b c d\} .
$$

Hence the elements $b a c, b a d$ are in $\{b a, a b, a b c, a b d, a b c d\}$, and from $b a c<b a d$ we deduce that the only possibility is that $b a c=a b$ and $b a d=a b c$. Thus $b a d=b a c^{2}$ and $d=c^{2}$, yielding (ii). Similarly, if $c>d$, then $c=d^{2}, a b=b a d$ and (ii) holds.

Lemma 4.6. Let G be an ordered nilpotent group of class 2 and let S be a subset of G of size 4 , with $\langle S\rangle$ non-abelian and $\left|S^{2}\right|=11$. Write $S=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$, where $x_{1}<x_{2}<x_{3}<x_{4}$, and suppose that $x_{1} x_{2}=x_{2} x_{1}$ and $x_{3} x_{4}=x_{4} x_{3}$. Then S satisfies the hypothesis of one of the previous Lemmas.

Proof. Write $A=\left\{x_{1}, x_{2}\right\}, B=\left\{x_{3}, x_{4}\right\}, Y=x_{2}\left\{x_{3}, x_{4}\right\} \cup\left\{x_{3}, x_{4}\right\} x_{2}, Z=$ $Z(\langle S\rangle)$. The order in S obviously implies that $A^{2} \cap B^{2}=\emptyset=A^{2} \cap Y$. We may also assume $B^{2} \cap Y=\emptyset$, since otherwise the conditions of Lemma 4.4 are satisfied, as required. Indeed, if $B^{2} \cap Y \neq \emptyset$, then one of the following equalities must hold: $x_{2} x_{4}=x_{4} x_{3}, x_{2} x_{4}=x_{3}^{2}, x_{4} x_{2}=x_{3}^{2}$ and $x_{4} x_{2}=x_{3} x_{4}$. In each of these cases $\left[x_{3}, x_{2}\right]=1$ and if $T=\left\{x_{2}, x_{3}, x_{4}\right\}$, then $x_{3} \in T \cap Z(\langle T\rangle$, as required in Lemma 4.4.

If $x_{1} Z=x_{2} Z$ and $x_{3} Z=x_{4} Z$, then the conditions of Lemma 4.5 are satisfied, as required. So we may assume, without loss of generality, that

$$
x_{3} Z \neq x_{4} Z .
$$

We claim that we may assume that $x_{2}\left\{x_{3}, x_{4}\right\} \cap\left\{x_{3}, x_{4}\right\} x_{2}=\emptyset$. In fact, if $x_{2} x_{3}=x_{3} x_{2}$ or $x_{2} x_{4}=x_{4} x_{2}$, then we are in the conditions of Lemma 4.4, and if $x_{2} x_{4}=x_{3} x_{2}$ then $x_{4}=x_{2}^{-1} x_{3} x_{2}=x_{3} z$ with $z \in Z$ and we get the contradiction $x_{3} Z=x_{4} Z$. Similarly if $x_{2} x_{3}=x_{4} x_{2}$. The proof of our claim is complete. It follows that $|Y|=4$.

Now consider the elements $x_{1} x_{4}$ and $x_{4} x_{1}$. We may suppose that they are different, since otherwise $x_{1} \in Z\left(\left\langle x_{1}, x_{2}, x_{4}\right\rangle\right)$ and the conditions of Lemma 4.4 are satisfied.

Assume, without loss of generality, that $x_{1} x_{4}<x_{4} x_{1}$.
We claim that $x_{1} x_{4} \notin Y$. Indeed, if $x_{1} x_{4}=x_{2} x_{3}$, then $x_{2}^{-1} x_{1}=x_{3} x_{4}^{-1} \in Z$, yielding $x_{1} Z=x_{2} Z$ and $x_{3} Z=x_{4} Z$, which is not the case. A similar contradiction is reached if $x_{1} x_{4}=x_{3} x_{2}$. Since $x_{1} x_{4}<x_{4} x_{1}$, we also have $x_{1} x_{4}<x_{4} x_{2}$. Thus $x_{1} x_{4} \notin Y$, as claimed.

