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Abstra
t. In these le
ture we present some results whi
h intertwine topi
s as graded al-

gebras, polynomial identities and algebras of generi
 elements. Some of these 
onne
tions are


lassi
al and well known to di�erent 
ommunities (e.g. 
rossed produ
ts, Galois 
ohomology,

algebra of generi
 matri
es, general group gradings on �nite dimensional algebra). Some other


onne
tions among these topi
s are relatively new where these are realized via the theory of

group graded polynomial identities. In parti
ular, using (G-graded) asymptoti
 PI theory, we

outline the proof of a 
onje
ture of Bahturin and Regev on regular gradings on asso
iative

algebras.
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1 Introdu
tion

The purpose of these le
tures is to 
ombine three topi
s, namely gradings on

asso
iative algebras, polynomial identities and Brauer groups (division algebras).

There are well known 
onne
tions among these topi
s. For instan
e, Galois


ohomology is one of the main tools in the study of �nite dimensional k-
entral
simple algebras and Brauer groups. One way to realize this 
onne
tion is via

�
rossed produ
t stru
tures� one 
an put on (
ertain) k-
entral simple algebras.

Another way is via �Galois des
ent�.

Question: Can one introdu
e a 
rossed produ
t G-grading on every k-
entral
simple algebra and in parti
ular on every k-
entral division algebra?

Amitsur gave a negative answer to that question in 1972 by 
onstru
ting

�non
rossed produ
t� division algebras (see [8℄). His remarkable idea was to use

a �generi
 
onstru
tion� and show that the �generi
 division algebra� is in gen-

eral not a 
rossed produ
t. The generi
 division algebra 
an be 
onstru
ted by

means of polynomial identities and this 
an serve as a bridge between Brauer
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groups and polynomial identities. In a similar way one 
an use G-graded poly-

nomial identities to 
onstru
t �generi
 
rossed produ
ts�. In these le
tures I will

�rstly re
all these notions (e.g. G-gradings, 
rossed produ
ts, Brauer groups,

polynomial identities) and se
ondly I'll present relatively more re
ent results on

G-graded polynomial identities whi
h provide new �bridges� among the topi
s

mentioned above. In parti
ular, at the end, I will present a positive solution of

a 
onje
ture of Bahturin and Regev on group gradings on asso
iative algebras.

We start our journey with G-gradings on asso
iative algebras.

2 Group gradings and Brauer groups

Let A be an asso
iative algebra over a �eld F and G any group. We say that

A is G-graded if there exists a ve
tor spa
e de
omposition

A ∼= ⊕g∈GAg

su
h that for any g, h ∈ G we have AgAh ⊆ Agh. We refer to Ag, g ∈ G, as the
homogeneous 
omponent of degree g.

We say that the G-grading on A is strong if AgAh = Agh for every g, h ∈ G.
We say that the algebra A is a (ring theoreti
) G-
rossed produ
t over Ae (the

identity 
omponent) if and only if the homogeneous 
omponent Ag 
ontains

an invertible element for every g ∈ G. Note that if A is a (ring theoreti
) G-

rossed produ
t, then it is ne
essarily strongly graded. The 
onverse is false as

the following example shows.

Example 2.1. Let A be the algebra of 3× 3-matri
es over a �eld F and G the

group with two elements (denoted by e, σ). Consider the G-grading on A given

by

Ae = spanF {e11, e12, e21, e22, e33}
Aσ = spanF {e13, e23, e31, e32}.

It is easy to 
he
k that the grading is strong whereas the σ 
omponent has no

invertible elements.

The example above is a very spe
ial 
ase of a general type of G-grading on

the algebra of n× n-matri
es over a �eld F .

De�nition 2.2. (Elementary grading) Let A be the algebra of n × n-matri
es

over a �eld F and let G be any group. Fix an n-tuple α = (g1, . . . , gn) ∈ Gn
.

For every g ∈ G we determine the g-homogeneous 
omponent of A to be

Ag = spanF {ei,j : g = g−1
i gj}.
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One 
he
ks easily that this indeed determines a G-grading on A.

Remark 2.3. 1) Note that α = (e, e, σ) ∈ {e, σ}3 yields the grading 
onsidered

in Example 2.1.

We observe (in the de�nition above) that sin
e the algebra A is simple, the

G-graded algebra A is G-simple (i.e. no nontrivial G-graded two sided ideals).

Next we present a �
ompletely� di�erent type of G-gradings on semisimple

algebras whi
h turn into G-simple algebras. Let G be a �nite group and F a

�eld of 
hara
teristi
 zero or p and p does not divide the order of the group.

One knows (by Mas
hke's theorem) that the group algebra FG is semisimple.

Furthermore, sin
e every nonzero homogeneous element is invertible, the group

algebra FG is G-simple. More generally, we may twist the produ
t in FG by

means of a 2-
o
y
le on G with 
oe�
ients in F ∗
(re
all that a fun
tion f :

G×G → F ∗
is a 2-
o
y
le if for every σ, τ, ν ∈ G we have that f(στ, ν)f(σ, τ) =

f(σ, τν)f(τ, ν)) and obtain the twisted group algebra F fG. It is well known

that F fG is a semisimple (asso
iative) algebra. Furthermore, we have that every

nonzero homogeneous element is invertible and hen
e F fG is G-simple. We 
an

extend this 
onstru
tion a bit more by taking a �nite subgroupH of any group G
and 
onsidering the twisted group algebra F fH as a G-graded algebra where the

g homogeneous 
omponent is 0 if g ∈ GrH (here: f is a 2-
o
y
le onH). Clearly,

we obtain an H-simple algebra as above but we note that the algebra F fH is

also G-simple. In 
ase the �eld F is algebrai
ally 
losed of 
hara
teristi
 zero, we

have that these two examples are the building blo
ks of any �nite dimensional

G-simple algebra. This is a theorem of Bahturin, Sehgal and Zai
ev.

Theorem 2.4 ([10℄). Let A be a �nite dimensional G-graded simple algebra.

Then there exists a subgroup H of G, a 2-
o
y
le α : H × H → F ∗
where the

a
tion of H on F is trivial, an integer r and an r-tuple g = (g1, g2, . . . , gr) ∈
Gr

su
h that A is G-graded isomorphi
 to Λ = FαH ⊗ Mr(F ) where Λg =
spanF {πh ⊗ ei,j | g = g−1

i hgj}. Here πh ∈ FαH is a representative of h ∈ H
and ei,j ∈ Mr(F ) is the (i, j) elementary matrix.

In parti
ular the idempotents 1 ⊗ ei,i as well as the identity element of A are

homogeneous of degree e ∈ G.

