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1 Introduction

The purpose of these lectures is to combine three topics, namely gradings on
associative algebras, polynomial identities and Brauer groups (division algebras).

There are well known connections among these topics. For instance, Galois
cohomology is one of the main tools in the study of finite dimensional k-central
simple algebras and Brauer groups. One way to realize this connection is via
“crossed product structures” one can put on (certain) k-central simple algebras.
Another way is via “Galois descent”.

Question: Can one introduce a crossed product G-grading on every k-central
simple algebra and in particular on every k-central division algebra?

Amitsur gave a negative answer to that question in 1972 by constructing
“noncrossed product” division algebras (see [8]). His remarkable idea was to use
a “generic construction” and show that the “generic division algebra” is in gen-
eral not a crossed product. The generic division algebra can be constructed by
means of polynomial identities and this can serve as a bridge between Brauer
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groups and polynomial identities. In a similar way one can use G-graded poly-
nomial identities to construct “generic crossed products”. In these lectures I will
firstly recall these notions (e.g. G-gradings, crossed products, Brauer groups,
polynomial identities) and secondly I'll present relatively more recent results on
G-graded polynomial identities which provide new “bridges” among the topics
mentioned above. In particular, at the end, I will present a positive solution of
a conjecture of Bahturin and Regev on group gradings on associative algebras.
We start our journey with G-gradings on associative algebras.

2  Group gradings and Brauer groups

Let A be an associative algebra over a field F' and G any group. We say that
A is G-graded if there exists a vector space decomposition

A= 69geGAg

such that for any g,h € G we have AjA;, C Ag,. We refer to Ay, g € G, as the
homogeneous component of degree g.

We say that the G-grading on A is strong if AjA, = Ay, for every g, h € G.
We say that the algebra A is a (ring theoretic) G-crossed product over A, (the
identity component) if and only if the homogeneous component A, contains
an invertible element for every g € G. Note that if A is a (ring theoretic) G-
crossed product, then it is necessarily strongly graded. The converse is false as
the following example shows.

Example 2.1. Let A be the algebra of 3 x 3-matrices over a field F' and G the
group with two elements (denoted by e, o). Consider the G-grading on A given
by

A, = spanp{ei, e12, €21, €22, €33}
A, = spanp{eis, €23, €31, €32}

It is easy to check that the grading is strong whereas the o component has no
invertible elements.

The example above is a very special case of a general type of G-grading on
the algebra of n x n-matrices over a field F.

Definition 2.2. (Elementary grading) Let A be the algebra of n x n-matrices
over a field F' and let G be any group. Fix an n-tuple o = (g1,...,9,) € G™.
For every g € G we determine the g-homogeneous component of A to be

Ay = spanp{e;j: g = gi_lgj}.
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One checks easily that this indeed determines a G-grading on A.

Remark 2.3. 1) Note that a = (e, e,0) € {e,c}? yields the grading considered
in Example 2.1.

We observe (in the definition above) that since the algebra A is simple, the
G-graded algebra A is G-simple (i.e. no nontrivial G-graded two sided ideals).

Next we present a “completely” different type of G-gradings on semisimple
algebras which turn into G-simple algebras. Let G be a finite group and F' a
field of characteristic zero or p and p does not divide the order of the group.
One knows (by Maschke’s theorem) that the group algebra F'G is semisimple.
Furthermore, since every nonzero homogeneous element is invertible, the group
algebra F'G is G-simple. More generally, we may twist the product in F'G by
means of a 2-cocycle on G with coefficients in F** (recall that a function f :
G x G — F* is a 2-cocycle if for every o, 7,v € G we have that f(o7,v)f(o,7) =
f(o,7v)f(7,v)) and obtain the twisted group algebra F/G. It is well known
that F'/G is a semisimple (associative) algebra. Furthermore, we have that every
nonzero homogeneous element is invertible and hence F7G is G-simple. We can
extend this construction a bit more by taking a finite subgroup H of any group G
and considering the twisted group algebra Ff H as a G-graded algebra where the
¢ homogeneous component is 0 if g € G\ H (here: f is a 2-cocycle on H). Clearly,
we obtain an H-simple algebra as above but we note that the algebra F/H is
also G-simple. In case the field F' is algebraically closed of characteristic zero, we
have that these two examples are the building blocks of any finite dimensional
G-simple algebra. This is a theorem of Bahturin, Sehgal and Zaicev.

Theorem 2.4 ([10]). Let A be a finite dimensional G-graded simple algebra.
Then there exists a subgroup H of G, a 2-cocycle o : H x H — F* where the
action of H on F is trivial, an integer r and an r-tuple g = (g1,92,---,9r) €
G" such that A is G-graded isomorphic to A = F*H @ M,(F) where Ay =
spanp{m, @ e€;; | g = gi_lhgj}. Here 7, € F*H 1is a representative of h € H
and e; j € M, (F) is the (i,7) elementary matriz.

In particular the idempotents 1 ® e;; as well as the identity element of A are
homogeneous of degree e € G.

Remark 2.5. Clearly, the G-graded algebra A is determined up to a G-graded
isomorphism by the presentation P = (g = (91,92, ---,9r), H, @).

