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Dedicated to the memory of Professor Gottfried Kéthe

1. INTRODUCTION AND NOTATION

A quojectionis a Fréchet space F' which is the projective limit of a sequence of Banach spaces
X, and surjecuivemaps B_: X ,; — X, .

We write F' = quoj_(X_, R ). Quojections have been introduced in [1] to character-
1ze those Fréchet spaces admitting a nuclear Kothe quotient and, since then, they have been
extensively studied by several authors (cf. our survey [9]). Here we just recall that every
quojection is a quotient of a countable product of Banach spaces by a quojection subspace
(cf. [3] and [10]).

A quojection 1s fwisted if it 1s not 1somorphic to a (countable) product of Banach spaces.
Examples of twisted quojections were firstly exhibited in [12] by the second author and we
term standard those quojections constructed by using the method 1n {12]. Standard quojec-
tons have interesting properties (cf. [8} and [10]) and, apart from products, have in some
way the simplest topological structure among quojections: they are quotients of products by
Banach subspaces. Motivated by this situation we introduce here what we call quojection of
the first order, that 1s quojections which can be represented as quotients of countable prod-
ucts of Banach spaces by Banach subspaces. We show that most of the properties of standard
quojections sull hold for first-order quojections.

In section 2 we characterize first-order quojections as those quojections admitting a con-
tinuous seminorm p such that ker p is a product; we give also some examples of first-order
and non-first-order quojections.

In section 3 we study when a first-order quojection is twisted and we find that such a
quojection F' = %, where P 1s a product and B Banach, is a product 1if and only 1f there
exists a Banach subspace Z of P which contains B and is complemented in P.

In section 4 we prove that twisted first-order quojectuons are never complemented 1n any
product of Banach spaces and we give new examples of twisted quojections. We study also a
special exact sequence of quojecuons.

Finally, in section 5, we deal with prequojections and we show that the results of [11] for
prequojections associated to standard quojections are still true for prequojections associated
to first-order quojections.

Our notation is standard (see e.g. [5]) and, throughout this paper, product will always mean
«countable product of Banach spaces». We recall the construction of standard quojections

(*) Research supported by the Itallan MURST.
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(cf. [8] or [12]). Let X_ be Banach spaces, let Y, be closed subspaces of X andlet L bea
normal Banach sequence space. We form the step-spaces

e (@%) w n.-|(@rn)@(@%)
L I ) )

e n<k L

if R, : F,,;, — F, is the canonical quotient map, then the standard quojection Q((X,),
(%,:-);L) 1S the space quoj . ( F,, K,) and we know by [9] or [12] that such a quojection
1s twisted if and only if Y_ is not complemented in X_ for infinitely many n. A twisted

(LB)-space is a strict ( L B)-space which is not isomorphic to a countable direct sum of
Banach spaces.

2. FIRST-ORDER QUOJECTIONS

Definition 2.1. F' is a first-order quojection if there exists a product P and a Banach subspace
B of P such that F' is isomorphic to —E— .

As shown 1n [10}, Corollary 3.1, every standard quojection is a first-order quojection. The
following theorem clarifies the topological structure of first-order quojections.

Theorem 2.2. Let F' be a quojection. The following assertions are equivalent:

(1) F 1s a first-order quojection.

(ii) There exists an exact sequence 0 — P — F — B — 0, where P is a product and
B is a Banach space.

(ii1) There exists a continuous seminorm p on F' such that ker p is a product.

(iv) There exists a fundamental family (p_) of seminorms on F' such that ker p_ Is a

product for evey n.

Proof. Using the fact that every quotient with a continuous norm of a quojection i1s a Banach
space it is easy to see¢ that (1) < (111} <= (iv).

Let’s suppose that (ii1) holds and put P = ker p. Then Y = % 1S a Banach space when
endowed with the quotient topology from F'. Let ¢ : F' :— Y be the quotient map and let C
be a closed, bounded, convex body in F' such that g( C) contains the ballof Y.