Remark 2.5. Clearly, the G-graded algebra A is determined up to a G-graded

isomorphism by the presentation PG = (g = (g1, g2, . . . , gr), H, α).
An interesting question that arises here is the isomorphism problem, namely

what 
an we say about presentations PG,1 = (g1, H1, α1) and PG,2 = (g2, H2, α2)
of two G-graded algebras A1 and A2 if we know they are G-graded isomorphi
?

De�nitely it is not true that the tuples g1 and g2 de�ning the 
orresponding

elementary grading must be the same. They also need not be equal up to per-

mutation. Similarly, the �nite subgroups H1 and H2 whi
h determine the �ne
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grading need not be equal as subgroups of G but they must be 
onjugate in G.

It turns out that there are 3 basi
 moves on any presentation PG of a G-graded

algebra A whi
h yield presentations of algebras whi
h are G-graded isomorphi


to A. The theorem says that any two algebras with given presentations are G-

graded isomorphi
 if and only if one 
an get from one presentation to the other

applying a �nite �nite number of moves of that kind. In 
ase G is abelian this

result was proved by Koshlukov and Zai
ev (see [22℄). Later, in a joint work

with Darrell Haile (see [5℄), we proved it for any group G (i.e. not ne
essarily

abelian).

An important elementary G-grading is the so 
alled �
rossed produ
t grad-

ing� (note: this is a very spe
ial 
ase of the �ring theoreti
 
rossed produ
t� we

mentioned above). Let G be a �nite group of order n and let A be the algebra

of n× n-matri
es over an algebrai
ally 
losed �eld F . We 
onsider the element-

ary G-grading on A where the n-tuple g = (g1, . . . , gn) 
onsists of all elements

of G. It is easy to see that for any g ∈ G, the g-homogeneous 
omponents is

of dimension n and is obtained by the produ
t of all diagonal matri
es with a

suitable permutation matrix (namely, the permutation matrix whose entry (i, j)
is 1 whenever g = g−1

i gj and zero otherwise). We note that the e-
omponent is


ommutative and for any g ∈ G we have agbg−1cg = cgbg−1ag, where ag, cg ∈ Ag

and bg−1 ∈ Ag−1 .

This grading takes us to Brauer group theory and spe
i�
ally to the inter-

pretation of the Brauer group Br(k), k a �eld, as H2(Gk, k
∗
sep) where Gk is the

absolute Galois group of the �eld k and k∗sep is the separable 
losure of k. Hen
e,
before we 
ontinue with gradings, let us make a short trip into Brauer groups

theory and the theory of division algebras.

We �x a �eld k whi
h is usually not algebrai
ally 
losed and we 
onsider �nite

dimensional 
entral simple algebras over k. By Wedderburn's theorem, su
h an

algebra is isomorphi
 to the algebra of r × r matri
es over a �nite dimensional

division algebraD, whose 
enter is equal to k. Moreover, the integer r is uniquely
determined and the division algebra D is uniquely determined up to a k-algebras
isomorphism.

The Brauer group of k (denoted by Br(k)) 
onsists of equivalen
e 
lasses

of �nite dimensional k-
entral simple algebras, where two algebras are equival-

ent if and only if they have underlying division algebras whi
h are k-algebra
isomorphi
. So in fa
t, the elements Br(k) are in one to one 
orresponden
e

with the k-
entral division algebras. It looks a bit strange to de�ne the Brauer

group in that way. Why not just 
onsider the division algebras themselves? An

important reason is that we 
an introdu
e a natural multipli
ation on the set

of 
lasses, namely the tensor produ
t of 
lasses representatives over k. It is well
known that the tensor produ
t over k of two k-
entral division algebras is a
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k-
entral simple algebra (and hen
e matri
es over a k-
entral division algebra)

but in general is not a division algebra. One shows (easily) that the produ
t of


lasses, via the tensor produ
t over k of their representatives, is well de�ned and

it indu
es an abelian group stru
ture on Br(k). Indeed, the identity element is

the 
lass represented by k and the inverse of [A] ∈ Br(k) is [Aop] where Aop
is

the opposite algebra of A (one shows that A⊗Aop ∼= Md(k) where d = dimk(A)).
We refer the reader to [19℄ for a �ring theoreti
� introdu
tion to the theory of

simple algebras and Brauer groups.

An important 
hara
terization of k-
entral simple algebras is given by �k-
algebras that be
ome a matrix algebra after extending s
alars to an algebrai
ally


losed �eld�. We say that k-
entral simple algebras are twisted k-forms of matrix

algebras. This point of view will be very useful for us when we 
onsider the third

topi
 of these le
tures, polynomial identities. We refer the reader to [29℄ for an

introdu
tion to the theory of Brauer groups using Galois des
ent.

We present now an important way to 
onstru
t k-
entral simple algebras. Let

L/k be a �nite Galois extension with Galois groupG. Consider the 
orresponding

skew group algebra LtG. It is isomorphi
 to the group algebra LG as a left L-
ve
tor spa
e and hen
e its elements are expressed by

∑
σ∈G aσuσ, where aσ ∈ L

and {uσ}σ∈G is a basis of LtG over L. The multipli
ation in LtG is de�ned

as to satisfy the relation auσbuτ = aσ(b)uστ , where a, b ∈ L and σ(b) is the

a
tion of σ on b as determined by the Galois a
tion of G on L. It is easy to

show that any element of LtG determines an endomorphism in Endk(L) by∑
σ∈G aσuσ(a) =

∑
σ∈G aσσ(a) and this 
orresponden
e indu
es an isomorphism

of LtG with Endk(L) ∼= Mn(k) where n is the degree of the extension L/k. We

note in parti
ular that LtG represents the identity element in Br(k). Now we

wish to twist the produ
t in LtG by means of a 2-
o
y
le f : G × G → L∗

(note: unlike the de�nition above, the a
tion of G on L is not trivial). Re
all

that a fun
tion f : G × G → L∗
is a 2-
o
y
le if for every σ, τ, ν ∈ G we

have f(στ, ν)f(σ, τ) = f(σ, τν)f(τ, ν)σ. Then by means of f we �
hange� the

multipli
ation in LtG as to satisfy the rule

auσbuτ = aσ(b)f(σ, τ)uστ .

As above, a, b ∈ L and σ(b) is the a
tion of σ on b. It is easy to show that

the algebra we obtain is a k-
entral simple algebra of dimension n2
over k. We

denote it by Lf
t G and refer to it as a 
rossed produ
t of G over L (see [19℄).

