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Abstrat. It is unknown whether every group G = AB whih is the produt of two abelian-

by-�nite subgroups A and B must always have a soluble or even metabelian subgroup of �nite

index. Here we deal with the speial ase of this problem when A and B ontain abelian

subgroups of "small" index, notably of index at most 2. Some reent results on the solubility

of suh groups are disussed whih depend on speial alulations involving involutions.
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1 Introdution

A group G is alled fatorized, if G = AB = {ab | a ∈ A, b ∈ B} is the

produt of two subgroups A and B of G.
If a fatorized group G = AB with two subgroups A and B is given, the

question arises in whih way the fatorization as a produt of two subgroups has

in�uene on the struture of the fatorized group. What an be said about G
if the strutures of the two subgroups A and B are known? Statements of this

type are of speial interest when they are valid for arbitrary groups G without

additional assumptions for G. In the following we disuss some reent results

about groups whih are the produt of two abelian-by-�nite subgroups A and

B.

2 It�'s Theorem

The following elebrated theorem of N.It� (1955) was very in�uential in the

investigation of fatorized groups. It is the basis for almost all known results

about produts of two abelian subgroups.

Theorem 2.1. If the group G = AB is the produt of two abelian subgroups A
and B, then G is metabelian.
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The proof is by a surprisingly short ommutator alulation (see for instane

[1℄, Theorem 2.1.1). It seems almost impossible to generalize this argument to

more general situations, for instane for produts of two nilpotent groups (even

of lass two).

3 Produts of abelian-by-�nite groups

In view of It�'s theorem the following onjeture has been made (see also

Question 3 in [1℄).

Conjeture. Let the group G = AB be the produt of two abelian-

by-�nite subgroups A and B (i.e. A and B have abelian subgroups of

�nite index). Then G is soluble-by-�nite and perhaps even metabelian-

by-�nite.

The validity of this onjeture ould only be vari�ed so far under additional

requirements. Ya.Sysak proved it in 1986 for linear groups (see [19℄ and [20℄),

and J.Wilson in 1990 for residually �nite groups (see [8℄ or [1℄, Theorem 2.3.4).

The importane of the following theorem of N.Chernikov (1981) lies in the

fat that it requires no additional assumptions on the fatorized group G and

uses only properties from the fatorization of G (see [1℄, Theorem 2.2.5).

Theorem 3.1. If the group G = AB is the produt of two entral-by-�nite

subgroups A and B, then G is soluble-by-�nite.

It is unknown whether G must be metabelian-by-�nite in this ase.

If N is a normal subgroup of a group G and A and B are abelian subgroups

of G, then subgroup NA = NA ∩ AB = A(NA ∩ B) is metabelian by It�'s

theorem.

This useful extension of It�'s theorem may be generalized to any subgroup

H as follows (see [20℄, Lemma 9).

Lemma 3.2. Let G be a group and A and B two abelian subgroups of G. If the

subgroup H of G is ontained in the set AB, then H is metabelian.

Consider now a group G = AB whih is the produt of two subgroups A and

B, whih have (abelian) subgroup A0 resp. B0 of �nite index n =| A : A0 | and
m =| B : B0 |. Then by Lemma 1.2.5 of [1℄ the subgroup < A0, B0 > has �nite

index at most nm in G.

Clearly, if also we should have that A0B0 = B0A0 is a subgroup of G, then

G has a metabelian subgroup of �nite index (by It�).
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This shows that if additional permutability onditions are imposed, some

fatorization problems beome muh easier and sometimes trivial.

To deal with the above onjeture it is natural to onsider �rst the ase when

the indies of the abelian subgroups A0 in A and B0 in B are small. We will

onsider the following

Problem. Let the group G = AB be the produt of two subgroups

A and B, where A ontains an abelian subgroup A0 and B ontains an

abelian subgroup B0 suh that the indies n =| A : A0 | and m =| B : B0 |
are at most 2. Is then G soluble and/or metabelian-by-�nite?

