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1 Introdution

Our main aim in this paper is to present some results to help us better

understand some di�erent ways a subgroup an be embedded in a �nite group

and their impat on the group struture.

The following de�nition turns out to be entral in our study.

De�nition 1.1. A subgroup embedding property is a map f whih assoiates

with eah group G (in some �xed universe) a subset f(G) of S(G), the set of all
subgroups of G, and satis�es

α
(
f(G)

)
= f

(
α(G)

)
(*)

for all group isomorphisms α : G −→ α(G).

This de�nition is very general and represents the minimum requirement that

a subgroup embedding property should be an invariant of eah isomorphism

lass of groups.

Normal, subnormal or pronormal subgroups are typial examples of embed-

ding properties of subgroups whih are important in investigations of groups

with a rih subgroup struture.

Most useful embedding properties of subgroups satisfy additional onditions

whih are useful in proofs using indution arguments in the universe of all �nite

groups. We ollet them in the following de�nition.
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De�nition 1.2. Let f be a subgroup embedding property.

• We say that f is quotient-invariant if the equation (*) holds for all epi-

morphisms α : G −→ α(G).

• We say that f is subgroup-invariant if, for all S 6 G, f(S) = {S ∩ H |
H ∈ f(G) }.

• We say that f is persistent if, for all G and all S 6 G, we have H ∈ f(S)
whenever H 6 S and H ∈ f(G).

In the sequel, we analyse three di�erent subgroup embedding properties in

the universe of all �nite groups. Therefore the unspoken rule is that all groups

are �nite.

2 Supplements of normal subgroups

Our attention in this setion is on�ned to study an embedding property of

subgroups whih has a strong in�uene in the study of the struture of soluble

groups and it is de�ned as follows:

Let G be a group. We write:

f(G) = {H 6 G | G = HF(G) }.

Here F(G) is the Fitting subgroup of G, that is, the subgroup generated by

all nilpotent normal subgroups of G. Clearly f is a subgroup embedding property

whih is persistent but it is not quotient-invariant. However, it satis�es

α
(
f(G)

)
⊆ f

(
α(G)

)

for all group epimorphisms α.

Note that if G is soluble, then Φ(G), the Frattini subgroup of G, is a proper

subgroup of F(G) ([7, A, 10.6℄). Therefore there exists a maximal subgroup

M of G suh that G = M F(G), that is, M ∈ f(G). However, if G is a Frattini

extension of a non-abelian simple group, then Φ(G) = F(G) and so f(G) = {G}.
More generally, for a normal nilpotent subgroup Q of a group G, we an

de�ne

fQ(G) = {H 6 G | G = HQ }
It is lear that fQ(G) ⊆ f(G) and it satis�es:

(1) if H ∈ fQ(G) and H 6 S, then H ∈ fS∩Q(S). More generally, if X is a

subgroup of G, then X ∩ fQ(G) is ontained in fX∩Q(X).



Subgroup embedding properties and the struture of �nite groups 37

(2) if N E G, then fQ(G)N/N ⊆ fQN/N (G/N)

In the following we give some signi�ant properties of f .

Reall that a formation is a lass of groups F whih is losed under taking

epimorphi images and subdiret produts. In partiular, if F is non-empty, every

group G has a smallest normal subgroup with quotient in F alled the F-residual

of G and denoted by GF
.

(1) (Bryant, Brye, and Hartley [7, IV, 1.14℄) Every subgroup in f(G) belongs

to the formation generated by G.

(2) ([7, IV, 1.17(b)℄) If F is a formation, then UF
is ontained in GF

for all

U ∈ f(G).

As a onsequene, every formation omposed of nilpotent groups is losed

under taking subgroups, that is, it is a variety.

Reall that a formation F is saturated if it is losed under taking Frattini

extensions.

(3) ([7, IV, 1.17(b)℄) If G is soluble and F is a saturated formation suh that

G /∈ F, there exists a maximal subgroup M ∈ f(G) suh that G/MG /∈ F.

This property allows Carter and Hawkes to de�ne F-normalisers in every

soluble group as an extension of Hall's system normalisers (see [7, V, Se-

tion 3℄).

(4) Every subgroup D in f(G) has the over and avoidane property in G.

Therefore the intersetion of D with a hief series of G is a hief series of D
and the automorphism groups indued on the orresponding hief fators

are isomorphi.

As to whether some subgroups in f(G) are G-onjugate has been an im-

portant theme in group theory. In fat, fundamental results on the theory of

Shunk lasses and projetors of soluble groups depend on the onjugay of

some elements of f(G).

Given a lass of groups X, a subgroup H of a group G is X-maximal in G if

(1) H ∈ X and

(2) if H 6 L 6 G and L ∈ X, then H = L.