Remark 2.6. We emphasize on
e again that the terminology �
rossed produ
t�

means di�erent type of algebras for di�erent resear
hers. The general de�nition

(for ring theorists and hen
e �ring theoreti
 
rossed produ
t�) means a G-graded

algebra where every homogeneous 
omponent 
ontains an invertible element (see
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[23℄). The more restri
tive terminology (used by resear
hers in Brauer groups

and division algebras) means a k-
entral simple algebra of the form Lf
t G.

Any 2-
o
y
le determines a 
ohomology 
lass in H2(G,L∗) where 2-
o
y
les
f and g are 
ohomologi
ally equivalent (
ohomologous) if there exists a 1-
parameter family {λσ}σ∈G ⊂ L∗

su
h that for any σ and τ in G we have

f(σ, τ) = λσσ(λτ )λ
−1
στ g(σ, τ).

It is easy to show that up to a G-graded isomorphism the algebra Lf
t G

depends only on the 
ohomology 
lass α = [f ] ∈ H2(G,L∗) and not on the

representative f of α. We therefore write Lα
t G where α ∈ H2(G,L∗). The 
rossed

produ
t algebras play a key role in Brauer group theory sin
e any Brauer 
lass


an be represented by a 
rossed produ
t algebra. In fa
t, a k-
rossed produ
t

algebra B = Lα
t G be
omes trivial when extending s
alars to L, that is BL =

B ⊗k L = Mn(L) where n = ord(G), and one shows that the map

H2(G,L∗) → Br(k),

determined by sending a 
ohomology 
lass α to the 
lass represented by the


rossed produ
t algebra Lα
t G indu
es an isomorphism between H2(G,L∗) and

Br(L/k) = {[A] ∈ Br(k) : A⊗k L = Mr(L), some r}.
The fa
t that any Brauer 
lass may be represented by a 
rossed produ
t

algebra says that for any k-
entral �nite dimensional division algebra there exists

an integer n su
h that the algebra of n × n-matri
es over D is k-isomorphi
 to

a 
rossed produ
t algebra. But what about the division algebra itself? It was

an open question for many years whether any k-
entral division algebra is a


rossed produ
t. This is known to be true for lo
al or global �elds (e.g. �nite

extensions of Q). In 1972, Amitsur showed that this is false in general by using

generi
 
onstru
tions (see [8℄). What is the relevan
e of all this to us? Re
all

that we started our dis
ussion with the des
ription of gradings on Mn(F ) and in

parti
ular we 
onsidered elementary gradings (
rossed produ
t gradings) where

the tuple (g1, . . . , gn) 
onsists pre
isely of all elements of the group G (with

multipli
ity 1). It turns out and not di�
ult to prove, that if we take a 
rossed

produ
t algebra Lα
t G and extend s
alars to F (the algebrai
 
losure of k), we

obtain Mn(F ) with the 
rossed produ
t grading just mentioned. So, the 
rossed

produ
ts areG-graded twisted k-forms of the matrix algebra with the elementary

grading. This will play a role in the sequel.

Before turning to our 3rd topi
, namely polynomial identities, let me present

some results whi
h 
on
ern with ��ne gradings�. It is very well known that a

group algebra FG is semsimple (F of 
hara
teristi
 zero) and it is never simple

(unless G is of order 1). What about the twisted group algebra F fG where f is



Graded Algebras, Polynomial Identities and Generi
 Constru
tions 7

a 2-
o
y
le? Can it be a simple algebra? For instan
e, 
onsider the quaternion

algebra over the 
omplex �eld F . It is isomorphi
 to M2(F ). On the other hand

it is isomorphi
 to a twisted group algebra with the Klein 4-group, where the 2-

o
y
le is determined su
h that the generators of the group anti
ommute. More

generally, let k be a �eld whi
h 
ontains a primitive nth root of unity ζ. For any
a, b ∈ k∗ and integer n ≥ 2, we 
onsider the �symbol algebra� (a, b)n,k of degree n
over the �eld k. It is given by (a, b)n,k = 〈x, y : xn = a, yn = b, yx = ζnxy〉 (i.e.,
the k-algebra generated by x, y subje
t to the relations xn = a, yn = b, yx =
ζnxy). It is not di�
ult to show that any symbol algebra is k-
entral simple.

A fundamental result of Merkurjev and Suslin says that if k-
ontains enough

roots of unity then all elements of Br(k) are represented by tensor produ
ts

of symbol algebras. More pre
isely, if k 
ontains a primitive n-th root of unity,

then any element in Br(k) whose order divides n is represented by the tensor

produ
t of symbol algebras (over k). Note that the symbol algebra (a, b)n,k is

isomorphi
 to kfZn ×Zn with a suitable 2-
o
y
le f . Moreover, it is easy to see

that tensor produ
t of symbol algebras is isomorphi
 to a twisted group algebra

of the form kfU×U , where U is a (�nite) abelian group. So we see that twisting

a group algebra FG with a 2-
o
y
le where the group G is abelian may give

a matrix algebra and more generally provides important examples of k-
entral
simple algebras.

Question: Suppose G is nonabelian. Can we twist a group algebra FG into

a matrix algebra? It turns out that the answer is positive.

De�nition 2.7. A �nite group G is of 
entral type (non
lassi
ally) if it admits

a nondegenerate 2-
o
y
le f with values in C∗
su
h that CfG ∼=Mn(C) for some

n.

Clearly, a group of 
entral type must be of square order. Howlett and Isaa
s

proved in 1982, using the 
lassi�
ation of �nite simple groups, that su
h a group

must be solvable (see [20℄).

Let me present an example of a group of 
entral type of order 36. Consider
the semidire
t produ
t G = Sym(3)⋉C6 where Sym(3) is the symmetri
 group

of order 6 (generated by an element σ of order 3 and by an involution τ) and
C6 is the 
y
li
 group of order 6 (generated by x). We let Sym(3) a
t on C6 via

the involution τ (that is via the image Sym(3)/ < σ >) where τ(x) = x−1
. One

shows with this set up that there is a bije
tive 1-
o
y
le from Sym(3) onto C6

and using that fun
tion one 
an 
onstru
t a nondegenerate 2-
o
y
le on G. It
turns out that this is a spe
ial 
ase of a rather general 
onstru
tion introdu
ed

by Etingof and Gelaki (see [14℄). Let H be a group of order n and suppose it

a
ts on an abelian group A of order n making A and hen
e A∗
, the dual of

A, into an H-module. Suppose there exists a bije
tive 1-
o
y
le π : H → A∗
.
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Then the semidire
t produ
t H ⋉A is a group of 
entral type. Note that by the

result of Isaa
s and Howlett mentioned above, any group H admiting a bije
tive

1-
o
y
le onto an abelian group must be solvable. Let us remark here that the

last statement 
an be proved without the 
lassi�
ation of �nite simple groups.