An interesting question that arises here is the isomorphism problem, namely
what can we say about presentations Pg 1 = (81, H1,01) and Pg 2 = (g2, H2, a2)
of two G-graded algebras A; and As if we know they are G-graded isomorphic?
Definitely it is not true that the tuples g1 and go defining the corresponding
elementary grading must be the same. They also need not be equal up to per-
mutation. Similarly, the finite subgroups H; and Hy which determine the fine
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grading need not be equal as subgroups of G but they must be conjugate in G.
It turns out that there are 3 basic moves on any presentation Pg of a G-graded
algebra A which yield presentations of algebras which are G-graded isomorphic
to A. The theorem says that any two algebras with given presentations are G-
graded isomorphic if and only if one can get from one presentation to the other
applying a finite finite number of moves of that kind. In case G is abelian this
result was proved by Koshlukov and Zaicev (see [22]). Later, in a joint work
with Darrell Haile (see [5]), we proved it for any group G (i.e. not necessarily
abelian).

An important elementary G-grading is the so called “crossed product grad-
ing” (note: this is a very special case of the “ring theoretic crossed product” we
mentioned above). Let G be a finite group of order n and let A be the algebra
of n X n-matrices over an algebraically closed field F'. We consider the element-
ary G-grading on A where the n-tuple g = (g1, ..., gn) consists of all elements
of G. It is easy to see that for any g € G, the g-homogeneous components is
of dimension n and is obtained by the product of all diagonal matrices with a
suitable permutation matrix (namely, the permutation matrix whose entry (i, j)
is 1 whenever g = g, ! gj and zero otherwise). We note that the e-component is
commutative and for any g € G we have agby,-1c4 = c4b,-1a,4, where agy,cy € Ay
and bgf1 € Agf1.

This grading takes us to Brauer group theory and specifically to the inter-
pretation of the Brauer group Br(k), k a field, as H?(Gy, k.,) where G}, is the

sep

absolute Galois group of the field k£ and k., is the separable closure of k. Hence,
before we continue with gradings, let us make a short trip into Brauer groups
theory and the theory of division algebras.

We fix a field k& which is usually not algebraically closed and we consider finite
dimensional central simple algebras over k. By Wedderburn’s theorem, such an
algebra is isomorphic to the algebra of r x r matrices over a finite dimensional
division algebra D, whose center is equal to k. Moreover, the integer r is uniquely
determined and the division algebra D is uniquely determined up to a k-algebras
isomorphism.

The Brauer group of k& (denoted by Br(k)) consists of equivalence classes
of finite dimensional k-central simple algebras, where two algebras are equival-
ent if and only if they have underlying division algebras which are k-algebra
isomorphic. So in fact, the elements Br(k) are in one to one correspondence
with the k-central division algebras. It looks a bit strange to define the Brauer
group in that way. Why not just consider the division algebras themselves? An
important reason is that we can introduce a natural multiplication on the set
of classes, namely the tensor product of classes representatives over k. It is well
known that the tensor product over k£ of two k-central division algebras is a
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k-central simple algebra (and hence matrices over a k-central division algebra)
but in general is not a division algebra. One shows (easily) that the product of
classes, via the tensor product over k of their representatives, is well defined and
it induces an abelian group structure on Br(k). Indeed, the identity element is
the class represented by k and the inverse of [A] € Br(k) is [A°P] where A is
the opposite algebra of A (one shows that A® AP’ = M,(k) where d = dimy(A)).
We refer the reader to [19] for a “ring theoretic” introduction to the theory of
simple algebras and Brauer groups.

An important characterization of k-central simple algebras is given by “k-
algebras that become a matrix algebra after extending scalars to an algebraically
closed field”. We say that k-central simple algebras are twisted k-forms of matrix
algebras. This point of view will be very useful for us when we consider the third
topic of these lectures, polynomial identities. We refer the reader to [29] for an
introduction to the theory of Brauer groups using Galois descent.

We present now an important way to construct k-central simple algebras. Let
L/k be a finite Galois extension with Galois group G. Consider the corresponding
skew group algebra L;G. It is isomorphic to the group algebra LG as a left L-
vector space and hence its elements are expressed by ) . aoto, where a, € L
and {us;}seq is a basis of L;G over L. The multiplication in L;G is defined
as to satisfy the relation auysbu, = ao(b)uysr, where a,b € L and o(b) is the
action of o on b as determined by the Galois action of G on L. It is easy to
show that any element of L;G determines an endomorphism in Endy(L) by
Y we Gols(a) =) cq o0 (a) and this correspondence induces an isomorphism
of L;G with Endy(L) = M, (k) where n is the degree of the extension L/k. We
note in particular that L;G represents the identity element in Br(k). Now we
wish to twist the product in L;G by means of a 2-cocycle f : G x G — L*
(note: unlike the definition above, the action of G on L is not trivial). Recall
that a function f : G x G — L* is a 2-cocycle if for every o,7,v € G we
have f(or,v)f(o,7) = f(o,7v)f(r,v)?. Then by means of f we “change” the
multiplication in L;G as to satisfy the rule

augbur = ao(b) f(o, T)usr.

As above, a,b € L and o(b) is the action of o on b. It is easy to show that
the algebra we obtain is a k-central simple algebra of dimension n? over k. We
denote it by L{G and refer to it as a crossed product of G over L (see [19]).

Remark 2.6. We emphasize once again that the terminology “crossed product”
means different type of algebras for different researchers. The general definition
(for ring theorists and hence “ring theoretic crossed product”) means a G-graded
algebra where every homogeneous component contains an invertible element (see
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[23]). The more restrictive terminology (used by researchers in Brauer groups
and division algebras) means a k-central simple algebra of the form L{ G.