A subgroup H of a group G is said to be an X-projetor of G if HN/N is

X-maximal in G/N for all normal subgroups N of G.
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Denote by ProjX the subgroup embedding property assoiating with eah

group G the set of all X-projetors of G.

If X = Sp, with p a prime, ProjX(G) = Sylp(G). More generally, if X = Eπ,

with π a set of primes, ProjX(G) = Hallπ(G) for all π-separable groups G. A

lassial result of Carter shows that the nilpotent self-normalising subgroups of

a soluble group are exatly the projetors for the lass N of all nilpotent groups

([7, III, 4.6℄).

A lass of groups H is a Shunk lass if H is losed under taking epimorphi

images and a group G belongs to H if and only if every primitive epimorphi

image of G belongs to H.

The following theorem was proved by Gashütz and Shunk in the soluble

ase, and it is a onsequene of Förster's results in the general ase ([7, III,

Setion 3℄).

Theorem 2.1. Let X be a lass of groups. Then ProjX(G) 6= ∅ for all groups

G if and only if X is a Shunk lass. Moreover, if G is soluble, ProjX(G) is a

onjugay lass of subgroups of G. In partiular, ProjX is a persistent q-invariant

subgroup embedding property in the soluble universe.

The onjugay of projetors assoiated to Shunk lasses in the soluble

universe depends heavily on the following lemma due to Gashütz (see [7, III,

3.14℄).

Lemma 2.2 (Gashütz, [8℄). Let H be a Shunk lass and let Q be a nilpotent

normal subgroup of G. If H is an H-maximal subgroup in fQ(G), then H ∈
ProjH(G).

More reently, Parker and Rowley [14℄ proved the following result:

Theorem 2.3. Let G be a soluble group and Q a nilpotent normal subgroup of

G suh that no G-hief fator of G/Q is G-isomorphi to a G-hief fator of Q.

If U , V ∈ fQ(G) and U ∩Q = V ∩Q, then U and V are G-onjugate.

The authors laimed that this result arose during investigations into 2-
minimal subgroups of lassial groups. In fat, they desribe a typial situation

in whih the above theorem applies. Let X be the wreath produt

3 ≀ 2 ≀ · · · ≀ 2︸ ︷︷ ︸
a

≀Sym(4) ≀ 2 ≀ · · · ≀ 2︸ ︷︷ ︸
b

of order 22
a+b−2−132

a+b+2+2b
. Let Q be the base group of this wreath produt.

Hene Q has order 32
a+b+2

. The X-hief fators in Q have orders 3, 3, . . . , 32
b−1

,

32
b+2b+1

, 32
b+2

, . . . , 32
a+b+1

, whereas the X-hief fators in X/Q are all 2-groups
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exept for a single X-hief fator of order 32
b
. Thus X satis�es the hypothesis

of Theorem 2.3. Hene any two subgroups omplementing Q are X-onjugate.

Theorem 2.3 an be interpreted in terms of Shunk lasses and projet-

ors and it an be dedued diretly from Gashütz's lemma and onjugay of

projetors of soluble groups.

Proof of Theorem 2.3. Consider the Shunk lass H of all soluble groups whose

primitive epimorphi images belong to the lass of all primitive epimorphi im-

ages of G/Q. If we argue by minimal ounterexample, then G = 〈U, V g〉, for
all g ∈ G, and U ∩ Q = V ∩ Q = 1. Gashütz's lemma implies that U and

V are ontained in H-projetors U∗
and V ∗

of G respetively. Hene G ∈ H, a

ontradition proving the result.

QED

In the following we shall show that it is possible to go muh further in the

onjugay problem for elements in f(G).
If we turn the situation on its head and look for stutural onditions on a

normal subgroup of a group having a onjugay lass of supplements omposed

of maximal subgroups we have:

Theorem 2.4 (Ballester-Bolinhes, Ezquerro, [4℄). Suppose that G is a group

and Q is a normal subgroup of G suh that any two maximal subgroups of G
supplementing to Q in G are G-onjugate. Then Q is a soluble group of nilpotent

length at most 2.

The bound of the previous theorem is best possible as the following example

shows:

Example 2.5. Consider the group X = SL(2, 3) ating on a 2-dimensional

vetor spae V over the Galois �eld GF(3). Construt the semidiret produt

G = [V ]X. If Z = Z(X), the entre of X, then Q = ZV is a supersoluble non-

nilpotent normal subgroup of G. The set of maximal subgroups supplementing

Q in G is the onjugay lass of all ore-free maximal subgroups of G omple-

menting V .

We present now some results whih an be viewed as partial onverses of

the above theorem in the ase when Q is a normal nilpotent subgroup of G.
They are, therefore, results providing su�ient onditions to ensure onjugay

of subgroups in fQ(G).
The following example shows that imposing some onditions on the interse-

tions suh as loal onjugay seems quite reasonable.