The 
onstru
tion of Etingof and Gelaki was extended by Ben David and

Ginosar. Using a bije
tive 1-
o
y
les fromH onto A∗
as above, one 
an 
onstru
t


entral type groups whi
h are nonsplit extensions of H and A. Based on that

theory, jointly with Angel del Rio, we found an example of a group of 
entral

type of order 64 whi
h 
annot be expressed as a semidire
t produ
t of two groups

of order 8 (see [12℄).

3 Polynomial identities

We now present the 3rd topi
 in this series of le
tures, namely polynomial

identities of asso
iative algebras and G-graded polynomial identities of G-graded
asso
iative algebras. We'll work throughout over a �eld F of 
hara
teristi
 zero.

�Most of the time� the �eld F will represent an algebrai
ally 
losed �eld but if

we want to 
onne
t PI theory with Brauer theory we drop that assumption. In

parti
ular we will be interested in �nding, roughly speaking, �small �eld� over

whi
h our algebras are de�ned. This will take us to a task whi
h we 
all minimal

�elds of de�nition of a given algebra. It is obvious that a matrix algebra is de�ned

over the rationals, but what about the G-simple algebras over the 
omplex �eld?

What is the minimal �eld of de�nition? In general we don't know the answer to

that question. However, we have an answer in 
ase the group G is abelian, or

in 
ase the grading is elementary or �ne. In order to prove this we need �graded

polynomial identities�.

Let us start our presentation with ordinary polynomial identities. Let A be

an algebra over a �eld F . We let F 〈X〉 be the free algebra over F with a 
ount-

able set of variables X. Elements of the free algebra will be 
alled polynomials in

non
ommuting variables and we say that a nonzero polynomial f is an identity of

the algebra A if the polynomial vanishes upon any evaluation on A. We also say

that the algebra A satis�es the polynomial identity f (or simply say that A satis-

�es the polynomial f). So for example [x, y] = xy−yx is a polynomial identity of

any 
ommutative algebra and 
learly this 
hara
terizes 
ommutative algebras. A

more interesting example is the Wagner identity of M2(F ). Consider the polyno-
mial [x, y]. Clearly, any evaluation of this polynomial on 2×2-matri
es is a tra
e

zero matrix and hen
e the eigenvalues are both zero or of opposite sign. If both

eigenvalues are zero then the square of the matrix is zero and hen
e in that 
ase

[x, y]2 represents the zero matrix. If the eigenvalues are of opposite sign, then the

matrix is diagonalizable, and so our matrix is similar to a diagonal matrix of the
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form (d,−d). Hen
e, in that 
ase, the square of the matrix is similar to (d2, d2)
whi
h is a s
alar matrix and nonzero. It follows that our matrix is s
alar. This

will be important for us later on. The polynomial [x, y]2 is an example of a 
entral

(nonidentity) polynomial. The existen
e of su
h polynomials for n× n-matri
es

is a highly nontrivial problem whi
h was solved independently by Formanek and

Razmyslov. Later I will present a 
entral polynomial that was 
onstru
ted by

Regev. But where is the polynomial identity? Wagner's identity is [[x, y]2, z]. We

note that this is an homogeneous nonmultilinear polynomial of degree 5. It is
not di�
ult to show (left to the reader) that the algebra of 2 × 2-matri
es has

an identity of smaller rank, namely s4 =
∑

σ∈Sym(4) sgn(σ)xσ(1)xσ(2)xσ(3)xσ(4).
More generally, the algebra of n × n-matri
es over a �eld satis�es the polyno-

mial identity s2n =
∑

σ∈Sym(2n) sgn(σ)xσ(1)xσ(2) · · ·xσ(2n). This is the famous

Amitsur-Levitzki theorem. Furthermore, and this is easy to show, the algebra

Mn(F ) does not satisfy any nonzero identity of degree < 2n. Let me show for

instan
e that Mn(F ) does not satisfy s2n−1. Consider the produ
t of the 2n− 1
elementary n×n-matri
es e1,1e1,2e2,2 · · · e(n−1),nen,n. We note that this produ
t

is equal to e1,n and hen
e nonzero. On the other hand, any nontrivial permuta-

tion vanishes as some of the indi
es do not mat
h. We therefore see, by evaluating

the variables of s2n−1 as above, that we get e1,n and hen
e nonzero.

We say that an algebra is PI if it satis�es at least one nontrivial identity. As

we saw above, 
ommutative algebras are PI. Finite dimensional algebras are also

PI sin
e any algebra of dimension n satis�es any polynomial whi
h alternates

on n+1 variables. �In parti
ular� any �nite dimensional algebra over F satis�es

the Capelli polynomial

cn+1 =
∑

σ∈Sym(n+1)

sgn(σ)y0xσ(1)y1xσ(2)y2 · · ·xσ(n+1)yn+1.

Does every PI algebra satis�es a Capelli polynomial cn for some n? The

answer is negative. A 
ounter example whi
h is key for the whole theory of poly-

nomial identities is the Grassmann algebra E of 
ountable rank. By de�nition

E = F 〈x1, x2, . . . , xn, . . .〉/ < xixj + xjxi : i, j ≤ 1 > .

The algebra E is spanned by multilinear monomials where the monomials of

even length and odd length determine a Z2-grading in a natural way. It satis�es

the identity [[x, y], z] and this identity generates all identities in a sense I'll

soon des
ribe. It is not di�
ult to prove that E does not satisfy any Capelli

polynomial.

Given an algebra A whi
h is PI, we 
onsider the set of all polynomial iden-

tities it satis�es. We denote this set by Id(A). It is easily seen that Id(A) is

a 2-sided ideal of F 〈X〉. Furthermore, Id(A) is 
losed under substitutions (or
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equivalently, it is 
losed under endomorphisms of F 〈X〉). We 
all an ideal with

that property, a T -ideal. Note that any T -ideal is the T -ideal of identities of an
algebra. Indeed, given a T -ideal I we may 
onsider the 
orresponding relatively

free algebra F 〈X〉/I. It is easy to see that Id(F 〈X〉/I) = I.