Any 2-cocycle determines a cohomology class in H%(G, L*) where 2-cocycles
f and g are cohomologically equivalent (cohomologous) if there exists a 1-
parameter family {\,};cc C L* such that for any o and 7 in G we have

f(07 T) = )\UU(AT))\;;g(O-7 T)'

It is easy to show that up to a G-graded isomorphism the algebra L{ G
depends only on the cohomology class a = [f] € H?(G, L*) and not on the
representative f of a. We therefore write L{G where o € H?(G, L*). The crossed
product algebras play a key role in Brauer group theory since any Brauer class
can be represented by a crossed product algebra. In fact, a k-crossed product
algebra B = L{!G becomes trivial when extending scalars to L, that is By, =
B ®y L = My (L) where n = ord(G), and one shows that the map

H*(G,L*) — Br(k),

determined by sending a cohomology class « to the class represented by the
crossed product algebra L&G induces an isomorphism between H?(G, L*) and
Br(L/k) ={[A] € Br(k) : A®y L = M,(L), some r}.

The fact that any Brauer class may be represented by a crossed product
algebra says that for any k-central finite dimensional division algebra there exists
an integer n such that the algebra of n X n-matrices over D is k-isomorphic to
a crossed product algebra. But what about the division algebra itself? It was
an open question for many years whether any k-central division algebra is a
crossed product. This is known to be true for local or global fields (e.g. finite
extensions of Q). In 1972, Amitsur showed that this is false in general by using
generic constructions (see [8]). What is the relevance of all this to us? Recall
that we started our discussion with the description of gradings on M, (F') and in
particular we considered elementary gradings (crossed product gradings) where
the tuple (g1,...,9,) consists precisely of all elements of the group G (with
multiplicity 1). It turns out and not difficult to prove, that if we take a crossed
product algebra L{!G and extend scalars to F' (the algebraic closure of k), we
obtain M, (F) with the crossed product grading just mentioned. So, the crossed
products are G-graded twisted k-forms of the matrix algebra with the elementary
grading. This will play a role in the sequel.

Before turning to our 3rd topic, namely polynomial identities, let me present
some results which concern with “fine gradings”. It is very well known that a
group algebra F'G is semsimple (F' of characteristic zero) and it is never simple
(unless G is of order 1). What about the twisted group algebra FfG where f is
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a 2-cocycle? Can it be a simple algebra? For instance, consider the quaternion
algebra over the complex field F'. It is isomorphic to Ma(F'). On the other hand
it is isomorphic to a twisted group algebra with the Klein 4-group, where the 2-
cocycle is determined such that the generators of the group anticommute. More
generally, let k be a field which contains a primitive nth root of unity . For any
a,b € k* and integer n > 2, we consider the “symbol algebra” (a, b), j, of degree n
over the field k. It is given by (a,b),r = (x,y : 2" = a,y" = b,yx = Gxy) (i-e.,
the k-algebra generated by z,y subject to the relations z™ = a,y™ = b,yz =
Cny). Tt is not difficult to show that any symbol algebra is k-central simple.
A fundamental result of Merkurjev and Suslin says that if k-contains enough
roots of unity then all elements of Br(k) are represented by tensor products
of symbol algebras. More precisely, if k£ contains a primitive n-th root of unity,
then any element in Br(k) whose order divides n is represented by the tensor
product of symbol algebras (over k). Note that the symbol algebra (a,b), j is
isomorphic to k¥ Z,, x Z, with a suitable 2-cocycle f. Moreover, it is easy to see
that tensor product of symbol algebras is isomorphic to a twisted group algebra
of the form k'U x U, where U is a (finite) abelian group. So we see that twisting
a group algebra F'G with a 2-cocycle where the group G is abelian may give
a matrix algebra and more generally provides important examples of k-central
simple algebras.

Question: Suppose G is nonabelian. Can we twist a group algebra F'G into
a matrix algebra? It turns out that the answer is positive.

Definition 2.7. A finite group G is of central type (nonclassically) if it admits
a nondegenerate 2-cocycle f with values in C* such that C/G = M,,(C) for some
n.

Clearly, a group of central type must be of square order. Howlett and Isaacs
proved in 1982, using the classification of finite simple groups, that such a group
must be solvable (see [20]).

Let me present an example of a group of central type of order 36. Consider
the semidirect product G = Sym/(3) x Cg where Sym(3) is the symmetric group
of order 6 (generated by an element o of order 3 and by an involution 7) and
Cs is the cyclic group of order 6 (generated by x). We let Sym(3) act on Cg via
the involution 7 (that is via the image Sym(3)/ < ¢ >) where 7(x) = 2 !. One
shows with this set up that there is a bijective 1-cocycle from Sym(3) onto Cg
and using that function one can construct a nondegenerate 2-cocycle on G. It
turns out that this is a special case of a rather general construction introduced
by Etingof and Gelaki (see [14]). Let H be a group of order n and suppose it
acts on an abelian group A of order n making A and hence A*, the dual of
A, into an H-module. Suppose there exists a bijective 1-cocycle 7 : H — A*.
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Then the semidirect product H x A is a group of central type. Note that by the
result of Isaacs and Howlett mentioned above, any group H admiting a bijective
1-cocycle onto an abelian group must be solvable. Let us remark here that the
last statement can be proved without the classification of finite simple groups.

The construction of Etingof and Gelaki was extended by Ben David and
Ginosar. Using a bijective 1-cocycles from H onto A* as above, one can construct
central type groups which are nonsplit extensions of H and A. Based on that
theory, jointly with Angel del Rio, we found an example of a group of central
type of order 64 which cannot be expressed as a semidirect product of two groups
of order 8 (see [12]).