Example 2.6. Let G = 〈a, b, x : a3 = b3 = x2 = 1 = [a, b], ax = a−1, bx = b−1〉.
If Q = 〈a, b〉 ∼= C3 × C3, then the subgroups U = 〈a, x〉 and V = 〈b, x〉 are two
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supplements to Q in G whih are not G-onjugate. In this ase U ∩Q and V ∩Q
are two di�erent normal subgroups of G.

De�nition 2.7. Two subgroups A and B of a group G are loally G-onjugate

if every Sylow subgroup of A is G-onjugate to a Sylow subgroup of B.

Our next theorem desribes a minimal on�guration enountered in the study

of onjugay of supplements of normal nilpotent subgroups of soluble groups,

from whih su�ient onditions and ounterexamples emerge.

Theorem 2.8 (Ballester-Bolinhes, Ezquerro, [4℄). Let X be a Q-losed lass of

groups, and

F = (G : G/M ∈ X for some nilpotent normal subgroup M of G).

Let G be a soluble group of minimal order in F among the groups satisfying the

following property:

(†) there exists a nilpotent normal subgroup Q of G and non-G-

onjugate elements U and V in fQ(G) suh that U ∩ Q is loally

G-onjugate to V ∩Q.

Then G is a p-group for some prime p.

The above theorem allows us to obtain a number of results on onjugay

of supplements of nilpotent normal subgroups of soluble groups, all of them

proved in [4℄. They allows us to on�rm that loal onjugay is a good subgroup

embedding property to study the onjugay problem for subgroups in f(G). The
�rst one is an extension of Theorem 2.3.

Corollary 2.9. Let G be a soluble group and Q a nilpotent normal subgroup of

G suh that no G-hief fator of G/Q is G-isomorphi to a G-hief fator of Q.

If U , V ∈ fQ(G) suh that U ∩ Q and V ∩ Q are loally G-onjugate, then

U and V are G-onjugate.

An advantage of Parker and Rowley's proedure in Theorem 2.3 is that the

ondition U ∩Q = V ∩Q holds in subgroups ontaining both U and V . This is

not longer true in the ase of loal onjugay.

We shall show now by an example that no statement of similar kind is possible

if we remove the hypothesis on the hief fators.

Example 2.10. Let Q be a group isomorphi to the quaternion group of order

8. Consider a subgroup T of Aut(Q) isomorphi to S3. Write T = 〈b, c : b3 =
c2 = 1, bc = b−1〉. Set B = 〈b〉 and C = 〈c〉. Construt the semidiret produt
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G = [Q]T . Write Z = Z(Q) = 〈z〉. Note that G/QB is a omplemented entral

2-hief fator of G over Q and Z/1 is also a entral G-hief fator of G below Q.

Consider the subgroups U = 〈b, c〉 and V = 〈b, zc〉. Then U and V are two

non-onjugate supplements to Q in G suh that U ∩Q = 1 = V ∩Q.

Corollary 2.11. Suppose that G is a soluble group and Q is a nilpotent normal

subgroup of G. If U, V ∈ fQ(G) suh that U and V are loally G-onjugate, then

U and V are G-onjugate.

Let F be a saturated formation. If G is a group and G 6∈ F, then the F-

residual GF
of G is a non-trivial normal subgroup of G whih is supplemented

in G by every F-projetor of G.

Corollary 2.12. Let F be a saturated formation and let G be a soluble group

whose F-residual GF
is nilpotent. Then any two supplements U and V of GF

in

G are G-onjugate provided U ∩GF
and V ∩GF

are loally G-onjugate.

The ase when GF
is abelian is partiularly interesting. In this ase, GF

is

omplemented in G and its omplements form a onjugay lass of subgroups of

G ([7, IV, 5.18℄). In this ase, Corollary 2.12 is equivalent to the fat that the

omplements of GF
are onjugate in G.

Corollary 2.13. Let F be a saturated formation and let G be a soluble group

whose F-residual GF
is abelian. The following onditions are equivalent:

(1) Any two supplements U and V of GF
in G are G-onjugate provided U∩GF

and V ∩GF
are loally G-onjugate.

(2) Any two omplements U and V of GF
in G are G-onjugate.

3 Subgroups of hyperentral type

The fous of this setion relates to the in�uene of minimal subgroups, i.

e. subgroups of prime order, on the struture of a group. It is known that the

embedding of minimal subgroups of a group often gives a good insight into the

group struture: a theorem of It� about the p-nilpotene of a group in whih the

subgroups of order p or order 4 if p = 2 are entral is a good example.

A typial situation one an �nd in this ontext is the following: Let f be

a persistent subgroup embedding property. Suppose we would like to prove a

result of the following type:

A group G belongs to a lass X provided that the minimal subgroups

of G belong to f(G).
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Through the approah of a minimal ounterexample, G /∈ X and every proper

subgroup of G belongs to X, that is, G is an X-ritial group. Hene if we wanted

to prove a result of the above type, we would need to have a good strutural

knowledge of the groups in suh minimal lasses. Therefore it is onvenient to

settle the following de�nition.

