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A MAXIMAL EXTENSION OF KOTHE’s HOMOMORPHISM THEOREM
STEPHEN A. SAXON

Dedicated to the memory of Professor Gottfried Kothe

ABSTRACT. In 1958, Prof. T. Kato gave the following perturbation theorem: Let E, and
F, be subspaces of Banach spaces E' and F', respecuvely, and let f @ K, — F, be a
linear surjective map from K, onto F, withclosed graphin E x F. If dim(F/F;) < R,
then f is open and F, 1s closed in F' [4]. Ten years later, Prof. Dr. G. Kothe gave two
generalizations [5] which enhanced and werc enhanced by considerations of codimension
[7], Baire-like (BL) spaces [11a], and quasi-Baire ((QB) spaces [11a, 9], and thus, together
with a Robertson-Robertson Closed Graph Theorem (cf. [14]), provided significant exlernal
impetus for the early study of strong barclledness conditions. Viewed as yet another version
of the Kato result, Kothe’s Homomorphism Theorem replaces «Banach spaces» with the more
general «(LF)-spaces» (cf. 8.4.13 of [6]). Here, again, strong barelledness [12] kindly repays
Kothe and allows us to replace «< R, » with «< c». This is, easily, the best possible extension
as regards codimension of Fy .

1. DEFINITIONS

For standard background and terminology, please consult [3].

Our organization of strong barelledness conditions is based on the definition of db spaces,
and can be found in more detail in [11, 12], where appropriate credit i1s given to those who
provided earlicr names for the concepts we restate here. As far as we know, ours 1s the only
attempt at unifying the nomenclature.

A barrelled space F is a db space, or is db, if, given any increasing sequence of subspaces
covering E', at least one of the subspace must be dense and barelled. We define d spaces
(resp., b spaces) as above, with the deletion of «and barrelled» (resp., «dense and»). We
define udb, ud, and ub just as we do db,d, and b above, respectively, with «increasing»
deleted. [The «u» signals acceptance of unordered covering sequences. |

In the relational picture that emerges, none of the implication arrows can be reversed
(hig. 1).

A barrelled space is (otally barrelled (TB) if, given any covering sequence of subspaces,
onc must be barrelled and «almost dense»; 1.e., its closure must have finite codimension in
E. And E is BL (Blaire-like) if it is not the union of an increasing sequence of nowhere
dense, balanced, convex sets. The T'B and B spaces fit neatly into the picture (fig. 2).

Sequences of subspaces which cover remind one of ( L /') -spaces, and, indeed, the (L F') -
spaces have been pleasingly partitioned into robust, strong barrelledness-precise subclasses
[8-10]. (For example, an ( I /") -space is metrizable 1if and only if 1t 1s BL , and there 1s an
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Figure 2. General barrelled spaces.

abundance of such spaces). Grothendieck’s original definition of ( L F') -space [2] implies the
existence of an increasing, covering sequence of dominating Fréchet spaces, and this appears
explicitly in the (equivalent) modern definition. There i1s a useful compromise between the
two. (One topological vector space G [strictly] dominates another, F', if G and F coin-
cide as vector spaces, while the topology of GG is [strictly] finer than that of F'). Clearly,
Grothendieck knew the arguments we now sketch to achieve the compromise.

Proposition. Let (E,.9”) be a Hausdor(f locally convex space covered by a sequence (E._)_
of proper subspaces, with each E_ admitting a (unique) Fréchet topology 7 such that
(E,,7) dominates (E_,9 ). If (F,), is an arbitrary sequence of subspaces with each
F, admitting a (unique) Fréchet topology T, such that (F,,1,) dominates (F,,9), then
there is acovering, properly increasing subsequence.( E, ) of (E,), suchthat Fy,... F, C

-
E, SE
Uous.

n. for each k, and all of the inclusion maps between the Fréchet spaces are contin-