4 Finite produts of subgroups with soluble subgroups

of index at most 2

Finite produts of two subgroups that ontain yli subgroups of index

at most 2 were for instane onsidered by B.Huppert [11℄, W.Sott [17℄ and

V.Monakhov [14℄ and [15℄.

V. Monakhov showed in [14℄ that a �nite group G = AB is soluble if A and

B have yli subgroups of index at most 2.
The following result by L.Kazarin [13℄ generalizes the well-known theorem of

O.Kegel and H.Wielandt on the solubility of every �nite produt of two nilpotent

subgroups (see for instane [1℄, Theorem 2.4.3).

Theorem 4.1. If the �nite group G = AB is the produt of two subgroups A
and B, eah of whih possesses a nilpotent subgroup of index at most 2, then G
is soluble.

5 Produts of yli-by-�nite groups

Produts of �nite yli groups were for instane studied in [10℄ (see also

[12℄). P.Cohn proved in [9℄ that every group G = AB whih is the produt of

two in�nite yli subgroups A and B has a non-trivial normal subgroup of G
whih is ontained in A or B. This implies that G has a subgroup H of �nite

index whose derived subgroup H ′
and the fator group H/H ′

are both yli

(see [18℄), so that G = AB is metayli-by-�nite. The question arises whether

every group whih is the produt of two yli-by-�nite subgroups, must be

metayli-by-�nite.

The following theorem of B.Amberg and Ya.Sysak [5℄ generalizes the result

of P.Cohn.
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Theorem 5.1. If the group G = AB is the produt of two subgroups A and B,

eah of whih has a yli subgroup of index at most 2, then G is metayli-by-

�nite.

Note that a non-abelian in�nite group whih has a yli group of index 2
must be the in�nite dihedral group. This ensures the existene of involutions in

A and B whih we may use for omputations inside the fatorized group G.

An important idea in the proof is to show that the normalizer in G of an

in�nite yli subgroup of one of the fators A or B has a non-trivial intersetion

with the other fator.

Reall that a group G is dihedral if it an be generated by two distint

involutions. The struture of suh groups is well-known. The main properties

are olleted in the following lemma.

Lemma 5.2. Let the dihedral group G be generated by the two involutions x and

y. Let c = xy and C =< c >. Then we have

a) The yli subgroup C is normal in G with index 2, the group G = C⋊ <
i > is the semidiret produt of C and a subgroup < i > of order 2,

b) If G is non-abelian, then C is harateristi in G.

) Every element of GrC is an involution whih inverts every element of C,

i.e. if g ∈ Gr C, then cg = c−1
for c ∈ C,

d) The set G r C is a single onjugay lass if and only if the order of C is

�nite and odd; it is the union of two onjugay lasses otherwise.

6 Finite Produts of dihedral groups

By Theorem 4.1 �nite produts of dihedral subgroups are soluble. The fol-

lowing more preie statement about their derived length is proved in [2℄.

Theorem 6.1. Let G = AB be a �nite group, whih is a produt of subgroups

A and B, where A is dihedral and B is either yli or a dihedral group. Then

G(7) = 1.

It is also shown in [2℄ that if G is a �nite 2-group then we even have G(5) = 1
in this ase, but there exist �nite 2-groups of derived lenth 3 whih are the

produt of two dihedral subgroups.

The proof of Theorem 6.1 is based on methods for �nite fatorized groups. We

mention here only two well-known lemmas that play a role in our investigations

(see for instane [1℄, Lemma 1.3.2 and [7℄, Lemma 1.1.20).
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Lemma 6.2. Let the �nite group G = AB be the produt of two subgroups A
and B, then for every prime p there exists a Sylow-p-subgroup of G whih is a

produt of a Sylow-p-subgroup of A and a Sylow-p-subgroup of B.

Lemma 6.3. Let the �nite group G = AB be the produt of subgroups A and

B and let A0 and B0 be normal subgroups of A and B, respetively. If A0B0 =
B0A0, then Ax

0B0 = B0A
x
0 for all x ∈ G. Assume in addition that A0 and B0

are π-groups for a set of primes π. If Oπ(G) = 1, then [AG
0 , B

G
0 ] = 1.