De�nition 3.1. Let X be a lass of groups. A group G is said to be X-ritial

(or ritial for X) if G /∈ X, but all proper subgroups of G belong to X.

It is lear that a detailed knowledge of the X-ritial groups is likely to give

some insight into just what makes a group to belong to X.

One of the most popular ritial groups are the ones assoiated to the lass of

all nilpotent groups. These groups were investigated by Shmidt in 1924 and so

they are usually alled Shmidt groups. By a result of It�, every ritial group for

the lass of all p-nilpotent groups, p a prime, is a Shmidt group. The struture

of the N-ritial groups is very restrited as the following theorem shows.

Theorem 3.2 (Shmidt, [15℄). (1) If every proper subgroup of a group G is

nilpotent, then G is soluble.

(2) Assume that every proper subgroup of G is nilpotent, but G is not nilpotent.

Then G satis�es:

a. • |G| = paqb for prime numbers p 6= q,

• the Sylow p-subgroup is normal in G,

• the Sylow q-subgroups are yli, and

• for every Sylow q-subgroup Q of G, Φ(Q) 6 Z(G).

b. The nilpoteny lass of the Sylow p-subgroup P of G is at most two.

Moreover, Φ(P ) 6 Z(G).

. • For p > 2, P has exponent p;

• for p = 2, the exponent of P is at most 4.

In the sequel, we shall disuss a ouple of reent results in whih the above

method of proof ould be applied. To this end, we need the following notation.

Let P be a p-group. If k is a natural number we denote

Ωk(P ) = 〈x ∈ P : xp
k

= 1〉, and Ω(P ) =

{
Ω1(P ) if p is odd,

Ω2(P ) if p = 2.

We onsider the subgroup embedding property f de�ned by:

f(G) = {H 6 G | H 6 Z∞(G) }.
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Here Z∞(G) is the hyperentre of G, that is, the last term of the asending

entral series of the group G.
It follows that f is a persistent subgroup embedding property.

Let p be a prime and let X be the saturated formation of all p-nilpotent
groups. Assume that G is a group suh that Ω(P ) ⊆ f(G) for some P ∈ Sylp(G).
Then Op(G) 6 CentG

(
Ω(P )

)
and therefore G annot be an X-ritial group by

Theorem 3.2. Therefore G should belong to X. This proves:

Theorem 3.3 (González-Sánhez, Weigel, [10, Theorem A℄). Let p be an odd

prime and let G be a p-entral group of height k > 1. Then G is p-nilpotent.

Here a group G is said to be pi-entral of height k if Ωi(P ) 6 Zk(G), where
P ∈ Sylp(G) and Zk(G) is the kth term of the asending entral series of G.

The above theorem does not hold for p = 2.

Example 3.4. Let G be the semidiret group of the quaternion group of order

8 with a yli group of order 3 permuting the subgroups of order 4 of the

quaternion group. Then the unique subgroup of G of order 2 is entral in G and

G is not 2-nilpotent.

Let D be a lass of p-groups, p a prime. We say that a subgroup H of a group

G ontrols fusion of D-groups in G if

(1) any D-subgroup of G is onjugate to a subgroup of H, and

(2) for any D-subgroup A of G and for any g ∈ G suh that A, Ag 6 H, there

exists x ∈ H suh that for all a ∈ A, ag = ax.

If p is a prime, let Dp denote:

(1) the lass of yli groups of order p, if p is odd, and

(2) the lass of yli groups of order 2 or 4, if p = 2.

Let

fp(G) = {H 6 G | H ontrols fusion of Dp-subgroups }.
If G is p-nilpotent, it is lear that Sylp(G) is ontained in fp(G). Conversely,
assume, arguing by ontradition, thatG is not p-nilpotent and Sylp(G) ⊆ fp(G).
Then G ontains a subgroup C whih is ritial for the lass of all p-nilpotent
groups. By Theorem 3.2, C = AB, where A is a normal p-subgroup of C and

expA = p if p is odd, or expA 6 4 if p = 2, and B = 〈g〉 is a yli Sylow

q-subgroup of C, where q 6= p. The minimality of C implies that A = [A, g].
Moreover the hypothesis on G implies that there exists a Sylow p-subgroup P
of G suh that A 6 P and there exists x ∈ P suh that ax = ag for every a ∈ A.
This means that A 6 Z(P ) and the ondition on G implies that A = 1. This
ontradition proves:
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Theorem 3.5 (González-Sánhez, [9, Main Theorem℄). Let p be a prime. A

group G is p-nilpotent if and only if every Sylow p-subgroup of G belongs to

fp(G).