3 Polynomial identities

We now present the 3rd topic in this series of lectures, namely polynomial
identities of associative algebras and G-graded polynomial identities of G-graded
associative algebras. We’ll work throughout over a field F' of characteristic zero.
“Most of the time” the field F' will represent an algebraically closed field but if
we want to connect PI theory with Brauer theory we drop that assumption. In
particular we will be interested in finding, roughly speaking, “small field” over
which our algebras are defined. This will take us to a task which we call minimal
fields of definition of a given algebra. It is obvious that a matrix algebra is defined
over the rationals, but what about the G-simple algebras over the complex field?
What is the minimal field of definition? In general we don’t know the answer to
that question. However, we have an answer in case the group G is abelian, or
in case the grading is elementary or fine. In order to prove this we need “graded
polynomial identities”.

Let us start our presentation with ordinary polynomial identities. Let A be
an algebra over a field F. We let F'(X) be the free algebra over F' with a count-
able set of variables X. Elements of the free algebra will be called polynomials in
noncommuting variables and we say that a nonzero polynomial f is an identity of
the algebra A if the polynomial vanishes upon any evaluation on A. We also say
that the algebra A satisfies the polynomial identity f (or simply say that A satis-
fies the polynomial f). So for example [z, y] = xy—yx is a polynomial identity of
any commutative algebra and clearly this characterizes commutative algebras. A
more interesting example is the Wagner identity of My (F'). Consider the polyno-
mial [z, y]. Clearly, any evaluation of this polynomial on 2 x 2-matrices is a trace
zero matrix and hence the eigenvalues are both zero or of opposite sign. If both
eigenvalues are zero then the square of the matrix is zero and hence in that case
[z, y]? represents the zero matrix. If the eigenvalues are of opposite sign, then the
matrix is diagonalizable, and so our matrix is similar to a diagonal matrix of the
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form (d, —d). Hence, in that case, the square of the matrix is similar to (d?, d?)
which is a scalar matrix and nonzero. It follows that our matrix is scalar. This
will be important for us later on. The polynomial [z, 3]? is an example of a central
(nonidentity) polynomial. The existence of such polynomials for n x n-matrices
is a highly nontrivial problem which was solved independently by Formanek and
Razmyslov. Later I will present a central polynomial that was constructed by
Regev. But where is the polynomial identity? Wagner’s identity is [[x, y]?, z]. We
note that this is an homogeneous nonmultilinear polynomial of degree 5. It is
not difficult to show (left to the reader) that the algebra of 2 x 2-matrices has
an identity of smaller rank, namely s4 = ZUESym(4) 59N(0)T6(1)To(2)To(3)Tor(4)-
More generally, the algebra of n x n-matrices over a field satisfies the polyno-
mial identity sg, = ZUESym(2n) 5gn(0)Ts(1)Te(2) * * * To(2n)- This is the famous
Amitsur-Levitzki theorem. Furthermore, and this is easy to show, the algebra
M,,(F) does not satisfy any nonzero identity of degree < 2n. Let me show for
instance that M, (F) does not satisfy s9,_1. Consider the product of the 2n — 1
elementary n X n-matrices e 1e12€22 - - “€(n—1);nCn,n- We note that this product
is equal to ey, and hence nonzero. On the other hand, any nontrivial permuta-
tion vanishes as some of the indices do not match. We therefore see, by evaluating
the variables of s9,_1 as above, that we get ey, and hence nonzero.

We say that an algebra is PI if it satisfies at least one nontrivial identity. As
we saw above, commutative algebras are PI. Finite dimensional algebras are also
PI since any algebra of dimension n satisfies any polynomial which alternates
on n + 1 variables. “In particular” any finite dimensional algebra over F' satisfies
the Capelli polynomial

Cnt1l = Z SQW(U)yO%(l)yl%@)yz “ To(nt1)Yn+1-
ceSym(n+1)

Does every PI algebra satisfies a Capelli polynomial ¢, for some n? The
answer is negative. A counter example which is key for the whole theory of poly-
nomial identities is the Grassmann algebra E of countable rank. By definition

E =F(x1,22,...,2n,...)) <zizj+ajzi:i,j <1>.

The algebra FE is spanned by multilinear monomials where the monomials of
even length and odd length determine a Zs-grading in a natural way. It satisfies
the identity [[x,y], 2] and this identity generates all identities in a sense I’ll
soon describe. It is not difficult to prove that E does not satisfy any Capelli
polynomial.

Given an algebra A which is PI, we consider the set of all polynomial iden-
tities it satisfies. We denote this set by Id(A). It is easily seen that Id(A) is
a 2-sided ideal of F(X). Furthermore, Id(A) is closed under substitutions (or
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equivalently, it is closed under endomorphisms of F'(X)). We call an ideal with
that property, a T-ideal. Note that any T-ideal is the T-ideal of identities of an
algebra. Indeed, given a T-ideal I we may consider the corresponding relatively
free algebra F(X)/I. It is easy to see that Id(F(X)/I)=1.