The proof uses the closed graph theorem, the fact that a Fréchet space is udb, and the
fact that any subspace Q = F, + ...+ F, + E| + ...EW of (F,9) has a (unique) finer
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Fréchet topology p making (Q, p) 1somorphic to a quotient of the product P = F} x ... X
Fo, x B; X ...X E, of Fréchet spaces, so that (Q, p) will be continuously included in some

(Eﬂtn "Lﬂtn ) )

Grothendieck could easily have offered the following alternative

Definition. A Hausdorff locally convex space ( E,.27) 1s a [proper] ( L F -space if there exists
a sequence ((E,,.9)), of Fréchet spaces continuously [and properly] included in ( E,97)

such that £ = U E._ and 9 is the finest locally convex topology on E for which each

(E, ,7.) dominates (E,,97).

In other words, a Hausdorff locally convex space F is a [proper] (L F') -space if and
only if E is the inductive limit of a covering sequence of Fréchet spaces continuously [and
properly] included in E'. The statement is twice simpler than the usual modern onc which
explicitly requires a defining sequence of Fréchet spaces that 1s 1) increasing, 11) with each
Fréchet space continuously [and properly] included 1n the next. The Proposition shows the
definitions, with and without 1) and 1), are equivalent, and proves that there can be at most
onc ( LF) -space dominating a given Hausdorfl locally convex space (cf. Grothendieck’s
Equivalence Theorem [10]). Further, the class of improper ( L F') -spaces coincides with the
class of Fréchet spaces. [In some previous papers [8-10), « (L F') -space» has meant what we
mecan here by «proper ( L F') -space»].

There are other exchanges between unordered covering sequences and ones that are in-
creasing [12): Any Hausdorff barrelled space dominated by an (LF') -spacc is d, b, or db <
it is ud, ub, or udb, respectively. This could save much labor (cf. [11, 12]) 1s in example of
[1]. Also, knowledge of the twice simpler definition would benefit parts of [17]: the first four
lincs of 1.4.5 (12), p. 84, can be equivalendy replaced by «If £ 1s an (L F') -space, then»,
and 1.6.2 (21), p. 121, is just a special case of the much morc general 1.6.2 (7), p. 117.

2. REQUISITE RESULTS
We write (E,.9) = lim( E_,9.) todenotethat ( E,.9 ) isan (LF) -spaceand (( E,, 7)),

n

is a covering, increasing sequence of dominating Fréchet spaces [whose inductive limit is
necessarily ( E,.9) .

We need the following results.

(0) Any Hausdorff quotient of an ( L F') -space 1s an ( L F') -space.

(1) If f is a lincar map from a barrclled space E into a Fréchet space F with closed
graph in ¥ x F', then f 18 conunuous.

(2) If G is a subspace of a Fréchet space F with dim( F/G) < c,then G 1s T'B.
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(3) 1f Fy is a subspace of (F,7) = lim(F,,7,) with dim(F/F,) < c, then (Fy,7) is

the inductive limit of the sequence (( F, N Fy, 7,)), .
(4) Let Fy beasubspaceof (F, 1) =lim(F,,7,) withdim(F/F,) < R,. The follow-
—

ing are equivalent:

(1) (F,,7) 1san (LF) -space.

(n) Each F_ N F, 15 7_-closed.

(1) I, 18 7-closed.

We note that (0) follows from Theorem 2 of [10], (1) is a standard closed graph theorem,
(3) 1s proved 1n [13] in greater generality (where it is also shown that the proof given in [15]
and [6] 1s false), and (4) 1s proved as in Theorem 10 of the paper [9] on proper ( L F') -spaces.