Example 3.4 shows that it is neessary to onsider the subgroups of order 4
in the above theorem.

These results belong to a onsolidated researh projet in whih subgroups

of hyperentral type are used as desriptors for haraterising some strutural

properties of the groups. The theory of formations turns out to be a useful tool

and provides a suitable language to analyse these phenomena.

Let me introdue some de�nition and results before stating our next theorem.

They an be found in [7, IV, Setion 4℄.

A formation F is said to be a Baer-loal formation if there exists a funtion

F whih assigns to every simple group J a lass of groups F (J) ⊆ F provided

that F (J) is a formation whenever the simple group J is abelian, suh that F

is equal to the lass of all groups G suh that for every G-hief fator H/K,

G/CentG(H/K) ∈ F (J) if the omposition fators of H/K are isomorphi to

J . In addition, F an be hosen satisfying SpF (J) = F (J) if J is isomorphi to

a yli group of order p.
In a groupG, aG-hief fatorH/K whose omposition fators are isomorphi

to a simple group J is said to be F-entral in G if G/CentG(H/K) ∈ F (J).
Note that G belongs to F if and only if every hief fator of G is F-entral in

G. More generally, a normal subgroup N of G is said to be F-hyperentral in G
if every G-hief fator below N is F-entral in G. The produt of all normal F-

hyperentral subgroups of G is also F-hyperentral in G. This subgroup is alled

the F-hyperentre of G and it is denoted by ZF(G). For the lass N of nilpotent

groups, we have ZN(G) = Z∞(G).
Any saturated formation is a Baer-loal formation. The lass of all generalised

nilpotent groups is a non-saturated Baer-loal formation.

Theorem 3.6 (Ballester-Bolinhes, Ezquerro, Skiba [5℄). Let F be a Baer-lo-al

formation. Given a group G and a normal subgroup E of G, let ZF(G) ontain a

p-subgroup A of E whih is maximal being abelian and of exponent dividing pk,
where k is some natural number, k 6= 1 if p = 2 and the Sylow 2-subgroups of E
are non-abelian. Then

E/Op′(E) ≤ ZF

(
G/Op′(E)

)
.

Suppose the result is false and let the group G provide a ounterexample of

least order. Among the normal subgroups of G for whih the theorem fails we

hoose E of minimal order. Then E is a normal subgroup of G, ontaining a

p-subgroup A whih is maximal being abelian and of an exponent dividing pk,



Subgroup embedding properties and the struture of �nite groups 45

where k is some natural number, k 6= 1 if p = 2 and the Sylow 2-subgroups
of E are non-abelian suh that A 6 ZF(G) but E/Op′(E) is not ontained in

ZF(G/Op′(E)).
Let W = AG

be the normal losure of A in G and set C = CE(W ). Let
Ep be a Sylow p-subgroup of E ontaining A. Then Cp = Ep ∩ C is a Sylow

p-subgroup of C. The ontradition follows after the following steps.

(1) Op′(E) = 1.

(2) E/C ≤ ZF(G/C).

(3) Cp 6= 1 and Ωk(Cp) ≤ A.

(4) C = E. In partiular, Ωk(Ep) ≤ A ≤ Z(E).

(5) E = Ep.

As an immediate dedution we have:

Corollary 3.7. Let F be a Baer-loal formation. Given a group G and a normal

subgroup E of G suh that G/E ∈ F, let ZF(G) ontain a p-subgroup A of E
whih is maximal being abelian and of exponent dividing pk, where k is some

natural number, k 6= 1 if p = 2 and the Sylow 2-subgroups of E are non-abelian.

Then G/Op′(E) ∈ F.

Corollary 3.8. Let F be a Baer-loal formation. Consider a group G and a

normal subgroup E of G. For eah prime divisor p of |E| assume that ZF(G)
ontains a p-subgroup A of E whih is maximal being abelian of exponent dividing

pk, where k is some positive integer, k 6= 1 if p = 2 and the Sylow 2-subgroups
of E are non-abelian. Then E ≤ ZF(G).

Sine ZF(G) entralises the F-residual of G ([7, IV, 6.10℄), and the generalised

Fitting subgroup ontains its entraliser ([12, X, 13.12℄), we have:

Corollary 3.9. Let F be a Baer-loal formation and E = F∗(G) the generalised

Fitting subgroup of G. For eah prime divisor p of |E| let ZF(G) ontain a p-
subgroup A of E whih is maximal being abelian and of exponent dividing pn,
where n is some natural number, n 6= 1 if the Sylow 2-subgroups of E are non-

abelian. Then G ∈ F.

Some earlier results an be also dedued from Theorem 3.6.