Let X = span C with the Banach space topology generated by the Minkowski functional
of C. Then we have a map:

r: XX P —F, r(z,z) =1 — 2,

which is continuous and surjective. Since ker r = {(z,z) :z € X(|\P} =B C X x P
and since the topology of X 1s stronger then the topology induced by F| 1t follows that B 1s

Banach and F = £%£ s of the first-order.
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Conversely, if F' is isomorphic to £, with P a product and B Banach, let us take a
continuous seminorm p of P which induces on B its Banach space topology. Of course, ker
p(1B = {0}; we prove thatker p+ B isclosedin P. If z_ = z_+ b_ converges to zero with
p(z,) =0 and b, € B, wehave 0 = lim_p(z,) = lim_p(b,) . But then b, converges to 0

in P and hence sodoes (z,) . This shows thatker p+ B 1s closed in P so that the quotient

map ¢ : P — & is an isomorphism on ker p.

Let p be the quotient seminorm induced by p on % . If z € ker p, there exists a sequence
(u,) C P suchthat g(u,) = z and p(u,) < =. Then u, —u,, € B and p(u, —u,) < —+
+ f; Since B is Banach and p induces on B its own topology, it follows that (u_) converges
toapoint u of P sothat p(u) = 0 and ¢(u) = 0. This shows thatker p = g( kerp) and the

proof 1s complete, since ker p is a product (because P is s0) and ¢ is an isomorphism from
ker p onto ker p.

Corollary 2.3. A quotient of a first-order quojection by a Banach subspace is again a first-
order quojection. The bidual of a first-order quojection is a first-order quojection.

Examples 2.4.

1) As already mentioned before, every standard quojection is a first-order quojecton.

2) Let (F,) be a sequence of standard quojections such that F is twisted for infinitely
many k. [, F, is not a first-order quojection. To see this let us suppose, arguing by contra-
diction, that there exists a seminorm p on | [, F, such that ker p is a product. Then, there
exists n such that [[,, . F, C ker p and hence is complemented in ker p. But, in this case,
we can find a twisted F, ,m > n, complemented in ker p. This 1s impossible since no stan-
dard twisted quojection can be complemented in a product (cf. [8]). The contradiction shows
that [ [, F; 1s not of the first order.

3) We recall the construction of twisted quojections given in (7). Let X be a Banach
space and Y a closed, non-pseudo-complemented subspace of X . If (Y ) 1S an increasing

sequence of subspaces of X containing Y and such that dim -},fn- = oo then E = s—1nd Y,

1

is a twisted (L B)-space. If X is reflexive, F' = E' is a twisted quojection. Now we show
with an example that such twisted quojections can be of the firstorder. Let X = L™, r > 2,
and let ¢ : L™ — [P be a quotient map, 2 < p < r (see [6]). By a classical result of Kadec
and Pelczynski ¢ is strictly singular and hence Y = ker ¢ is not pseudo-complemented in
X. Write I = (P, IP), and let 7 = (P, P), — (D54 I¥), be the canonical projection.

If Y, = ker r_q, then we have that Y C Y, dim rﬁ-l- = oo and }{} is complemented in %,

hence 1n %:—L Let # =s— 1nd WY E 1s twisted and contains B Banach such that

E .Y
=T lﬂdnﬁ- ~ (PN
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Since E is reflexive this means, by duality and using Theorem 2.2, that F' = E' is a
twisted first-order quojection.

4) Let (p,) be astrictly increasing sequence of real numbers with p, > 2 andlet R :
LP»1(0,1) — LP~(0,1) be quotient maps (cf. [6]). The quojection F' = quoj (LP~(0, 1),
R, ) is twisted and if it contains a Banach subspace, this can only be isomorphic to [ (8],
Prop. 2.1). We show now that F' is not a first-order quojection. In fact, let us suppose
by contradiction that F' is of the first order. Then Theorem 2.2 ensures the existence of a

continuous seminorm p on F such that ker p is a product and hence ker p ~ (1*)V. Let

S, : F — LP(0,1) be the quotient map. ker S_ is a quojection for every n and there
exists k such that ker §, C ker p. But then ker S, 1s a quojection subspace of (1YY and
it is not difficult to see that in fact ker S, must be isomorphic to (I*)¥. Let Z = ker R, C
C L (0,1). Z 1saquotientofker S, and hence Z must be isomorphic to [ . The classical

result of Kadec and Pelczyniski about [% -copies in LP spaces implies that Z is complemented
in LP+1(0,1) and so we may write, since R, is surjective, LP1(0,1) = Z L7(0,1).
Since the latter space is isomorphic to LP<(0, 1) we have a contradiction and hence F' cannot

be a first-order quojection.
Other examples of first-order quojections will be given in the next secuon.