Now, we wish to �nd �simpler� generators of Id(A). Using a Vandermonde

argument one 
an show easily that if f is a polynomial identity of A, then if we

de
ompose f into a sum of polynomials f1+f2+ . . .+fr where ea
h fi is the sum
of all monomial of f with exa
tly the same variables, then fi is an identity for

every i. Next, using a well known multilinearization pro
ess, all identities are 
on-
sequen
es of polynomials identities whi
h are multilinear. Sin
e this is important

for us let me illustrate how this is done. Take, for instan
e, the polynomial x2.
Suppose it is an identity of an algebra A. Then (x1+x2)

2 = x21+x1x2+x2x1+x22
is also an identity of A. The terms x21 and x22 are identities for the same reason

and so the multilinear polynomial x1x2+x2x1 is an identity of A. We 
an dedu
e

that the multilinear polynomial x1x2 + x2x1 is a 
onsequen
e of (i.e. belongs to

the T -ideal generated by) the polynomial x2. But what about the 
onverse? In-
deed, we would like to see whether our original polynomial x2 is a 
onsequen
e of
x1x2+x2x1. Putting x1 = x2 = x we obtain 2x2 and not x2. In order to get x2 we
need to divide by 2 and so we need our �eld to be of 
hara
teristi
s not 2. This is
a major problem and indeed, in positive 
hara
teristi
s we don't have generation

of the T -ideal of identities by multilinear polynomials. There are good reasons to

deal with multilinear polynomials and with multilinear identities. One of them

whi
h is important for us, is that identities �do not 
hange� upon extension of

s
alars. This implies that the T -ideal of identities of a k-
entral simple algebra

of degree n2
is the same as the ideal of identities of n× n-matri
es.

One of the main questions in PI theory is the so 
alled Spe
ht problem,

namely whether the T -ideal of identities is �nitely generated as a T -ideal? (see

[30℄). This was established in the positive by Kemer in the mid 80's. Kemer

proved a fantasti
 result whi
h says that if S is an algebra over F (F is algeb-

rai
ally 
losed of 
hara
teristi
 zero) whi
h satis�es a Capelli polynomial then

there exists a �nite dimensional algebra A over F whi
h is PI-equivalent to S.
This is the representability theorem for a�ne algebras. With some e�orts, the

representability theorem implies a positive solution of Spe
ht problem, namely

the �nite generation of any T -ideal (see [21℄).

What happens if S does not satisfy a Capelli polynomial (e.g. the in�nite

dimensional Grassmann algebra)? Then it 
annot be PI-equivalent to a �nite

dimensional algebra (sin
e the latter does satisfy a Capelli polyniomial). It turns

out the the in�nite Grassmann algebra is basi
ally the only example with that

property in the sense that there exists a Z2-graded �nite dimensional algebra

A = A0 ⊕ A1 su
h that its Grassmann envelope E(A) = E0 ⊗ A0 ⊕ E1 ⊗ A1
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is PI equivalent to S. This is the representability theorem for arbitrary (i.e.

not ne
essarily a�ne) asso
iative algebras over an algebrai
ally 
losed �eld of


hara
teristi
 zero. Using this result one 
an give a positive solution to the Spe
ht

problem.

The fa
t that the T -ideal of identities is �nitely generated says nothing about

�nding expli
it polynomials whi
h generate Id(A). Su
h generators are known

for an extremely short list of algebras. For instan
e, it is a nontrivial fa
t that the

two identities mentioned above for M2(F ), namely the Wagner identity and the

standard identity s4 of degree 4 are generators of the T -ideal of identities (this
was shown by Ramyslov and Drensky). It is not di�
ult to show that the identity

[[x, y], z] generates the T -ideal of identities of the in�nite dimensional Grassmann

algebra. But already for the algebra of 3 × 3-matri
es no su
h generators are

known. Furthermore, knowing a generating set says not mu
h about the problem

of des
ribing expli
itly the elements in Id(A). Therefore, it seems more e�e
tive

to 
al
ulate invariants of Id(A) and in parti
ular invariants related to the size

of Id(A).

The �
odimension sequen
e� of an algebra A.

We saw that the T -ideal of identities of an algebra A is generated as a T -
ideal by multilinear identities. Therefore, while 
onsidering polynomial identities

of degree n, we 
an restri
t ourselves to the interse
tion of a T -ideal I with the

n!-dimensional spa
e

Pn = spanF {xσ(1)xσ(2) · · ·xσ(n) : σ ∈ Symn}.

Clearly, dim(I ∩ Pn) > 0 for some n if and only if the algebra A is PI and it

turns out, roughly speaking, that in that 
ase, the �magnitude� of dim(I ∩ Pn)
is �
lose� to n!. It is therefore more informative to measure the nonidentities,

meaning dimF (Pn/(Pn ∩ I)). We denote this dimension by cn. Regev (in his

pioneering work) showed in 1972 that if I is nontrivial, then cn is exponentially

bounded, that is

limn→∞
n
√
cn < ∞.

Amitsur 
onje
tured that the limit exists and is a (nonnegative) integer.

This was proved in a remarkable work by Giambruno and Zai
ev in the late 90's

(see [17℄, [18℄). The limit is denoted by exp(A). In their proof, Giambruno and

Zai
ev, give an interpretation of exp(A) as the dimension of a 
ertain subalgebra

A0 of A in 
ase the algebra is �nite dimensional. In 
ase the algebra is a�ne and

PI one uses Kemer's theory to pass to a �nite dimensional algebra whereas in

the general 
ase exp(A) is interpreted as the dimension of a 
ertain Z2-graded

subspa
e of the �nite dimensional Z2-graded algebra whose existen
e is assured

by Kemer's theorem.
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For instan
e, if A ∼= Mn(F ), then the subalgebra A0 is Mn(F ) itself and

hen
e exp(A) = n2. For an arbitrary �nite dimensional algebra A we pro
eed

as follows. We write A as a dire
t sum of Ā (the semisimple part) and J , the
Ja
obson radi
al (where the de
omposition is a de
omposition of ve
tor spa
es).

Next we de
ompose the semisimple part Ā into dire
t sum of matrix algebras

M = {A1, . . . , Ar}. Then we 
onsider nonzero produ
ts (denoted by α) of the
form

α : Ai1JAi2J · · · JAik

where Aij ∈ M and to ea
h produ
t of this type we atta
h an integer nα whi
h is

the sum of the dimensions of the di�erent simple 
omponents that parti
ipate in

the produ
t (i.e. ignore repetitions). Giambruno and Zai
ev proved that exp(A)

oin
ides with the max{nα} where we run over all possible produ
ts α. You see

in parti
ular, that if the algebra is simple, the exponent is just its dimension

over F .

Polynomial identities were found to be very useful in the 
onstru
tion of the

generi
 division algebra and Azumaya algebras whi
h serve as a representing

obje
t with respe
t to all k-
entral simple algebras, any k, of degree n. Let
us present this 
lassi
al 
onstru
tion before we turn our attention to G-graded
polynomial identities.