Corollary 3.10 (Ballester-Bolinhes, Pedraza-Aguilera, [6℄). Let K be a normal

subgroup of a group G with G/K ontained in the saturated formation F. If every

element of order p or 4 (if p = 2) lies in ZF(G), then G/Op′(K) belongs to F.
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Corollary 3.11 (Ballester-Bolinhes, Pedraza-Aguilera, [6℄). Let F be a sub-

group-losed saturated formation. Suppose that G is a group with a normal sub-

group N suh that G/N ∈ F. If every minimal subgroup of N is ontained in

ZF(G) and N has abelian Sylow 2-subgroups, then G is an F-group.

Corollary 3.12 (Yokoyama, [17℄). Let F be a saturated formation ontaining

the lass of all nilpotent groups. Let N be a normal subgroup of a soluble group

G suh that G/N ∈ F. If every subgroup of N of prime order is ontained in

ZF(G) and the Sylow 2-subgroups of N are quaternion-free, then G ∈ F.

Corollary 3.13 (Laue, [13℄). Let F be a loal formation and G a soluble group.

For eah prime divisor p of |F(G)| let ZF(G) ontain a p-subgroup A of E whih

is maximal being abelian and of exponent dividing pn, where n is some natural

number, n 6= 1 if p = 2. Then G ∈ F.

4 p-length and p-nilpoteny

The fous of this setion relates to some questions onerning p-length and p-
nilpoteny of p-soluble groups. The results we are going to present are motivated

by the papers [10℄ and [16℄.

In the sequel, p will denote a prime number.

The p-nilpoteny of a group G is a property whih an be read o� from the

struture of the Sylow p-subgroups of G and the way in whih they are embedded

in G. For instane, if a Sylow p-subgroup P of a �nite group is abelian, then

G is p-nilpotent if and only if NG(P ) is p-nilpotent. This is a lassial result

of Burnside ([11, IV, 2.6℄), whih was extended to modular Sylow p-subgroups,
i. e. groups with modular subgroup lattie, by Esteban-Romero and the author

of this paper (see [1, 2, 2.2.5℄). This result is extremely useful in establishing

relationships between loal haraterisations of T-, PT- and PST-groups.

Following [16℄, we say that a lass of groups X determines p-nilpoteny loally

if a group G with a Sylow p-subgroup P in X is p-nilpotent whenever NG(P ) is
p-nilpotent.

Of ourse, not every lass of p-groups determines p-nilpoteny loally. It is

enough to onsider a lass ontaining a p-group P whih an be embedded in a

non-p-nilpotent group G as a Carter subgroup. On the positive side, the above-

mentioned results show that the lass of all abelian p-groups and the lass of

all modular p-groups are both examples of subgroup-losed lasses of p-groups
determining p-nilpoteny loally. Regular p-groups ([11, III, Setion 10℄) is also

a subgroup-losed lass of p-groups whih determines p-nilpoteny loally by

virtue of a result of Hall and Wielandt ([11, IV, 8.1℄). Every �nite p-group of

nilpoteny lass less or equal to p− 1 and every �nite p-group of exponent p are
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regular. Therefore the lass of all p-groups of nilpoteny lass at most p− 1 and

the lass of all p-groups of exponent p are subgroup-losed lasses determining

p-nilpoteny loally.

Weigel [16℄ proved that if p is odd, there exists a subgroup-losed lass of

p-groups whih determines p-nilpoteny loally and ontains every subgroup-

losed lass of �nite p-groups with this property. It is de�ned as follows.

De�nition 4.1. Let E = 〈g1, g2, . . . , gp〉 be an elementary abelian group of

order pp. Let C = 〈x〉 be a yli group of order pm ating on E, where m is a

natural number, in suh a way gxi = gi+1 for 1 6 i 6 p − 1 and gxp = g1. Let
Yp(m) = [E]C be the orresponding semidiret produt.

Note that Yp(1) is just the regular wreath produt Cp ≀ Cp.

We say that a p-group P is slim if P ontains no subgroup isomorphi to

Yp(m) for all m ≥ 1.
By [16, Main Theorem℄, the lass of all slim p-groups, p odd, determines p-

nilpoteny loally and it ontains every subgroup-losed lass �nite of p-groups
whih determines p-nilpoteny loally ([16, 4.3℄).

For the proof of his Main Theorem, Weigel onsiders the semidiret produt

S = [V ]S0, where V is a faithful and irreduible S0-module over GF(p), the
�nite �eld of p-elements and S0 = [Q]Cp is the semidiret produt of Cp with a

faithful and irreduible Cp-module Q over GF(q) for a prime q 6= p (here Cp is

the yli group of order p). These groups are alled pqp-sandwih groups in [16℄.

Weigel also deals with groups X with a normal p-subgroup N ontained in the

Frattini subgroup Φ(X) of X suh that X/N ∼= S and N ∩Op(X) 6 Z(Op(X)).
The orresponding natural map τ : X −→ S is alled there a p-Shur-Frattini
extension. The main result of [16℄ follows from the interesting fat that suh a

group X always possesses a subgroup isomorphi to Yp(m) provided that p is

odd ([16, Setion 3.4 and Proposition 3.5℄). This fat is useful in some arguments

by minimal ounterexample.