Now, we wish to find “simpler” generators of Id(A). Using a Vandermonde
argument one can show easily that if f is a polynomial identity of A, then if we
decompose f into a sum of polynomials fi;+ fa+. ..+ f, where each f; is the sum
of all monomial of f with exactly the same variables, then f; is an identity for
every i. Next, using a well known multilinearization process, all identities are con-
sequences of polynomials identities which are multilinear. Since this is important
for us let me illustrate how this is done. Take, for instance, the polynomial z2.
Suppose it is an identity of an algebra A. Then (x +x2)2 = l‘% + 2129+ 22711 +m%
is also an identity of A. The terms x? and x3 are identities for the same reason
and so the multilinear polynomial x12x2+zox1 is an identity of A. We can deduce
that the multilinear polynomial z1x2 + zox; is a consequence of (i.e. belongs to
the T-ideal generated by) the polynomial 22. But what about the converse? In-
deed, we would like to see whether our original polynomial 22 is a consequence of
r1To+roxy. Putting 1 = xo = x we obtain 222 and not z2. In order to get 22 we
need to divide by 2 and so we need our field to be of characteristics not 2. This is
a major problem and indeed, in positive characteristics we don’t have generation
of the T-ideal of identities by multilinear polynomials. There are good reasons to
deal with multilinear polynomials and with multilinear identities. One of them
which is important for us, is that identities “do not change” upon extension of
scalars. This implies that the T-ideal of identities of a k-central simple algebra
of degree n? is the same as the ideal of identities of n x n-matrices.

One of the main questions in PI theory is the so called Specht problem,
namely whether the T-ideal of identities is finitely generated as a T-ideal? (see
[30]). This was established in the positive by Kemer in the mid 80’s. Kemer
proved a fantastic result which says that if S is an algebra over F' (F' is algeb-
raically closed of characteristic zero) which satisfies a Capelli polynomial then
there exists a finite dimensional algebra A over F which is Pl-equivalent to S.
This is the representability theorem for affine algebras. With some efforts, the
representability theorem implies a positive solution of Specht problem, namely
the finite generation of any T-ideal (see [21]).

What happens if S does not satisfy a Capelli polynomial (e.g. the infinite
dimensional Grassmann algebra)? Then it cannot be Pl-equivalent to a finite
dimensional algebra (since the latter does satisfy a Capelli polyniomial). It turns
out the the infinite Grassmann algebra is basically the only example with that
property in the sense that there exists a Zo-graded finite dimensional algebra
A = Ay @ A; such that its Grassmann envelope E(A) = Ey ® Ay @ E1 @ A
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is PI equivalent to S. This is the representability theorem for arbitrary (i.e.
not necessarily affine) associative algebras over an algebraically closed field of
characteristic zero. Using this result one can give a positive solution to the Specht
problem.

The fact that the T-ideal of identities is finitely generated says nothing about
finding explicit polynomials which generate Id(A). Such generators are known
for an extremely short list of algebras. For instance, it is a nontrivial fact that the
two identities mentioned above for Ms(F'), namely the Wagner identity and the
standard identity s4 of degree 4 are generators of the T-ideal of identities (this
was shown by Ramyslov and Drensky). It is not difficult to show that the identity
[[z,y], #] generates the T-ideal of identities of the infinite dimensional Grassmann
algebra. But already for the algebra of 3 x 3-matrices no such generators are
known. Furthermore, knowing a generating set says not much about the problem
of describing explicitly the elements in Id(A). Therefore, it seems more effective
to calculate invariants of Id(A) and in particular invariants related to the size
of Id(A).

The “codimension sequence” of an algebra A.

We saw that the T-ideal of identities of an algebra A is generated as a T-
ideal by multilinear identities. Therefore, while considering polynomial identities
of degree n, we can restrict ourselves to the intersection of a T-ideal I with the
n!-dimensional space

Py = spanp{Ts(1)To2) To(n) : 0 € Syma}.

Clearly, dim(I N P,) > 0 for some n if and only if the algebra A is PI and it
turns out, roughly speaking, that in that case, the “magnitude” of dim(I N P,)
is “close” to n!. It is therefore more informative to measure the nonidentities,
meaning dimg(P,/(P, N I)). We denote this dimension by ¢,. Regev (in his
pioneering work) showed in 1972 that if I is nontrivial, then ¢, is exponentially
bounded, that is

limy, o0 Ve < 0.

Amitsur conjectured that the limit exists and is a (nonnegative) integer.
This was proved in a remarkable work by Giambruno and Zaicev in the late 90’s
(see [17], [18]). The limit is denoted by exp(A). In their proof, Giambruno and
Zaicev, give an interpretation of exp(A) as the dimension of a certain subalgebra
Ag of A in case the algebra is finite dimensional. In case the algebra is affine and
PTI one uses Kemer’s theory to pass to a finite dimensional algebra whereas in
the general case exp(A) is interpreted as the dimension of a certain Zg-graded
subspace of the finite dimensional Zs-graded algebra whose existence is assured
by Kemer’s theorem.
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For instance, if A =2 M, (F), then the subalgebra Ay is M, (F) itself and
hence exp(A4) = n?. For an arbitrary finite dimensional algebra A we proceed
as follows. We write A as a direct sum of A (the semisimple part) and .J, the
Jacobson radical (where the decomposition is a decomposition of vector spaces).
Next we decompose the semisimple part A into direct sum of matrix algebras
M = {A,..., A, }. Then we consider nonzero products (denoted by «) of the
form

(07 A“JAZQJ o JA%

where A;; € M and to each product of this type we attach an integer n, which is
the sum of the dimensions of the different simple components that participate in
the product (i.e. ignore repetitions). Giambruno and Zaicev proved that exp(A)
coincides with the max{n,} where we run over all possible products «. You see
in particular, that if the algebra is simple, the exponent is just its dimension
over F.

Polynomial identities were found to be very useful in the construction of the
generic division algebra and Azumaya algebras which serve as a representing
object with respect to all k-central simple algebras, any k, of degree n. Let
us present this classical construction before we turn our attention to G-graded
polynomial identities.