We may also assume that $x_{1} x_{4} \notin A^{2} \cup B^{2}$, since if for example $x_{1} x_{4}=x_{3}^{2}$, then $\left[x_{3}, x_{1}\right]=1$ and the conditions of Lemma 4.4 are satisfied.

Taking into account that $|Y|=4$ and $\left|A^{2}\right|=\left|B^{2}\right|=3$, we may conclude that

$$
S^{2}=A^{2} \dot{\cup} B^{2} \dot{\cup} Y \dot{\cup}\left\{x_{1} x_{4}\right\} .
$$

Now consider the elements $x_{1} x_{3}$ and $x_{3} x_{1}$. As before we may suppose that $x_{1} x_{3} \neq x_{3} x_{1}$ and $x_{1} x_{3}, x_{3} x_{1} \notin A^{2} \cup B^{2}$. Thus $x_{1} x_{3}, x_{3} x_{1} \in Y$. Arguing as before, $x_{1} x_{3}=x_{2} x_{4}$ implies that $x_{2}^{-1} x_{1}=x_{4} x_{3}^{-1} \in Z$ and $x_{3} Z=x_{4} Z$, which is not the case, and a similar contradiction is reached if $x_{1} x_{3}=x_{4} x_{2}$, since $x_{4} x_{2} Z=x_{2} x_{4} Z$. The only possibility which remains is $x_{1} x_{3}=x_{3} x_{2}$.

But now consider $x_{3} x_{1}$. Obviously $x_{3} x_{1}<x_{3} x_{2}=x_{1} x_{3}$, so $x_{3} x_{1} \neq x_{1} x_{4}$, $x_{2} x_{3}, x_{2} x_{4}$. Hence $x_{3} x_{1} \notin S^{2}$, a final contradiction.

Now we can prove Theorem 1.6.

Proof of Theorem 1.6. Suppose that $|S|=4$ and $\left|S^{2}\right|=11$.
Write $S=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}, T=\left\{x_{1}, x_{2}, x_{3}\right\}$ and $x_{1}<x_{2}<x_{3}<x_{4}$.
Suppose that $x_{3} x_{4} \neq x_{4} x_{3}$. Then by Proposition 2.1 we have $\left|T^{2}\right| \leq 11-4=$ 7.

If $\left|T^{2}\right| \leq 6$, then T is abelian by Theorem 1.4, and S has the required structure by Lemma 4.2.

So assume that $\left|T^{2}\right|=7$ and apply Proposition 3.1. If $T \cap Z(\langle T\rangle) \neq \emptyset$, then S has the required structure by Lemma 4.4. Therefore, we may assume, without loss of generality, that $T=\{a, a c, b\}$, with $c>1$ and $a b=b a c$. Write $x_{4}=x$. If $a x=x a$, then $\{a, a c, x\}$ is abelian since $c \in Z(G)$ and again we are in the situation of Lemma 4.2. Hence, suppose that $a x \neq x a$. If $x=b z$ with $z \in Z(G)$, then S has the required structure by Lemma 4.5. So assume that $x Z(G) \neq b Z(G)$. Notice that then if $x a$, or $x a c$, or $a x$ or $a c x$ is in T^{2}, then the only possibility is that it is equal to b^{2}. Similarly, if $b x$ or $x b$ is in T^{2}, then it belongs to the set $\left\{a^{2}, a^{2} c, a^{2} c^{2}\right\}$. Now, if $a x, x a \in T^{2}$, then $a x=b^{2}=x a$, a contradiction. Therefore one of the elements $a x, x a$ is not in T^{2}. Similarly, one of the elements $a x c, x a c$ is not in T^{2}.