As noted in [7], techniques of Saxon’s dissertation prove, without use of the Continuum
Hypothesis, that every subspace (G of codimension < ¢ in a Fréchet space F' 1s barrelled.
Valdivia [16] subsequently obtained the result for more general /. In (2) we claim a stronger
conclusion for G when F' remains a Fréchet space. Its proof follows from [12], where we
interpret and answer a question on ( L F') -space dominance (question 13.4.3 of [6]) in terms
of strong barrelledness. We provide here a more direct

Proof of (2). Suppose & 1s not T'B. By Proposition 9.3.3 (i) of [6], G 1s not ub, and
so 15 covered by a sequence ( B, ) of absolutely convex sets closed in /', with no B a
neighborhood of O in its span. Let (U,), be a countable base of closed absolutely con-
vex neighborhoods of O in * with U, + U,,;, C U, forn= 1,2, .... Let {S,}, be
a partition of IN into denumerably many disjoint infinite sets S, and define o : N — N

by letting o(n) = p if and only if n € S,(n € N). The balanced set C; = | | B, is

not absorbing in the Baire space F', since F' cannot be covered by the nowhere dense sets
mB_(m,n=1,2,...). Thus thereexists z, € U,\{0} whose span mects C, onlyat0. The
Bipolar Theorem provides f, € By, with f(z,) > 1. Each B | = B +{az, ! |a| < 1}
1s closed and absclutely convex and not a neighborhood of O 1n 1ts span, so the abovce rea-

soning applies to C, = U B,, toyicld z,#0 whose span meets C, only at 0. For

a umique scalar b, f, vanishes at the non-zero y, = 2z, + bz, , a vector whose span also
meets C, only at 0, by absolute convexity. There i1s a positive multiple z, of y, with
O#z, € U,. Thus the span of z, meets C, only at 0, f,(z,) = O, and there ex-
1sts f, € ( By 11° such that f,(xz,) > 2. We inductively continue to chocse the se-

quences (z, ), and (f ) suchthatz ¢ U_ f (z ) > n, fn(xq) = 0 forall ¢ > n,

4 1@

¥

and f_ € iBU{n} + J E a, T, : cach |a, | < 1\}

L Li<ken J

forn= 1,2, .... Let I be an in-
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dexing set of cardinality c¢. A result of Sierpinski assures that, for each n € N, there is
a collection {S,;};c; of infinite subsets of S, any two of which have a finite intersection.

The series E T, 1S absolutely, hence subseries, convergent in the Fréchet space F'. For
i

eachi € I,letu, =) <z,:k€E US’M}. Suppose L is a non-empty finite subset of |
\ n

1s a non-zero scalar. Fix p € IN arbitrarily. We wish to show that
! \
u = Zaiui ¢ B,. Fix r € L and choose M such that |a |- M > (E la| | + 1. Since
i€l \iEL /
SS_T\USW 1s mfinite, 1t contains some m > M. (learly, u = Ebkzk for appropriate
k>1

s I

s T

scalars b, satisfying {b,| < Y |o;|(k=1,2,...} and with b, = a,. Thus

rE L

and for each 1 € L, aq,

1

| ‘/ \

(] 2 £ (b | = ifmk S bz || > la - M =5 el > 1

1 <k<m / 1€ L

Butm € S, C S, = o(m) =p,sothat f € B>, and therefore u ¢ B,,. Since p was

arbitrary, we see that {u,} ic; 15 a linearly independent set of ¢ vectors whose span meets

U B_ and thus &, only at 0. But this forces dim( F/G) > c, a contradiction. Therefore it

must be that G 1s T'B, after all. m

3. MAIN RESULT

Theorem. Let E, and F, be subspaces of (LF) -spaces E and F', respectively, and let
f: By — Fy be alinear surjective map from E, onto F, with closed graphin FE x F . If
dim(F/F,) < c,then f isopenand F, isclosedin F;andthen,infact, dim(F/F,) < R,
and F, tsan (LF)-space.

According to 8.4.13 of (6], Kothe’s homomorphism theorem 1s the above but with £y =

E, « < c» replaced by «< R, », and the deletion of «and F|, is closed ... {LF')-space».

However, the Abstract makes the case for more generously crediting Prof. Ko6the, allowing

F, ic remain arbitrary and deleting only from the semicolen on, keeping « < R », of course.