4 Polynomial identities and the generic division al-
gebra

Let F be an algebraically closed field of characteristic zero. Let A be the
algebra of n x n-matrix algebra over F' and consider the k-forms of the algebra
A where k is a subfield of F'. It is well known that these are precisely the k-central
simple algebras of dimension n? over their center.

Our goal is to construct an algebra A such that every k-central simple algebra
of degree n over its center is a specialization of A (this means that for any k
and any k-central simple algebra B of degree n, there exists a prime ideal I of
Z(A) (the center of A), such that Z(A)/I is a Q-subalgebra of k and such that
the algebra A/(I.A) becomes isomorphic to B after extension of scalars to the
field k. Conversely, any simple homomorphic image of A is a form of M, (F).

In order to construct the algebra A we first need to find a field & (if exists)
which is the minimal subfield k£ of F' over which there is a k-form of M, (F).
Obviously, this is the rational field Q since there is a form over Q and it is
minimal. This very first step is already problematic for G-simple algebras.

Next we consider the free algebra Q(X) on a countable number of variables
and let I = Id(A) be the T-ideal of identities of A = M, (F). A simple lemma
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shows that if there is a form over a certain field then the identities are defined
over that field and hence the polynomial identities of A are defined over Q. We
consider the relatively free algebra Q(X)/I over Q.

Clearly, the algebra Q(X)/I can be mapped “onto” any k-form (after exten-
sion of scalars). Indeed, any map from the free algebra Q(X) into M, (F) factors
through its quotient Q(X)/I. However it is not difficult to see that we can send
(some of) the variables to zero and obtain an homomorphic image which is not
a form of A. For instance, one can easily get Q as an homomorphic image. To
“fix” this problem we localize the algebra Q(X)/I by a central element.

Suppose we can find a central (nonidentity) polynomial s(x1, ..., z,) € Q(X)
of M, (F), that belongs to every T-ideal J that strictly contains I = Id(A).
Then, if we invert s(zj,...,x,) in the relatively free algebra Q(X)/I, we see
that s 7!Q(X)/I cannot have nonzero homomorphic images which strictly satisfy
more identities than A and in particular the identities of (n — 1) x (n — 1)-
matrices. On the other hand, the algebra s™1Q(X)/I satisfies the identities of
n X n-matrices and so invoking a fundamental theorem of Artin and Procesi we
obtain that the algebra A = s 'Q(X)/I is an Azumaya algebra of rank n? over
its center (see [24]). Recall that an algebra A is said to be Azumaya of rank n? if
it is faithful, finitely generated projective over its center and such that modulo
maximal ideals we obtain central simple algebras.

How to construct such a central polynomial? As mentioned above this a
nontrivial problem which was solved independently by Formanek and Razmyslov
(see |15], |25]). Here is an explicit polynomial R, (called Regev polynomial)
which is of degree 2n? and is known to be central for the algebra A:

TESym(nQ)
Ry = Z 59"(0)5971(7)%(1)%(1)Ia(2)%(3)Ia(4)y7(2)y7(3)ya(4)Ia(s) C T (9)
ceSym(n?)
Yr(5) " " Yr(9) " " Tn2—(2n—1) """ Tn2Yn2—(2n—1) """ Yn2

Note that the polynomial R, is alternating on sets of cardinality n? and hence it
must be an identity on an algebra of dimension < n? and in particular on the algebra
of (n — 1) x (n — 1)-matrices.

If we extend scalars of A to the field of quotients of Z(A), we get the “famous”
generic division algebra of degree n (over Q). This algebra is of great importance in
Brauer theory. For instance, using that construction Amitsur proved in 72 the existence
of noncrossed products for any degree divisible by 8 or by p? (where p is an odd prime).
To this end (say in the case where p is odd) he showed the existence of crossed products
with the group Z,2 which are not crossed products with the elementary abelian group
Zy, X Zp, and on the other hand the existence of crossed products with the elementary
abelian group Z, x Z, which are noncyclic algebras (that is, are not crossed products
with the cyclic group of order p?). Then the generic division algebra cannot be a crossed
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product since if it were, say with a group G, then every specialization would have to
be a crossed product with the same group.

Much attention is devoted to rationality questions of the center of the generic
division algebra. Let me only say that part of the interest on this question came from
the fact that its positive solution would lead to a rather easy proof of the result we
mentioned above of Merkurjev and Suslin (on generation of the Brauer group by symbol
algebras).

My goal for the rest of these lectures is to present generalizations of several of the
results mentioned above to the context of GG-graded algebras and at the end present an
application of graded PI theory for the solution of a conjecture of Bahturin and Regev
on regular gradings of algebras.

5 (G-graded polynomial identities

We start with the the definition of graded identities. Let G be any group
and Xg = UgegXy be a set of noncommuting graded variables, where X, =
{z41,242,...} is a countable set of variables of degree g € G. We consider the
free G-graded algebra F'(X¢), where the homogeneous degree of a monomial
Lg Tgy - Lg, 15 g1g2- -+ gn € G. Suppose A is a G-graded (associative) algebra.
We say that a polynomial in F'(X¢) is a G-graded identity of A if it vanishes
on any admissible evaluation, that is, graded variables are evaluated only by
homogeneous elements of A of the same degree.

As in the ungraded case, the set Idg(A) of G-graded identities of a G-graded
algebra is a G-graded ideal of F'(X¢). Furthermore, it is a G-graded T-ideal, that
is, invariant by all G-graded endomorphisms of F(X¢). Concretely, an homo-
geneous variable of degree g can be replaced by a polynomial p whose monomials
are of degree g. See [1]| for more details on graded polynomial identities.