Assume, without loss of generality, that $a x \notin T^{2}$. Assume first that $x a \in T^{2}$. Then

$$
x a=b^{2}
$$

in which case $x b \neq b x$, since otherwise $b \in C_{G}(a)$, a contradiction. Moreover $x b, b x \notin T^{2}$, since otherwise $b x Z(G)=a^{2} Z(G)$, yielding $b^{3} Z(G)=b x a Z(G)=$ $a^{3} Z(G)$ and $b a=a b$, a contradiction. Notice, also, that $x b \neq a x$, since otherwise $x b Z(G)=a x Z(G)=x a Z(G)$ and $a b=b a$, a contradiction. Thus

$$
S^{2}=T^{2} \cup\left\{x^{2}, b x, x b, a x\right\}
$$

implying that $a x c \in T^{2}$. Hence $a x c=b^{2}=x a$ and $x a c \notin T^{2}$. It follows that $x a c=a x c^{2} \in\{b x, a x\}$. If $a x c^{2}=b x$, then $b=a c^{2}$ and $[a, b]=1$, a contradiction.

If, on the other hand, $x a c=a x$, then $x a c^{2}=a x c=x a$ and $c^{2}=1$, again a contradiction.

Therefore we may assume that $x^{2}, a x, x a \notin T^{2}$ and, arguing similarly, $a x c$, $x a c \notin T^{2}$. Hence either $a x=x a c$ or $x a=a x c$. Since both these equalities could not hold together, if follows that $S^{2}=T^{2} \cup\left\{x^{2}, a x, x a, a x c, x a c\right\}$ and $b x, x b \in T^{2}$. Assume, for example, that $b x \leq x b$. Then it is easy to see that the only possibility is $b x=a^{2},[b, x]=[a, x]^{2}, x b=a^{2} c^{2}$, and (vii) holds.

Now assume that $x_{3} x_{4}=x_{4} x_{3}$. Acting similarly, while considering the order opposite to $<$, we may assume that $x_{1} x_{2}=x_{2} x_{1}$. Then Lemma 4.6 applies and S has the required structure.

Conversely, suppose that one of (i), (ii), (iii), (iv), (v), (vi), (vii) holds.
First suppose that (i) holds and write $S=\{s, t, a, b\}$, where $s, t \in Z(\langle S\rangle)$ and $a b \neq b a$. Then we have $S^{2}=\left\{s^{2}, t^{2}, s t, s a, s b, t a, t b, a^{2}, b^{2}, a b, b a\right\}$, and $\left|S^{2}\right|=11$, as required.

If either (ii) or (iii) or (iv) holds, then it is easy to verify directly that $\left|S^{2}\right|=11$.

Suppose that (v) holds, and write $T=\{a, a c, b\}$. Then $\left|T^{2}\right|=7$ and $S^{2}=$ $T^{2} \dot{\cup} x T \dot{\cup}\left\{x^{2}\right\}$. Thus $\left|S^{2}\right|=7+3+1=11$, as required.

Now suppose that (vi) holds and write $T=\left\{a, a c, a c^{2}\right\}$. Then $\left|T^{2}\right|=5$, $|x T \cap T x|=1$ and $|T x \cup x T|=3+3-1=5$. Since $S^{2}=T^{2} \dot{\cup}(x T \cup T x) \dot{\cup}\left\{x^{2}\right\}$, it follows that $\left|S^{2}\right|=5+5+1=11$ as required.

Finally suppose that (vii) holds and write $T=\{a, a c, b\}$. Suppose, for example, that $b x=a^{2}, a b=b a c, x b=b x c^{2}$ and $x a=a x c$. Then $\left|T^{2}\right|=$ 7 and $T x \cup x T=\left\{b x=a^{2}, a x, a x c=x a, a^{2} c^{2}=x b, a x c^{2}=x a c\right\}$. Thus $(T x \cup x T) \cap T^{2}=\left\{a^{2}, a^{2} c^{2}\right\}$ and $\left|S^{2}\right|=7+5-2+1=11$, as required. QED