In any case, our principal contribution is to extend the codimension allowed Fj,, and here

our work cannot be improved: Let F' = lim(F,,.) where each (F,,7,) is an infinite-
-

i

dimensional separable Fréchet space, so that dim( /) = c¢. By Theorem 2 of [&] (cf. [10],
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Theorem 6 (1) = (v1)), there is a dense subspace H of ( Fy, ;) which is dominated by
a metrizable proper (L F')-space . The improper ( Fy, ;) cannot be dominated by &,
from uniqueness of domination, so there exists some z € F;\H. Then, viewing F, =
H + sp({z}) as either a subspace of (F,,7;) orof F, H is a dense subspace of F,,but G
1s a closed, non-dense subspace of the proper (L F') -space E; = G & sp({z}), so that E,
strictly dominates F,,. Set E = E, and let f be the continuous inclusion map from E, onto
F, . Now, the codimension of F, 1S < c (in fact, = ¢), but all the other hypotheses of the
Theorem are satisfied; and yet, not one of the four conclusions holds.

Proof of Theorem. Since f has closed graphin E x F,N = f~1({0}) is closed in E.
Thus, E,/N 1is a subspace of E/N, the associated injection ¢ = f~ has closed graph in
E/N x F,and, by (0), we can write E/N = lim(G_,.9,) . Wealso have F = lim(F,,7,);

— — 3

N n

hx n € N. From (2) we conclude that ( F, N F,,,7,) is T'B, hence db, so for some p, H =
F . NF, ﬁg(GPr‘l E,/N) is adense, barrelled subspace of ( F, N F,, 7..) . Certainly, g~ "E
(H, 1) — (Gp,ﬁ‘;) has closed graph in (H,7.) X (Gp,ﬁ;) , since the same is true with
coarser topologies on H and G, and by (1), g~ | is continuous. Therefore, if (y,,),, is a
sequence in A converging to some y in (F_, 7. ), then (g‘l(ym) )., 18 a Cauchy sequence
which must converge to some z in (GF,_?;) . Again, the graph of ¢~ |F,.ﬂFu 1s closed In
(F.,7.) X (GF}.S?I;) ,requiring g~ '(y) = z,sothat y € H. Thus H = F._N F, is closed

and of codimension < c in the Fréchet space ( F,_,7,), and then, indeed, must be of finite
codimension in F, . By (3), F, = lim(F,_ N F,,7.) is an (LF) -space, and is countable-
__}

n

codimensional in F', since the deficiency in each of the countably many steps of F' is finite.
Now, by (4), F,, isalsoclosedin F'. Sinceeach g~ |5 - g, iscontinuous on (F,NF,, 7,), g~

1S continuous on the inductive limit F,,and ¢ : E, /N — F, 1sopen; thussois f: E, —
FO . [

4. APPLICATION

We can maximally extend (4) to obtain

(4’). (Cf. [13].) Let F,, be a subspace of (F,7) = lim(F,,7,) withdim(F/F,) < c. The

following are equivalent.

(i) (Fy,7) isan (LF) -space

(ii) Each F, N F is closedin (F,, T,)

(iiif) F, isclosedin (F,T).

Moreover, if (i), (ii), andlor (iii) holds, then dim( F/Fy) < R, .
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Proof. If (i) holds, in the Theorem set E = F, = (F,, ) and let f be the inclusion map to
obtain dim( F/F,) < N, and (iii), from which (ii) follows. If (ii) holds, so does (i), by (3).m

To see that (4°) can fail if dim(F/F,) = c is allowed, choose

(F,r)=lImw x...xwxfy, x4 x... and
wa
niacClors

F = lim Xy X £, X ...
(F,9) me X w X&) X £y X

nfaclors

(cf. Example 3 of [10]), so that (F,,.9) = ( F,, ) isan (L F) -space [(i) holds], yet neither
(11) nor (ii1) holds. (Also, see [13]).
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