Remark 2.5. With reference to Corollary 2.3 we note that the bidual F'" of a quojectuon
F' may be of the first order without F' being so. For example, let E be a standard twisted
quojection such that E" is a product (such an E exists by [8]). If ¥ = EV then F is not
first-order by Example 2.4.2 while, of course, F'" is.

3. TWISTED FIRST-ORDER QUOJECTIONS

We start this section with a lemma which describes Banach subspaces and complemented
Banach subspaces of products.

Lemma 3.1. Let P = [[, X be aproduct and B be a Banach subspace of P. Then there

exists k € N, aclosed subspace Y of HLI X, and a sequence (T . n> k) of continuous
linearmaps T, | Y — X _ such that

(*)  B={(v):va=Ta(v,---,0) for n>k and (y;,...,y)) EY}.

If, in addition, B is complemented in P we can choose k € N suchthat'Y is complemented
in [Ti1 X; - .

Proof. Since B 1s Banach, there exists £ € IN such that

n k
Yz ll<e,d Izl ¢, >0, forall n>k and I:(I}.)eg‘
j=1

j=1
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letr: P — HL X, be the canonical projection and ¥ = r(B) . Y 1s Banach and for
(I}-) € B we have

2o li=l 7 () IS o ll 7 (25) = call v

where r_ : P — X _ 1s the canonical projecton and y = 7( :1:}.) . This yields the existence of

lincarmaps 7, : Y — X_with || T,y ||< c. || y || sothat B is of the form indicated above.
If B iscomplemented in P, let § : P — B be a projection. There exists £ € IN such
that we have the following factorization

from which we obtain again that Y = r( B), that rS is a projection from HL X; ono Y
and that B is in the form (*), the existence of the maps 7, being proved as in the first part.

It is clear that the conditions of the above lemma are also sufficient, that 1s a subspace B
of the form (*) is a Banach subspace of P (isomorphic to Y ), complemented if Y 18 so. Now
we can state the main result of this section:

Theorem 3.2. A first-order quojection F = g is isomorphic to a product if and only if there

exists a Banach subspace Z of P which is complemented in P and contains B .

Ol

Proof. Sufficiency: if such a subspace Z exists we can write P = Z () G and, since Z =
by [10] Prop. 3.5 we obtain that G 1s a product. But then it follows that

1

F=—-= ZEBG is a product.

B

.1D
B

Necessity: let’s write P = [[; X, and B in the form (*). We may suppose that Y C X, and,

for ; > 1, we introduce the spaces Y, C TT._, X, defined by Y, = {(zy,...,2;) 1z, =
=T_}Il:f0r1{i£j! IIEY}'
Let

n+ 1 T
R . H{=1 X: N Hi=1X{
Y Y

n+ | n
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be the quotient map induced by the canonical projection of J]™, X ; onto J]., X, so that
we have

P i (L= X
F-B_ un]n( Y :Rn>‘

n
n . : . N X,
Let P, : [, X; — ][;.; X; be the canonical projection and Q, : -E— - H?i——
the quotient map induced by P,. If F' 1s not twisted we have also a representation F' =
= quoj,(H,,S,,) where S, : H_,, — H_ issurjective, H_ is Banach and ker S, is

complemented in H for every m. We may assume that the following diagram is commu-

m+1
tative:
R,. J . .
v = 52 2 & F
]
\ L/ \N 7 Q,
H, ul H,

where all the maps are surjective, R, = R| R, ... R;_,, Q, is the quotient map of F onto
H, and j is a suitable integer, 7 > 1. The main point of the proof is to show that Q; has a

right-inverse; 1.¢. ker Q;

From the diagram it follows that there is a Banach space M withY; C M C Y x T, X,

1s complemented in F'.