4 Polynomial identities and the generi
 division al-

gebra

Let F be an algebrai
ally 
losed �eld of 
hara
teristi
 zero. Let A be the

algebra of n× n-matrix algebra over F and 
onsider the k-forms of the algebra

A where k is a sub�eld of F . It is well known that these are pre
isely the k-
entral
simple algebras of dimension n2 over their 
enter.

Our goal is to 
onstru
t an algebraA su
h that every k-
entral simple algebra

of degree n over its 
enter is a spe
ialization of A (this means that for any k
and any k-
entral simple algebra B of degree n, there exists a prime ideal I of

Z(A) (the 
enter of A), su
h that Z(A)/I is a Q-subalgebra of k and su
h that

the algebra A/(IA) be
omes isomorphi
 to B after extension of s
alars to the

�eld k. Conversely, any simple homomorphi
 image of A is a form of Mn(F ).

In order to 
onstru
t the algebra A we �rst need to �nd a �eld k (if exists)

whi
h is the minimal sub�eld k of F over whi
h there is a k-form of Mn(F ).
Obviously, this is the rational �eld Q sin
e there is a form over Q and it is

minimal. This very �rst step is already problemati
 for G-simple algebras.

Next we 
onsider the free algebra Q〈X〉 on a 
ountable number of variables

and let I = Id(A) be the T -ideal of identities of A = Mn(F ). A simple lemma
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shows that if there is a form over a 
ertain �eld then the identities are de�ned

over that �eld and hen
e the polynomial identities of A are de�ned over Q. We


onsider the relatively free algebra Q〈X〉/I over Q.

Clearly, the algebra Q〈X〉/I 
an be mapped �onto� any k-form (after exten-

sion of s
alars). Indeed, any map from the free algebra Q〈X〉 intoMn(F ) fa
tors
through its quotient Q〈X〉/I. However it is not di�
ult to see that we 
an send

(some of) the variables to zero and obtain an homomorphi
 image whi
h is not

a form of A. For instan
e, one 
an easily get Q as an homomorphi
 image. To

��x� this problem we lo
alize the algebra Q〈X〉/I by a 
entral element.

Suppose we 
an �nd a 
entral (nonidentity) polynomial s(x1, . . . , xn) ∈ Q〈X〉
of Mn(F ), that belongs to every T -ideal J that stri
tly 
ontains I = Id(A).
Then, if we invert s(x1, . . . , xn) in the relatively free algebra Q〈X〉/I, we see

that s−1Q〈X〉/I 
annot have nonzero homomorphi
 images whi
h stri
tly satisfy

more identities than A and in parti
ular the identities of (n − 1) × (n − 1)-
matri
es. On the other hand, the algebra s−1Q〈X〉/I satis�es the identities of

n× n-matri
es and so invoking a fundamental theorem of Artin and Pro
esi we

obtain that the algebra A = s−1Q〈X〉/I is an Azumaya algebra of rank n2 over

its 
enter (see [24℄). Re
all that an algebra A is said to be Azumaya of rank n2 if
it is faithful, �nitely generated proje
tive over its 
enter and su
h that modulo

maximal ideals we obtain 
entral simple algebras.

How to 
onstru
t su
h a 
entral polynomial? As mentioned above this a

nontrivial problem whi
h was solved independently by Formanek and Razmyslov

(see [15℄, [25℄). Here is an expli
it polynomial Rn (
alled Regev polynomial)

whi
h is of degree 2n2 and is known to be 
entral for the algebra A:

Rn =

τ∈Sym(n2)∑

σ∈Sym(n2)

sgn(σ)sgn(τ)xσ(1)yτ(1)xσ(2)xσ(3)xσ(4)yτ(2)yτ(3)yσ(4)xσ(5) · · ·xσ(9)

yτ(5) · · · yτ(9) · · ·xn2−(2n−1) · · ·xn2yn2−(2n−1) · · · yn2

Note that the polynomial Rn is alternating on sets of 
ardinality n2 and hen
e it

must be an identity on an algebra of dimension < n2 and in parti
ular on the algebra

of (n− 1)× (n− 1)-matri
es.

If we extend s
alars of A to the �eld of quotients of Z(A), we get the �famous�

generi
 division algebra of degree n (over Q). This algebra is of great importan
e in

Brauer theory. For instan
e, using that 
onstru
tion Amitsur proved in 72 the existen
e

of non
rossed produ
ts for any degree divisible by 8 or by p2 (where p is an odd prime).

To this end (say in the 
ase where p is odd) he showed the existen
e of 
rossed produ
ts

with the group Zp2
whi
h are not 
rossed produ
ts with the elementary abelian group

Zp × Zp, and on the other hand the existen
e of 
rossed produ
ts with the elementary

abelian group Zp × Zp whi
h are non
y
li
 algebras (that is, are not 
rossed produ
ts

with the 
y
li
 group of order p2). Then the generi
 division algebra 
annot be a 
rossed
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produ
t sin
e if it were, say with a group G, then every spe
ialization would have to

be a 
rossed produ
t with the same group.

Mu
h attention is devoted to rationality questions of the 
enter of the generi


division algebra. Let me only say that part of the interest on this question 
ame from

the fa
t that its positive solution would lead to a rather easy proof of the result we

mentioned above of Merkurjev and Suslin (on generation of the Brauer group by symbol

algebras).

My goal for the rest of these le
tures is to present generalizations of several of the

results mentioned above to the 
ontext of G-graded algebras and at the end present an

appli
ation of graded PI theory for the solution of a 
onje
ture of Bahturin and Regev

on regular gradings of algebras.

5 G-graded polynomial identities

We start with the the de�nition of graded identities. Let G be any group

and XG = ∪g∈GXg be a set of non
ommuting graded variables, where Xg =
{xg,1, xg,2, . . .} is a 
ountable set of variables of degree g ∈ G. We 
onsider the

free G-graded algebra F 〈XG〉, where the homogeneous degree of a monomial

xg1xg2 · · ·xgn is g1g2 · · · gn ∈ G. Suppose A is a G-graded (asso
iative) algebra.

We say that a polynomial in F 〈XG〉 is a G-graded identity of A if it vanishes

on any admissible evaluation, that is, graded variables are evaluated only by

homogeneous elements of A of the same degree.

As in the ungraded 
ase, the set IdG(A) of G-graded identities of a G-graded
algebra is a G-graded ideal of F 〈XG〉. Furthermore, it is a G-graded T -ideal, that
is, invariant by all G-graded endomorphisms of F 〈XG〉. Con
retely, an homo-

geneous variable of degree g 
an be repla
ed by a polynomial p whose monomials

are of degree g. See [1℄ for more details on graded polynomial identities.