Unfortunately, we have found some deliate points in the proof of the above

statement. For instane, the image of the form de�ned in Equation (3.14) is not

ontained in general in GF(pe) beause we annot assure in general that this

image is �xed by the orresponding Frobenius-type automorphism. Moreover, in

the onstrution of the subgroup isomorphi to Yp(m) in Case 1.B in the proof

of [16, Proposition 3.5℄, it is not su�ient to ensure that the hosen element x

is not �xed under the automorphism x 7→ xp
f
, beause x ould be taken as an

element of the maximal submodule of the regular module and hene x might

generate a non-regular submodule.

We have been unable to overome those di�ulties just following Weigel's

proof and so we have tried to solve them by presenting an alternative proof of

Proposition 3.5 of [16℄. This is the main result of the paper [2℄.
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Suppose that k is a natural number and let Xk be the lass of all p-groups
P suh that Ω(P ) 6 Zk(P ). It is lear that Xk is a subgroup-losed lass of

p-groups.
If p is odd, then every P ∈ Xp−1 has to be slim. Therefore we have:

Corollary 4.2 (González Sánhez, Weigel, [10, Theorem D℄). Let p be an odd

prime. Then Xp−1 determines p-nilpoteny loally.

Our aim in the sequel is to desribe a ompletely di�erent approah based

on the lassial theory of Hall and Higman and fousing the attention on the

p-length and moving from here to p-nilpotene. The next result is a strutural

theorem about p-soluble groups of minimal order among the groups belonging

to a subgroup-losed lass of groups and whose p-length is greater than 1. Suh
groups are ritial for the subgroup-losed saturated Fitting formation Lp of all

p-soluble groups of p-length at most 1.

Theorem 4.3 (Ballester-Bolinhes, Esteban-Romero, Ezquerro, [3℄). Let P be

a subgroup-losed lass of p-groups and let Y(P) denote the lass of all p-soluble
groups whose Sylow p-subgroups are in P. Suppose that Y(P) 6⊆ Lp, and let G
be a p-soluble group of minimal order in Y(P)r Lp. If P is a Sylow p-subgroup
of G, then Φ(G), the Frattini subgroup of G, is ontained in P and one of the

following holds.

(1) If p is not a Fermat prime or the Hall p′-subgroups of G are abelian, then

the nilpoteny lass of P/Φ(G) is greater or equal than p.

(2) If p is a Fermat prime, then the nilpoteny lass of P/Φ(G) is greater or

equal than p− 1.

Our group G satis�es the following strutural onditions:

(1) Op′(G) = 1. Therefore if F is the Fitting subgroup of G, then F = Op(G)
and CentG(F ) 6 F .

(2) G/Φ(G) is primitive and so F/Φ(G) = Soc(G/Φ(G)) is a hief fator of

G/Φ(G).

(3) If P is a Sylow p-subgroup of G, then NG(P ) is the unique maximal sub-

group of G ontaining P .

(4) G is a { p, q }-group for some prime q 6= p. Then there exist a Sylow p-
subgroup P of G and a Sylow q-subgroup Q of G suh that G = PQ.

(5) Write A = Op,q(G). If N/Op(G) = Φ(A/Op(G)), then A/N is the unique

minimal normal subgroup of G/N and NG(P ) = PN . Moreover Op(G) 6
A.
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(6) Let M be a maximal subgroup of G omplementing F/Φ(G). Write B =
P ∩M and let Q be a Sylow q-subgroup of G ontained in M . We have:

a. B is a Sylow p-subgroup of M and M = QB.

b. B/Φ(G) is a yli p-group. Hene P/F is yli.

. M = NG(Q) and Z(M/Φ(G)) is yli.

d. [Op(G),Φ(G)] = 1.

e. B 6 CentG(Φ(Q)).

f. Z∞(G) = Φ(G).

We fous now our attention on the quotient group G = G/Φ(G). For
any subgroup X of G we will write X to denote the image of X in G:

X = XΦ(G)/Φ(G).

(7) Q is either elementary abelian or an extraspeial q-group.

F an be regarded as an irreduible and faithful M -module over K, the

�nite �eld of p-elements. Let FB denote the subgroup F regarded as B-

module over K by restrition.

(8) IfQ is abelian, then FB is a diret sum of opies of the regularKB-module.

Assume that Q is extraspeial.

(9) If p is not a Fermat prime, then regular KB-module is a diret summand

of FB.

(10) If p is a Fermat prime then two possibilities arise:

• either the regular KB-module is a diret summand of FB,

• or FB is a diret sum of opies of the Jaobson radial, J(KB), of
the regular KB-module.