Example 5.1. Consider M, (F), the algebra of all n x n matrices with the
crossed product grading mentioned above. It was proved by Di Vincenzo for
G = Z5 (|13]), by Vasilovsky for G = Z,, (|33]) and by Bahturin and Drensky
for any group ([9]), that the identities are generated as a G-graded T-ideal by

(1) Tele — Yele
(2) ToYs-120 — 26Yy—1Z4 for every o € G.

As one can see, graded identities are much easier to describe since polynomials
need not vanish on all evaluations but only on special ones. Nevertheless, the
graded identities “tell the whole story” in the sense that two algebras that satisfy
the same G-graded identities they satisfy the same ordinary identities. This basic
fact will be used later.
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As in the ungraded case there is a “Representability Theorem” for G-graded
algebras where G is a finite group (see [1]). The theorem says that if W is a PI
algebra over an algebraically closed field F' of characteristic zero, which is G-
graded (G finite), then there exists a finite dimensional Zs x G-graded algebra
A over F' such that its Grassmann envelope is G-graded PI equivalent to W.
In order to state the theorem precisely, recall that given any Zo-graded algebra
A = Ayp® A; we may consider its Grassmann envelope F(A) = Ey® Ao E1® Ay
as an ungraded algebra. Thus, if A = (©geqloy) P (Bgecliy) is a Zy x G-graded
algebra, we may consider its Grassmann envelope E(A) = Ey ® (BgeqAo,g) @
E1 ® (BgecAiy) as a G-graded algebra where E(A)y = Ey ® Agg ® £y @ Ay g.
The representability theorem for PI algebras which are G-graded can be stated
as follows.

Theorem 5.2. Let G be a finite group and let W be a PI algebra and G-
graded. Then there exists a Zo x G-graded finite dimensional algebra A such
that Idg(W) = Idg(E(A)).

From these results one can deduce (with some efforts) the positive solution
of the Specht problem for G-graded algebras which are PI.

Remark 5.3. In case the group is abelian, the representability theorem and the
solution of the Specht problem was obtained independently by Irina Sviridova
(see [32]).

Remark 5.4. Note that an algebra W may be G-graded PI and non-PI (as an
ungraded algebra). Of course, the representability theorem for G-graded algebras
cannot hold for such algebras. This follows from the following two facts: (1)
any two algebras that are G-graded Pl-equivalent, are also Pl-equivalent as
ungraded algebras (2) the Grassmann envelope of a finite dimensional algebra
is (ungraded) PI. Nevertheless one may ask and indeed it is an open problem
whether the Specht problem holds for G-graded PI non-PI algebras.

As mentioned in the beginning of these lectures, also the asymptotic PI-
theory was developed in the G-graded case. Let W be a PI algebra which is
G-graded (G-finite). It was proved by Antonio Giambruno, Daniela La Mattina
and the author of these notes that lim,_, WCS(W)) exists and is equal to
a nonnegative integer denoted by expqs (W) (see 4], [16], [3]). The sequence
cG(W) is determined as follows. Consider the n!ord(G)"-dimensional vector
space spanned by all multilinear G-graded monomials of degree n

iy YGio

PnG = SpanF{xo'(l)xa(Q) o gTin

o(n

yio€ Sym(n), gi; € G}.

We let PS¢ /(PSNIdg(W)) be the space of all G-graded functions on W represen-
ted by a multilinear polynomial of degree n and let ¢S (W) be its dimension over
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F. We refer to the integer ¢ (W) as the nth term of the G-graded codimension
sequence of W.

In case the algebra W is finite dimensional, the integer exps (W) is inter-
preted as the dimension of a certain G-graded subalgebra of W/J(W). If W is
an affine G-graded algebras we “pass” to a finite dimensional G-graded algebra
via the representability theorem whereas if W is nonaffine we “reduce the calcu-
lation” to finding the exponent of the finite dimensional Zy x G-graded algebra
which appears in the representability theorem for G-graded algebras. In partic-
ular, in case A is a finite dimensional G-simple algebra, then the G-exponent is
just the dimension of the algebra A.

6 PI and the Generic crossed product algebra

In this “tiny” paragraph we present briefly a natural extension of Amitsur’s
construction of the generic division algebra. Consider the matrix algebra M, (F")
with the crossed product G-grading where G is of order n. Applying G-graded
polynomial identities we construct the relatively free algebra over Q

Q(Xg)/Ida(Mn(Q)).

This algebra can be localized by a “central polynomial” and we obtain a G-graded
Azumaya algebra which specializes precisely to all G-crossed product algebras.
Taking the field of fractions of the center we obtained the generic G-crossed
product. It should be noted that one can find in the literature different ways to
construct the “generic crossed product”(see (27|, [31] and [28|). Generic construc-
tions were obtained for other G-gradings (e.g. twisted group algebras) and also
for certain type of H-comodule algebras (see |6], |7]). Applying the construction
of a generic crossed products and the corresponding G-graded Azumaya algebra
mentioned above it is not hard to prove the following result.

Theorem 6.1. Let G be a finite group and let Bg be the family of all G-
crossed product algebras over a field of characteristic zero. Suppose every G-
crossed product A is also an H = Ha crossed product (ord(G) = ord(H) but
nonisomorphic). Then there exists a group S such that any G-crossed product is
also an S-crossed product. A group G satisfying the condition above is said to be
“nonrigid”.