Example 5.1. Consider Mn(F ), the algebra of all n × n matri
es with the


rossed produ
t grading mentioned above. It was proved by Di Vin
enzo for

G ∼= Z2 ([13℄), by Vasilovsky for G ∼= Zn ([33℄) and by Bahturin and Drensky

for any group ([9℄), that the identities are generated as a G-graded T -ideal by

(1) xeye − yexe

(2) xσyσ−1zσ − zσyσ−1xσ for every σ ∈ G.

As one 
an see, graded identities are mu
h easier to des
ribe sin
e polynomials

need not vanish on all evaluations but only on spe
ial ones. Nevertheless, the

graded identities �tell the whole story� in the sense that two algebras that satisfy

the same G-graded identities they satisfy the same ordinary identities. This basi


fa
t will be used later.
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As in the ungraded 
ase there is a �Representability Theorem� for G-graded
algebras where G is a �nite group (see [1℄). The theorem says that if W is a PI

algebra over an algebrai
ally 
losed �eld F of 
hara
teristi
 zero, whi
h is G-
graded (G �nite), then there exists a �nite dimensional Z2 × G-graded algebra

A over F su
h that its Grassmann envelope is G-graded PI equivalent to W .

In order to state the theorem pre
isely, re
all that given any Z2-graded algebra

A = A0⊕A1 we may 
onsider its Grassmann envelope E(A) = E0⊗A0⊕E1⊗A1

as an ungraded algebra. Thus, if A = (⊕g∈GA0,g)⊕(⊕g∈GA1,g) is a Z2×G-graded
algebra, we may 
onsider its Grassmann envelope E(A) = E0 ⊗ (⊕g∈GA0,g) ⊕
E1 ⊗ (⊕g∈GA1,g) as a G-graded algebra where E(A)g = E0 ⊗ A0,g ⊕ E1 ⊗ A1,g.

The representability theorem for PI algebras whi
h are G-graded 
an be stated

as follows.

Theorem 5.2. Let G be a �nite group and let W be a PI algebra and G-

graded. Then there exists a Z2 × G-graded �nite dimensional algebra A su
h

that IdG(W ) = IdG(E(A)).

From these results one 
an dedu
e (with some e�orts) the positive solution

of the Spe
ht problem for G-graded algebras whi
h are PI.

Remark 5.3. In 
ase the group is abelian, the representability theorem and the

solution of the Spe
ht problem was obtained independently by Irina Sviridova

(see [32℄).

Remark 5.4. Note that an algebra W may be G-graded PI and non-PI (as an

ungraded algebra). Of 
ourse, the representability theorem for G-graded algebras


annot hold for su
h algebras. This follows from the following two fa
ts: (1)

any two algebras that are G-graded PI-equivalent, are also PI-equivalent as

ungraded algebras (2) the Grassmann envelope of a �nite dimensional algebra

is (ungraded) PI. Nevertheless one may ask and indeed it is an open problem

whether the Spe
ht problem holds for G-graded PI non-PI algebras.

As mentioned in the beginning of these le
tures, also the asymptoti
 PI-

theory was developed in the G-graded 
ase. Let W be a PI algebra whi
h is

G-graded (G-�nite). It was proved by Antonio Giambruno, Daniela La Mattina

and the author of these notes that limn→∞
n
√
(cGn (W )) exists and is equal to

a nonnegative integer denoted by expG(W ) (see [4℄, [16℄, [3℄). The sequen
e

cGn (W ) is determined as follows. Consider the n! ord(G)n-dimensional ve
tor

spa
e spanned by all multilinear G-graded monomials of degree n

PG
n = spanF {x

gi1
σ(1)x

gi2
σ(2) · · ·x

gin
σ(n) : σ ∈ Sym(n), gij ∈ G}.

We let PG
n /(P

G
n ∩IdG(W )) be the spa
e of all G-graded fun
tions onW represen-

ted by a multilinear polynomial of degree n and let cGn (W ) be its dimension over
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F . We refer to the integer cGn (W ) as the nth term of the G-graded 
odimension

sequen
e of W .

In 
ase the algebra W is �nite dimensional, the integer expG(W ) is inter-

preted as the dimension of a 
ertain G-graded subalgebra of W/J(W ). If W is

an a�ne G-graded algebras we �pass� to a �nite dimensional G-graded algebra

via the representability theorem whereas if W is nona�ne we �redu
e the 
al
u-

lation� to �nding the exponent of the �nite dimensional Z2 ×G-graded algebra

whi
h appears in the representability theorem for G-graded algebras. In parti
-

ular, in 
ase A is a �nite dimensional G-simple algebra, then the G-exponent is

just the dimension of the algebra A.

6 PI and the Generi
 
rossed produ
t algebra

In this �tiny� paragraph we present brie�y a natural extension of Amitsur's


onstru
tion of the generi
 division algebra. Consider the matrix algebraMn(F )
with the 
rossed produ
t G-grading where G is of order n. Applying G-graded

polynomial identities we 
onstru
t the relatively free algebra over Q

Q〈XG〉/IdG(Mn(Q)).

This algebra 
an be lo
alized by a �
entral polynomial� and we obtain aG-graded

Azumaya algebra whi
h spe
ializes pre
isely to all G-
rossed produ
t algebras.

Taking the �eld of fra
tions of the 
enter we obtained the generi
 G-
rossed

produ
t. It should be noted that one 
an �nd in the literature di�erent ways to


onstru
t the �generi
 
rossed produ
t�(see [27℄, [31℄ and [28℄). Generi
 
onstru
-

tions were obtained for other G-gradings (e.g. twisted group algebras) and also

for 
ertain type of H-
omodule algebras (see [6℄, [7℄). Applying the 
onstru
tion

of a generi
 
rossed produ
ts and the 
orresponding G-graded Azumaya algebra

mentioned above it is not hard to prove the following result.

Theorem 6.1. Let G be a �nite group and let BG be the family of all G-


rossed produ
t algebras over a �eld of 
hara
teristi
 zero. Suppose every G-


rossed produ
t A is also an H = HA 
rossed produ
t (ord(G) = ord(H) but

nonisomorphi
). Then there exists a group S su
h that any G-
rossed produ
t is

also an S-
rossed produ
t. A group G satisfying the 
ondition above is said to be

�nonrigid�.