7 Produts of periodi loally dihedral groups

A group G is loally dihedral if it has a loal system of dihedral subgroups,

i.e. every �nite subset of G is ontained in some dihedral subgroup of G.

Every periodi loally dihedral group is loally �nite and every �nite

subgroup of suh a group is ontained in a �nite dihedral subgroup.

Lemma 7.1. Every periodi loally dihedral group G has a loally yli normal

subgroup C of index 2, and every element of GrC is an involution that inverts

every element of C;

G = C⋊ < i > is the semidiret produt of C and a subgroup < i > of order 2.

The following well-known lemma is useful for the study of loally �nite fa-

torized groups (see for instane [1℄, Lemma 1.2.3).

Lemma 7.2. Let the loally �nite group G = AB be the produt of two subgroups

A and B, and let A0 and B0 be �nite normal subgroups of A and B, respetively.

Then there exists a �nite subgroup E of G suh that

A0, B0 ⊆ E ⊆ NG(A0, B0) and E = (A ∩ E)(B ∩ E).

The following solubility riterion is proved in [2℄). The speial ase when the

group G is periodi was already dealt with in [4℄.

Theorem 7.3. Let the group G = AB be the produt of two periodi loally

dihedral subgroups A and B. Then G is soluble.

For a omplete proof we refer the reader to [2℄. Here we sketh only the

argument that if the result is false, there will be a ounterexample with no

nontrivial soluble normal subgroup.

Assume that the theorem is false and there exists a nonsoluble groupG = AB
with periodi loally dihedral subgroups A and B. Then A = A0〈c〉, B = B0〈d〉
for two involutions c ∈ ArA0 and d ∈ B rB0, with cac = a−1

for eah a ∈ A0
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and dbd = b−1
for eah b ∈ B0; A0 and B0 are loally yli normal subgroups

of A resp. B.

By Lemma 3.2 it is easy to see that both subgroups A and B must be non-

abelian. The ase that A ∩ B =< c > is easier and onsidered �rst. Thus we

may assume that A ∩B = 1.

Assume that N 6= 1 is a soluble normal subgroup of G. Clearly R = NA =
A(NA ∩ B) is soluble by the modular law, and so loally �nite (as a soluble

produt of two periodi groups).

If L is a �nite normal subgroup of A and S is a �nite normal subgroup

of NA ∩ B, then the subgroup H =< L, S > is �nite and so the normalizer

K = NR(< L, S >) = (K ∩A)(K ∩B) is fatorized by Lemma 7.2.

Sine the �nite group K/CK(H) is the produt of two subgroups of dihedral

groups, its derived length is at most 7 by Theorem 6.1. SineH∩CK(H) = Z(H),
this implies that H(8) = 1.

If R0 =< A0, R ∩B0 >, then R
(8)
0 = 1 and sine | R : R0 |≤ 4, the subgroup

R and so N have derived length at most 9. Then also the produt T of all soluble

normal subgroups of G is a soluble normal subgroup of G of derived length at

most 9. Thus G/T is a ounterexample with no soluble normal subgroup N 6= 1.
The laim is proved.

8 Produts of generalized dihedral groups

It turns out that groups with the following property an be handled by our

methods.

De�nition 8.1. A group G is generalized dihedral if it is of dihedral type,

i.e. G ontains an abelian subgroup X of index 2 and an involution τ whih

inverts every element in X.

It is easy to see that A = X⋊ <a> is the semi-diret produt of an abelian

subgroup X and an involution a, so that xa = x−1
for eah x ∈ X.

Clearly dihedral and loally dihedral groups are also generalized dihedral.

The main properties of generalized dihedral groups are olleted in the fol-

lowing lemma.

Lemma 8.2. Let A be a generalized dihedral group. Then the following holds

1) every subgroup of X is normal in A;

2) if A is non-abelian, then every non-abelian normal subgroup of A ontains

the derived subgroup A′
of A;
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3) A′ = X2
and so the ommutator fator group A/A′

is an elementary

abelian 2-group;

4) the enter of A oinides with the set of all involutions of X;

5) the oset aX oinides with the set of all non-entral involutions of A;

6) two involutions a and b in A are onjugate if and only if ab−1 ∈ X2
.