7 Regular G-gradings and Pl-asymptotics

We close this series of lectures by presenting a rather different connection
between (asymptotic) PI theory and G-gradings. In particular I'll present a pos-
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itive solution of a conjecture posed by Bahturin and Regev on regular gradings
(see [11]). This is joint work with Ofir David. We start with the definition of
regular gradings (see |26]).

Definition 7.1. Let A be an associative algebra over a field F' (algebraically
closed of characteristic zero) and let G be a finite abelian group. Suppose A is
G-graded. We say that the G-grading on A is regular if there is a commutation
function ¥ : G x G — F* such that

(1) For every integer n > 1 and every n-tuple (g1, 92,...,9n) € G, there are
elements a; € Ag,, i = 1,...,n, such that [[} a; # 0.

(2) For every g,h € G and for every ay € Ay, by, € Ay, we have agh, =
1997hbhag.

Let me say right away that the definition above can be extended to nona-
belian groups, but in these lectures I will restrict myself to abelian groups.

Clearly, any G-grading on an algebra A induces a natural G /N-grading on
A where N is a normal subgroup of G. Indeed, we let the gIN-component A,y
to be the sum of all components Ay, n € N. We say that a regular G-grading
is minimal if for any normal subgroup N of G, the induced G/N-grading on A
is not regular. It is easy to show that any regular G-grading on A yields (via a
homomorphic image of G) a minimal regular grading (Remark: this particular
fact is false in case G is nonabelian).

Let me start with some examples.

The following example corresponds to the grading determined by the symbol
algebra (1,1), over F.

Example 7.2. Let M, (F) be the matrix algebra over the field F', and let G =
Z/nZ x Z/nZ. For ( a primitive n-th root of 1 we define

(1 0 e 0]
0 ¢ 0
X = diag(1,¢,...,¢" Y = 0 2
0
L 0 0 ¢
01 0 0
n—1 0 1
Y:En71+ZEm+1: : 0
1
0 0 1

10 -~ 0 O
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Note that (XY = Y X. Furthermore, the elements {Xin |0<i,j<n-— 1} form a
basis of M, (F), and so we can define a G-grading on M, (F) by (M, (F))q ;) = FX'Y7.
Let us check the G-grading is regular. For any two basis elements we have that

(Xilyj1>(Xizyjz) — CithhXizyjlyjz _ <i2j1Xiin1 Y2y
Cinl —i1J2 (Xizyjz) (Xi1 le)
= ﬁ(i1,j1)(i2,j2) — Cizjl—iljz

and hence the second condition in the definition of a regular grading is satisfied. The
first condition in the definition follows at once from the fact that the elements X and Y
are invertible. Finally we note that since ( is a primitive n-th root of unity, the regular
grading is in fact minimal.

Next we present an example of a different nature.

Example 7.3. Let E be the Grassmann algebra considered above with the usual
Z/2Z-grading. The commutation function is given by 790 = 70,1 = 71,0 = 1 and
71,1 = —1. It is easy to see that this grading regular and minimal.

Now it is clear that an algebra A may admit nonisomorphic regular gradings
and even nonisomorphic minimal regular gradings. In fact, it is easy to show
that more is true, that is, an algebra A may admit minimal regular gradings
with nonisomorphic groups. For instance, consider the following two (minimal)
regular gradings on My (F): (1) with the group Z/47Z x 7 /AZ (as in the example
above) (2) with the group Z/27Z x 7/27 x 7./27 x 7Z/27 (here we grade two
copies of Ms(F), each with the Klein 4-group, and then we take their tensor
product over F).

Bahturin and Regev conjectured however that the order of the group is in-
variant. More precisely they conjectured that if an algebra A admits minimal
regular gradings with finite abelian groups G and Ga, then ord(G1) = ord(Gs)
(see [11]). In addition, Bahturin and Regev made a conjecture which concerns
with the “commutation matrix” of a minimal regular grading: Let A be an associ-
ative algebra and suppose it is regularly graded with the group G = {g1,...,gn}-
Consider the n x n-matrix © (the commutation matrix) whose entry (i,7) is
given by ©; ; = Jg, ,. where 1 is the commutation function. It is not difficult to
show that a regular grading is minimal if and only if the commutation matrix is
invertible.

Conjecture 7.4. Let A be an associative algebra over a field F of characteristic
zero and suppose it is regularly graded by groups G1 and G5. Suppose the grad-
ings are minimal and let ©¢,, ©¢, be the corresponding commutation matrices.
Then det(O¢,) = det(O¢,).
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In a joint work with Ofir David we prove these conjectures (see [2]). We show
that if an associative algebra admits a G-grading which is minimal and regular,
then ord(G) = exp(A). In particular the order of the group is invariant. For the
second conjecture, we show that the determinant of the commutation matrix is
equal to exp(A)eXp(A)/ 2. We close these notes explaining roughly the idea of the
proof.

Suppose that A is G-graded and let Idg(A) be the corresponding T-ideal
of G-graded identities. In case the G-grading is regular one can write down
explicitly G-graded polynomials which generate Idg(A). Then, we construct
a “model algebra” B, which admits a regular G-grading and such that is G-
graded PI equivalent to A, namely Idg(A) = Idg(B). The point here is that
two algebras that are G-graded PI equivalent are also (ordinary) PIl-equivalent
and hence, in particular, they have the same exponent. The final step is to realize
that the order of G coincides with exp(B).

For the second conjecture we prove that two commutation matrices of two
minimal regular gradings are conjugate to each other and hence have the same
characteristic values. In particular the commutation matrices arising from min-
imal regular gradings on an associative algebra A over I’ have the same determ-
inant.
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