J_
X, : L

such that H, = H'ﬂl— Since Y} = {(y,sz,...,'}}y) .y € Y} itis easy to see that

M =Y,U with U C [, X;. Let u : H — H, be aright-inversc of S;. Then

J
X . . .
A=Nu:H; — [L}—,Z— 1s a right-inverse of L and so we have
J

Ly X, M
}jj =A(H,) P ker L = A (Hl)@?j,

Let’s consider now U C [[/_, X; C J[, X;. We have that U B = {0} and U + B is
closed in J ], X, as is easily seen recalling the form (*) of B. In the same way U (Y; = {0}

and U + Y, 1s closed in H;LI X,. This means exactly that the quotient map ¢ : P — g-

]
- - : U+B - . TT) [ X .,
1s an 1somorphism of U onto *5* and the quotient map g; ¢ [ X — y— is an
U+Y;

1somorphism from U onto ——.
]

/
- . . : » . P - X. " " . U'I"H
In turn this implies that the quotient map Q; : 5 — H-,?:— i$ an 1somorphism of =

U+Y, : : : .
onto ——+ = Y 5o that there exists a right-inverse of QJ., say L}-, defined on %f—

}'; YJ J
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Let w : H, — F be aright-inverse of Qz. It 1s easy to see that A = Q}-'wu and for

r=A(h) € A(H,) C H*}f,‘i we have ijuf,.(:.c) = Q}-wu(h) = A(h) = z which shows
J

that wul, : A(H,) — F isaright-inverse of Q;.

Since
[T X, _ M
7 = A(H,) v

and @, has right-inverses on A(H,) and ?M;, it follows that the whole map Q) has a right-

J .
: X,
INVErse AJ. X H‘?"— — F'. Now we pul

f

J_
Of course Z contains B and, since ﬁm = A}-(Hg%—), which is a Banach subspace of
]

P, Z is Banach (recall that «being a Banach space» is a three-space property in the class of
locally convex spaces). We show now that Z is complemented in P and this will conclude
the proof.

We may write

J.
g = A; ( ‘; Xl) (D ker Q;.

/

Y, X
Since ker Q; = ! @1;[1}1 it follows that ¢~ (ker Q) =Y+ B+ H{}J X,. We have
B =Z()q '(ker Q;) and hence

21 %.=2Na" (ker @) I] %= BN % = 0}

1>] 1>) 1>)

Since P = Z + ¢~ ' (ker Q).) and B C Z it is casy to sce, recalling the definition of Y}
that P = Z+]],,, X;andhence P = Z @ I1;>; X; which shows that Z is complemented in
P, as claimed (in fact Z is just a «twisted» copy of H“Ll X, in P, that is there are operators

T, : H':'I=1 X; — X, ,n>j, suchthat Z = {(z;) : z; = Ti(zy,...,3;),1 > 7} this is not
difficult to sec).
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Remark 3.3. It is easy to see (recalling the proof of the theorem) that the hypothesis that B C
C Z, with Z Banach and complemented in P, i1s equivalent to the existence of an automor-

phism T : P — P suchthat T(B) C HLI X; forasuitable j € N.

Remark 3.4. Itis also clear from the proof of Theorem 3.2 that all the maps Q,, k£ < 7, have
right-inverse. In the same way, all the maps R,, k£ > j, have right-inverses t0o. It 1s worth
mentioning that it is possible to represent a product P in the form quoj (Z,, L) such that
no L_ has aright-inverse. Theorem 3.2 shows, however, that such a representation cannot be

of the form %, with P a product and B a Banach subspace of P.

4. CONSEQUENCES AND EXAMPLES

To give new examples of twisted first-order quojections we have to know when a given Banach
subspace B of P is contained in a bigger Banach subspace Z of P, complementedin P. To
handle this situation we must translate such a «geometric» condition into an «analytic» onc.
For this we introduce some further notation.

Let B be a Banach subspace of P written in the form (*). We recall that Y, = {(z{,...,

T;) T = TAzy,eeey, ), (Ty,...,7,) EY k<1< J} (Y; is defined only for ;7 > k). Let
Tin Y; = X,,n > j, bedefined by T5,(y, Ty y, ..., T;9) = Tpy fory = (yy, ..., ¥) €
€ Y. We have the following

Proposition 4.1. B is contained in a complemented Banach subspace Z of P if and only if
there exists j € IN such that every map T;,(n> 7) has an extension

)
T [ [ X — X,

1=1

Proof. If the T, exist, then we may take Z = {(z,) € [[, X, : T = Tjm(Z1,---, ;)

m > J} which is isomorphic to H‘::l X,, complemented in P and, of course, contains B'.
Let’s suppose now that such a subspace Z exists. Then we have, according to Lemma