7) if A is non-abelian, then X is harateristi in A.

The solubility of every produt of two generalized dihedral groups is proved

in B.Amberg and Ya.Sysak [6℄.

Theorem 8.3. Let the group G = AB be the produt of two subgroups A and

B, eah of whih is either abelian or generalized dihedral. Then G is soluble.

The proof of this theorem is elementary and uses almost only omputations

with involutions. Extensive use is made by the fat that every two involutions of

a group generate a dihedral subgroup. A main idea of the proof is to show that

the normalizer in G of a non-trivial normal subgroup of one of the fators A or

B has a non-trivial intersetion with the other fator.

If this is not the ase we may �nd ommuting involutions in A and B and

produe a nontrivial abelian normal subgroup by other omputations. The fol-

lowing lemma gives some onditions under whih two permutable generalized

dihedral subgroups A and B of a group have permutable involutions a ∈ A and

b ∈ B. A speial ase of this is already used in the proof of Theorem 5.1 and

disussed in [20℄.

Lemma 8.4. Let G be a group of the form G = AB with subgroups A and B
suh that A = X⋊ <c> and B = Y⋊ <d> for abelian subgroups X and Y and

involutions c and d. If xc = x−1
for eah x ∈ X and

NA(<y>) = 1 = NB(<x>)

for every non-trivial yli normal subgroup <x> of A and <y> of B, then the

subgroup B is non-abelian and there exist involutions cx ∈ A and yd ∈ B suh

that (cx)(yd) = (yd)(cx).

The ase when one of the two subgroups A and B is abelian, is onsidered

separately and leads to stronger results. In this ase we obtain a bound on the

solubility length of G.
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Theorem 8.5. Let the group G = AB be the produt of a generalized dihedral

subgroup A and an abelian subgroup B, then the derived length of G does not

exeed 5.

The following onsequene of Theorem 8.3 should be ompared with Theorem

5.1.

Corollary 8.6. Let the group G = AB be the produt of two subgroups A and

B, eah of whih ontains a torsion-free loally yli subgroup of index at most

2. Then G is soluble and metabelian-by-�nite.

9 Groups saturated by dihedral subgroups

A group G is saturated by subgroups in a set S if every �nite subgroup

S of G is ontained in subgroup of G whih is isomorphi to a subgroup in S.

Lemma 9.1. A loally �nite group whih is saturated by dihedral subgroups is

loally dihedral.

Proof. Let x and y be two elements of G with o(x) > 2 and o(y) > 2. By
hypothesis the �nite group < x, y > is ontained in a proper �nite dihedral

group D =< a > ⋊ < i >. Sine x ∈< a >, y ∈< a >, it follows that xy = yx.
This shows that the elements of G with order more than 2 generate a loally

yli normal subgroup H of G. Clearly the set GrH is non-empty and onsists

only of involutions.

Let t ∈ G rH be a �xed and x ∈ G rH an arbitrary involution. If h ∈ H
with o(x) > 2, then the �nite subgroup < h, x, t > is ontained in a dihedral

subgroup D =< h1 > ⋊ < t >. Then h1 ∈ H by the de�nition of H. Thus

x ∈ D ⊆ H⋊ < t > for every involution x ∈ G. It follows that G = H⋊ < t >.

The lemma is proved.

QED

A.Shlopkin and A.Rubashkin in [16℄ extended Lemma 9.1 to several lasses of

periodi groups. Using Theorem 7.3 on produts of two periodi loally dihedral

subgroups we prove the following in [4℄.

Theorem 9.2. If the in�nite periodi group G is saturated by �nite dihedral

subgroups, then G is a loally �nite dihedral group.

Assume there exists a periodi group G saturated by dihedral subgroups

whih is not loally dihedral. Then G is not loally �nite by Lemma 9.1. By

results in [16℄ the entralizer CG(γ) of every involution γ in G is a (�nite or

in�nite) periodi loally dihedral group, and there exist at least two involutions

τ and µ 6= τ in a Sylow-2-subgroup S of G.
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Then we show that G = AB where A = CG(τ) and B = CG(µ) are loally

dihedral. By Theorem 7.3 the fatorized group G is soluble and so loally �nite.