Write W = Cp ≀Cp. Note that Z(W ) is of order p, W ′
is elementary abelian

of order pp−1
and the nilpoteny lass of W is p. Hene the nilpoteny lass

of W/Z(W ) is p− 1.

a. Suppose that p is not a Fermat prime or Q is abelian. Then a diret

summand of FB is isomorphi to the regular KB-module. In this ase

P/Φ(G) ontains a subgroup isomorphi to W . Then the nilpoteny

lass of P/Φ(G) is greater or equal than p.
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b. Suppose that p is a Fermat prime. Then it ould our that FB is a

diret sum of indeomposable KB-modules isomorphi to J(KB). In
this ase P/Φ(G) ontains a subgroup isomorphi to W/Z(W ) and

so the nilpoteny lass of P/Φ(G) is greater or equal than p− 1.

Example 4.4. The group of automorphisms of Q ∼= C11 has a subgroup iso-

morphi to H = C5. Let S = [Q]H be the orresponding semidiret produt. Let

V be an irreduible and faithful module for S over the �eld of 5 elements. The

dimension of V as a GF(5)-vetor spae is 5. Let G = [V ]S be the orresponding

semidiret produt.

The Sylow 5-subgroup of G is isomorphi to [V ]H, whih is isomorphi to

the wreath produt C5 ≀C5. The nilpoteny lass of P is exatly 5. Moreover, the

maximal subgroups of G are isomorphi to S, to [V ]S or to [V ]Q, all of them of

5-length one. Sine Φ(G) = 1, the bound of Theorem 4.3 annot be improved in

general.

Example 4.5. Let Q be a entral produt of a quaternion group of order 8
and a dihedral group of order 8 with |Q| = 32. Let g1 be an automorphism of

Q of order 5 and let R = [Q]〈g1〉. The group R an be regarded as a group

of automorphisms of an extraspeial group E of order 55 and exponent 5. The
semidiret produt G = [E]R has order |G| = 25 ·56 = 500,000. Then G is soluble

of 5-length 2, but every maximal subgroup of G is of 5-length 1. The nilpoteny
lass of P/Φ(G) is 4 = 5− 1. This shows that the bound of Theorem 4.3 annot

be improved for the Fermat prime p = 5.

Let Y(Xk) denote the lass of all p-soluble groups whose Sylow p-subgroups
are in Xk, k a natural number. Assume that Y(Xk) is not ontained in Lp. If

G is a group of minimal order in Y(Xk) r Lp then G is a group desribed in

Theorem 4.3. We use the same notation.

Consider the normal subgroup A. Suppose that every element of order p of

A is in Φ(G). Then Ω(F ) 6 Z∞(G) ∩ A 6 Z∞(A). Then A is p-nilpotent. This
implies that Q 6 CentG(F ) 6 F , and this is not true. Therefore there exists an

element of order p, or order 2 or 4 if p = 2, say g, in F r Φ(G).
Sine F/Φ(G) is a minimal normal subgroup of G/Φ(G), then the normal

losure of 〈gΦ(G)〉 in G/Φ(G) is F/Φ(G). Hene 〈g〉GΦ(G) = F . In fat, sine

g ∈ F , then 〈g〉G 6 F and then 〈g〉G 6 Ω(P ). Hene F = 〈g〉GΦ(G) 6

Ω(P )Φ(G).
Sine Ω(P ) 6 Zk(P ), then

F/Φ(G) 6 Ω(P )Φ(G)/Φ(G) 6 Zk(P )Φ(G)/Φ(G) 6 Zk(P/Φ(G)).

Sine P/F ∼= B is a yli group, we have that the nilpoteny lass of P/Φ(G)
is lesser or equal to k.
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Consequently, the lass Y(Xk) is ontained in Lp for all k < p−1. If k = p−1
and p is not a Fermat prime, Y(Xp−1) is ontained in Lp either. Moreover, every

group G in Y(Xp−1) whose Hall p′-subgroups of G are abelian is of p-length at

most 1.
Therefore we have:

Corollary 4.6. Let p be a prime.

(1) If p is odd, then Xp−2 determines p-length loally.

(2) If p is not a Fermat prime, then Xp−1 determines p-length loally.

(3) If p is odd, then Xp−1 determines p-length loally in groups with abelian

Hall p′-subgroups.

Corollary 4.7. Suppose that p is a prime. Let G be a group and P a Sylow

p-subgroup of G. Assume that NG(P ) is p-nilpotent.

(1) If Ω(P ) 6 Zp−1(P ), then G is p-nilpotent.

(2) If p = 2, and either Ω(P ) 6 Z(P ), or Ω1(P ) 6 Z(P ) and P is quaternion-

free, then G is 2-nilpotent.

These results improve Theorem E and Theorem D of [10℄ respetively.
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