3.1:
B={(z,):z,=T,(zy,..-,2), n>k and (z,,...,7,) €Y}

z={(z,):2,=8,(21,-.-,3;), n>j and (z,...,3,) e W}

where W 1s complemented in H*L] X;. We may suppose that ;7 > k so that Y, C W and
hence 5,(u) = T;,(u) forevery u € Y}, since B C Z. Since W is complemented in

/ X; we can extend the maps S, to maps §n , H‘Ll X, — X_, n>j, and itis clear

1=]

that these maps are the f?.n we were looking for.
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It 1s easy to see that in the case of a standard quojection

(o ()0)

Theorem 3.2 (together with Proposition 4.1) says exactly that F' is twisted if and only if Y_
1s not complemented in X for infinitely many n, which is a well-known result for standard
quojections (cf. [10]).

Corollary 4.2. Every quojection isomorphic to

ooy IN N
X x (1) . W x (cq) |

B B

with B, X, W Banach and W separable, is a product.

Proof. The maps T, (which define B) can be extended to maps T, since [® and ¢, have
the extension property (the second one only for separable spaces but this 1s just the case).
Proposition 4.1 and Theorem 3.2 give the result.

Now we give some examples of twisted first-order quojections, constructed using Theorem
3.2 and Proposition 4.1 and different from standard quojections.

Examples 4.3.

(1) Let X, =1*, X = 1Pforn > 2 withp < 2. We take Y isomorphic to !,

Y C X, and quotientoperators T, : Y — IP». Let B= {(z,) : z, = T,z, forn> 2 and

.. Xa . : : :
z, € Y}. The quojection F' = H?}a_" 1s twisted. In fact, if ¥ were not there would exist,

by Theorem 3.2 and Proposition 4.1, a natural number ; such thatevery map 75, : Y; — (P

would have an extension 775, @ [ x Pt x ... x Py — P~ Since T, 1s surjective, T, 1S

surjecuve too. But this 1s impossible, since every operator from [* to [P(p < 2) 18 compact

and every operator from 9 10 I, ¢# r, 1s strictly singular. So, T, cannot exist and [ 1S
twisted.

() In the above example we can take also X, = C([0,1]) and get, as in point (1),
a separable twisted first-order quojection. It 1s also clear that we can substtute the space
' with any big space W (big with respect to quotients) such that there are quotient maps
T : W — [P, For examplc we can take W = (P, IP»), .

(ui) Let X, = LP(0, 1), 1 <p< 2, X _=Pforn>2 withp<p <2.LetY =
= (P, [P»),. Y 1s a subspace of LP(0,1) (cf. [6]) and there exist quotient maps T, @ ¥ —

X
— P let B={(z,) :z, =T z,,n>2 and z, € Y}, as usually H;}—" 1s twisted. For
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this 1t 1s sufficient to note that every operator from LP(0,1) t0 9, ¢ < 2, is strictly cosingular
(recall that every quotient of [? contains [9 as a complemented subspace) and every operator
from [9 to [ 1s strictly cosingular too, which 1s a well-known fact. As in point (1) we cannot

have extension operators T-“;.n and so Hhﬁ 1s a twisted reflexive first-order quojection.
If X, are Banach spaces and L 1s a normal Banach sequence space, L( X,) is thc Banach
space of all sequences (z,) € [[; X, suchthat (|| z,;||) € L.
The following lemma, which 1s in the spirit of the construction of standard quojections,

shows how to obtain twisted first-order quojections from special products.

Lemma 4.4. Let X, Y, Z, be Banach spaces with Y; C Z, C X; and let L be a normal
Banach sequence space. Let T : Y. — Z. be continuous linear maps and B = {(y,w) :

v€EL(Y), well; X, w,=T,y; forall j} C L(X;) x [, Z;.

L (X;) x1L: Z,
B

is twisted if and only if, for infinitely many 1,T; has no extension defined on X ..

Proof. Use Theorem 3.2 and Proposiuon 4.1.
Note that the well-known criterion for standard quojecuons is obtained by the above
Lemmataking Y, = Z, and T; = I, .

Examples 4.5.