7 Regular G-gradings and PI-asymptoti
s

We 
lose this series of le
tures by presenting a rather di�erent 
onne
tion

between (asymptoti
) PI theory and G-gradings. In parti
ular I'll present a pos-
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itive solution of a 
onje
ture posed by Bahturin and Regev on regular gradings

(see [11℄). This is joint work with O�r David. We start with the de�nition of

regular gradings (see [26℄).

De�nition 7.1. Let A be an asso
iative algebra over a �eld F (algebrai
ally


losed of 
hara
teristi
 zero) and let G be a �nite abelian group. Suppose A is

G-graded. We say that the G-grading on A is regular if there is a 
ommutation

fun
tion ϑ : G×G → F×
su
h that

(1) For every integer n ≥ 1 and every n-tuple (g1, g2, . . . , gn) ∈ Gn
, there are

elements ai ∈ Agi , i = 1, . . . , n, su
h that

∏n
1 ai 6= 0.

(2) For every g, h ∈ G and for every ag ∈ Ag, bh ∈ Ah, we have agbh =
ϑg,hbhag.

Let me say right away that the de�nition above 
an be extended to nona-

belian groups, but in these le
tures I will restri
t myself to abelian groups.

Clearly, any G-grading on an algebra A indu
es a natural G/N -grading on

A where N is a normal subgroup of G. Indeed, we let the gN -
omponent AgN

to be the sum of all 
omponents Agn, n ∈ N . We say that a regular G-grading

is minimal if for any normal subgroup N of G, the indu
ed G/N -grading on A
is not regular. It is easy to show that any regular G-grading on A yields (via a

homomorphi
 image of G) a minimal regular grading (Remark: this parti
ular

fa
t is false in 
ase G is nonabelian).

Let me start with some examples.

The following example 
orresponds to the grading determined by the symbol

algebra (1, 1)n over F .

Example 7.2. Let Mn(F ) be the matrix algebra over the �eld F , and let G =
Z/nZ× Z/nZ. For ζ a primitive n-th root of 1 we de�ne

X = diag(1, ζ, ..., ζn−1) =




1 0 · · · 0

0 ζ 0
...

0 ζ2
. . .

...
. . .

. . . 0
0 · · · 0 ζn−1




Y = En,1 +

n−1∑

1

Ei,i+1 =




0 1 0 · · · 0

0 1
. . .

...
...

. . .
. . . 0

0 0 1
1 0 · · · 0 0



.
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Note that ζXY = Y X. Furthermore, the elements

{
XiY j | 0 ≤ i, j ≤ n− 1

}
form a

basis of Mn(F ), and so we 
an de�ne a G-grading on Mn(F ) by (Mn(F ))(i,j) = FXiY j
.

Let us 
he
k the G-grading is regular. For any two basis elements we have that

(Xi1Y j1)(Xi2Y j2) = ζi2j1Xi1Xi2Y j1Y j2 = ζi2j1Xi2Xi1Y j2Y j1

= ζi2j1−i1j2
(
Xi2Y j2

) (
Xi1Y j1

)

⇒ ϑ(i1,j1)(i2,j2) = ζi2j1−i1j2

and hen
e the se
ond 
ondition in the de�nition of a regular grading is satis�ed. The

�rst 
ondition in the de�nition follows at on
e from the fa
t that the elements X and Y
are invertible. Finally we note that sin
e ζ is a primitive n-th root of unity, the regular

grading is in fa
t minimal.

Next we present an example of a di�erent nature.

Example 7.3. Let E be the Grassmann algebra 
onsidered above with the usual

Z/2Z-grading. The 
ommutation fun
tion is given by τ0,0 = τ0,1 = τ1,0 = 1 and

τ1,1 = −1. It is easy to see that this grading regular and minimal.

Now it is 
lear that an algebra A may admit nonisomorphi
 regular gradings

and even nonisomorphi
 minimal regular gradings. In fa
t, it is easy to show

that more is true, that is, an algebra A may admit minimal regular gradings

with nonisomorphi
 groups. For instan
e, 
onsider the following two (minimal)

regular gradings on M4(F ): (1) with the group Z/4Z×Z/4Z (as in the example

above) (2) with the group Z/2Z × Z/2Z × Z/2Z × Z/2Z (here we grade two


opies of M2(F ), ea
h with the Klein 4-group, and then we take their tensor

produ
t over F ).

Bahturin and Regev 
onje
tured however that the order of the group is in-

variant. More pre
isely they 
onje
tured that if an algebra A admits minimal

regular gradings with �nite abelian groups G1 and G2, then ord(G1) = ord(G2)
(see [11℄). In addition, Bahturin and Regev made a 
onje
ture whi
h 
on
erns

with the �
ommutation matrix� of a minimal regular grading: Let A be an asso
i-

ative algebra and suppose it is regularly graded with the group G = {g1, . . . , gn}.
Consider the n × n-matrix Θ (the 
ommutation matrix) whose entry (i, j) is

given by Θi,j = ϑgi,gj where ϑ is the 
ommutation fun
tion. It is not di�
ult to

show that a regular grading is minimal if and only if the 
ommutation matrix is

invertible.

Conje
ture 7.4. Let A be an asso
iative algebra over a �eld F of 
hara
teristi


zero and suppose it is regularly graded by groups G1 and G2. Suppose the grad-

ings are minimal and let ΘG1 , ΘG2 be the 
orresponding 
ommutation matri
es.

Then det(ΘG1) = det(ΘG2).
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In a joint work with O�r David we prove these 
onje
tures (see [2℄). We show

that if an asso
iative algebra admits a G-grading whi
h is minimal and regular,

then ord(G) = exp(A). In parti
ular the order of the group is invariant. For the

se
ond 
onje
ture, we show that the determinant of the 
ommutation matrix is

equal to exp(A)exp(A)/2
. We 
lose these notes explaining roughly the idea of the

proof.

Suppose that A is G-graded and let IdG(A) be the 
orresponding T -ideal
of G-graded identities. In 
ase the G-grading is regular one 
an write down

expli
itly G-graded polynomials whi
h generate IdG(A). Then, we 
onstru
t

a �model algebra� B, whi
h admits a regular G-grading and su
h that is G-
graded PI equivalent to A, namely IdG(A) = IdG(B). The point here is that

two algebras that are G-graded PI equivalent are also (ordinary) PI-equivalent

and hen
e, in parti
ular, they have the same exponent. The �nal step is to realize

that the order of G 
oin
ides with exp(B).

For the se
ond 
onje
ture we prove that two 
ommutation matri
es of two

minimal regular gradings are 
onjugate to ea
h other and hen
e have the same


hara
teristi
 values. In parti
ular the 
ommutation matri
es arising from min-

imal regular gradings on an asso
iative algebra A over F have the same determ-

inant.
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