References

[1] E. Breuillard, B. Green, T. Tao, The structure of approximate groups, Publ. Math. Inst. Hautes Études Sci. 116 (2012), 115-221.
[2] R. Botto Mura and A. Rhemtulla, Orderable groups, Lecture Notes in Pure and Applied Mathematics, Marcel Dekker, Inc., New York and Basel, (1977).
[3] J. Cilleruelo, M. Silva, C. Vinuesa, A sumset problem, J. Comb. Number Theory 2(1) (2010), 79-89.
[4] G.A. Freiman, On the addition of finite sets I, Izv. Vyss. Ucebn. Zaved. Matematika 6 (13) (1959), 202-213.
[5] G.A. Freiman, Inverse problems of additive number theory. IV: On the addition of finite sets. II. (Russian) Elabuž. Gos. Ped. Inst. Učen. Zap., 8 (1960), 72-116.
[6] G.A. Freiman, Foundations of a structural theory of set addition, Translations of mathematical monographs, 37, Amer. Math. Soc., (1973), Providence, Rhode Island.
[7] G.A. Freiman, Structure Theory of Set Addition, Astérisque, 258 (1999), 1-33.
[8] G.A. Freiman, M. Herzog, P. Longobardi and M. Maj, Small doubling in ordered groups, J. Austral. Math. Soc., 96 (2014), no.3, 316-325.
[9] G. A. Freiman, M. Herzog, P. Longobardi, M. Maj and Y.V. Stanchescu, Direct and inverse problems in additive number theory and in non-abelian group theory, European J. Combin., 40 (2014), 42-54.
[10] G.A. Freiman, M. Herzog, P. Longobardi, M. Maj, A. Plagne and Y.V. Stanchescu, Small doubling in ordered groups: generators and structure, in preparation.
[11] G.A. Freiman, M. Herzog, P. Longobardi, M. Maj, and Y.V. Stanchescu, Inverse problems in Additive Number Theory and in Non-Abelian Group Theory, http://arxiv.org/abs/1303.3053, 1-31.
[12] G.A. Freiman, M. Herzog, P. Longobardi, M. Maj, and Y.V. Stanchescu, Small doubling in nilpotent groups, in preparation.
[13] A.M.W. Glass, Partially ordered groups, World Scientific Publishing Co., Series in Algebra, 7, (1999).
[14] B. Green, What is ... an approximate group?, Notices Amer. Math. Soc. 59 (2012), no. 5, 655-656.
[15] N. Gill, H.A. Helfgott, Growth of small generating sets in $S L_{n}(Z / p Z)$, Int. Math. Res. Not. IMRN 18, (2011), 4226-4251.
[16] H.A. Helfgott, Growth in $S L_{3}(Z / p Z)$, J. Eur. Math. Soc. (JEMS) 13 (2011), no. 3, 761-851.
[17] R. Jin, Detailed Structure for Freiman's 3k-3 Theorem, arXiv:1308.0741v1 [math.NT] 3 Aug 2013
[18] V.F. Lev, P.Y. Smeliansky, On addition of two distinct sets of integers, Acta Arith. 70 (1995), no. 1, 85-91.
[19] A.I. Mal'Cev, On ordered groups, Izv. Akad. Nauk. SSSR Ser. Mat. 13 (1948), 473-482.
[20] M.B. Nathanson, Additive Number Theory Inverse Problems and the Geometry of Sumsets, Springer, (1996).
[21] B.H. Neumann, On ordered groups, Amer. J. Math. 71 (1949), 1-18.
[22] T. Sanders, The structure theory of set addition revisited, Bull. Amer. Math. Soc. 50(1) (2013), 93-127.
[23] Y.V. Stanchescu, On addition of two distinct sets of integers, Acta Arith. 75 (1996), no. 2, 191-194.
[24] Y.V. Stanchescu, On the structure of sets with small doubling property on the plane.I., Acta Arith. 83 (1998), no. 2, 127-141.
[25] Y.V. Stanchescu, The structure of d-dimensional sets with small sumset, J. Number Theory 130 (2010), no. 2, 289-303.
[26] T.C. Tao, Product set estimates for noncommutative groups, Combinatorica 28 (2008), no. 5, 547-594.