This ontradition proves the theorem.

10 Chernikov groups

An abelian-by-�nite group with minimum ondition on its subgroup is alled

a Chernikov group. Its struture is as follows.

The �nite residual J = J(G) of a group G is the intersetion of all sub-

groups of G with �nite index

J(G) =
⋂

G/N,N ⊆ G, |G : N | < ∞

A group G is a Chernikov group if and only if G/J(G) is �nite and J(G)
is the diret produt of �nitely many quasiyli (Prüfer) p-groups for �nitely

many primes p,
Chernikov groups may be handled by onsidering the following indution

parameter.

The type of a Chernikov group X is the parameter Θ(X) = (r,m) where

(1) r = r(X) is the number of quasiyli (Prüfer) subgroups in a deomposi-

tion of the radiable abelian group J(X) (the rank of J(X))

(2) m = m(X) = |X : J(X)|.

A linear ordering on the set of pairs (r, s) is given by (r, s) < (r1, s1) if r < r1
or r = r1 and s < s1.

If U is a subgroup of X, then Θ(U) 6 Θ(X).
If Θ(U) = Θ(X), then U = X.

N.F. Sesekin has shown in 1968 that every group, whih is the produt of two

abelian subgroups with minimum ondition, also satis�es the minimum ondition

on all its subgroups and is therefore a metabelian Chernikov group. The present

author proved in 1973 that every soluble produt G = AB of two Chernikov

subgroups A and B is likewise a Chernikov group and J(G) = J(A)J(B) (see

[1℄, Corollary 3.2.8 and 3.2.10).

These results were widely generalized by several authors over the years, whih

may be summarized as follows (see for example[1℄, setion 3.2).

Theorem 10.1. Let the group G = AB be the produt of two Chernikov sub-

groups A and B. If G is soluble or generalized soluble in some sense, then G is
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also a Chernikov group and we have

J(G) = J(A)J(B).

11 Produts of Chernikov subgroups "with index at

most 2"

Is an arbitrary group G = AB whih is the produt of two Chernikov sub-

groups A and B likewise a Chernikov group? It is natural to onsider this ques-

tion �rst in the ase that the two subgroups A and B have abelian subgroups

of index at most 2. If one of the two subgroups A or B is of dihedral type, a

positive answer is given in B.Amberg and L.Kazarin [3℄).

Theorem 11.1. Let the group G = AB be the produt of two Chernikov sub-

groups A and B, whih both have abelian subgroups A0 and B0 respetively with

index at most 2.
Let further one of the two subgroups, A say, be of dihedral type, i.e. A ontains

an involution τ whih inverts every element of A0.

Then G is a soluble Chernikov group.

Moreover, we have that J(G) = J(A)J(B) and if the index of J(A) in A is

m and the index of J(B) in B is n, then the index of J(G) in G is at most mn.
The proof of Theorem 11.1 is by indution on the sum of the types Θ(A) of

A and Θ(B) of B. For details the reader is referred to [3℄.

It would be interesting to know whether in Theorem 11.1 the ondition that

one of the two subgroups A and B is of dihedral type an be omitted.

Perhaps this problem ould �rst be studied for trifatorized groups of the

form

G = AB = AC = BC

for three subgroups A, B and C.

In Problem 13.27 of the Kourovka Note Book it was asked whether every

trifatorized group with three Chernikov subgroups A, B and C is likewise a

Chernikov group.

The following speial ase of this unsolved problem seems to be open even

for a loally �nite group G.

Question. Is the group G = AB = AC = BC a Chernikov group, if the

subgroups A, B, C are Chernikov groups with A/J(A), B/J(B) and C/J(C) of
order at most 2?
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On the other hand, it seems likely that there exist examples of trifatorized

groups G = AB = AC = BC whih are the produt of three subgroups with

Min, but G itself does not satisfy Min. A orresponding statement is probably

true for loally �nite groups.
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