(1) With reference to Lemmad44let X, = Z. = X = 1P, 1 < p < oo, p#2 and lct
Y. = Y be anuncomplemented copy of [P (see [2]and [14]). Take L =P and T : Y — X an
isomorphic map which is onto X . Since Y 1s not complemented in X, 7" cannot be extended

to X and so we obtain that {Z~ is twisted with B ~ IP. In this case £~ = Q(I?, &; I?)

as 1t 1s easy to verify.
(i1) Proceeding as in point (1) we can find a twisted first-order quojection of the form

LLP(?DH 1 < p< oo, p#2, with B ~ LP(0,1) (see again [2] and [14] for uncomple-
mented copies of LP(0,1) in LP(0,1)).

(m) Let X, = Z. = C([0,1]) and Y; = Y be a subspace of C([0, 1]) such that there
exists anoperator 7" : Y — C([0, 1]) which cannot be extended to all of C([0, 1]). Such
a couple (Y, T) exists since C([0,1]) is not separably injective and since C([0,1]) 1s
universal for separable spaces. Arguing as in (i) and taking L = ¢, we obtain a twisted

first-order quojection of the form C““é”)” .

(iv) Let X, = Z;, = L'(0,1) and Y; = R = sp{r_}, where (r_) are the Rademacher
funcuonson (0, 1). Since L*°(0, 1) has not finite cotype (hence not cotype 2) there exists a
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(compact) operator T : R — L'(0, 1) which cannot be extended to L'(0, 1) (cf. [13] Ch.

6). Taking L = I' we obtain that 2X%0" s twisted with B ~ [' (R) ~ I'({2).

(v) Let X, = Z, = I'. We produce now a subspace Y of !' and an operator T : Y —

. L. ‘ . . Iy IN
— 1! which cannot be extended to ', thereby obtaining a twisted first-order quojection i%

(taking £ = 1 ).

Since C, (I&°) = \/n, where C,(X) is the cotype constant of order 2 of X, we have
by [13], Ch. 6, that for every n there exists u_ : sp{r,...,7.} — L, || v, ||= 1 such
that || @, ||> +/n for every extension u, : L'(0,1) — ll. Let B, = sp{r,,...,7,}.
By the Kintchine inequality d( R,,12) < C for every n, where «d» is the Banach-Mazur
distance. Since R, is a finite-dimensional subspacc of L' (0, 1) by well-known properties of
L,-spaces we can find F, O R_ such thatdim F, < oo, d(F,, 1} _ ) < 2 and projections
P : L'(0,1) — F_with sup_ || P, ||< oco. From this last property we deduce that
| @, ||> C'\/n, for asuitable C’ > 0, forany u_: F. — [} whichextends u_.

LetW=1U"(F)andY =1l'"(R)) C W.Ofcourse W ~ ' . Let T : Y — ' =1'"(1})
defined by T(z,) = (u,(z,)) for (z,) € EI(RH). Of course T' cannot be extended to

W ~ ' and so the proof is complete.

We can obtain other examples of twisted first-order quojections combining the Examples
in 4.3 and 4.5.

It 1s known that twisted standard quojections cannot appear as complemented subspaces
of products. Now we show that the same holds for twisted first-order quojections. The proof
relies upon the following lemma, communicated to us by P. Domariski, which can be deduced
from Lemma 10.21 of [4].

Lemma 4.6. Let F = proj (X, , R, ) be a Fréchet space and let the projective limit be
reduced. If F' is complemented in a product then the fundamental exact sequence

0 -F-][x,—-]][Xx,—0

(¢cf. [15]) splits, that is F' is complemented in || X_ and has a complement isomorphic to
Hn Xﬂ )
Theorem 4.7. Let F' be a twisted first-order quojection. Then F' is not complemented in any

product.

. X, . , o
Proof. We wrile F = H‘?j— where B 1s in the form (*). Let’s suppose that F' 1s twisted but
complemented in a suitable product. By the above lemma there are Banach spaces Z_ such

that £ = F@ ][, Z, is again a product.
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Wedefine W, =X PZ and S, :Y - W_by S (y) =(T,(y),0).
Let B = {(w,) :w, =85 (wy,...,w,) forn>k and (w,,...,w,) €Y}.

~ . W, . . ..
Of course B i1s 1somorphic to B and we have E = Hﬁ—. Since by assumption E 1S a

product we can find j € IN and extension operators §}.n : ':=1 W, —- W_,n> j, according
to Theorem 3.2 and Proposition 4.1. But, if r_ : W_ — X_ is the canonical projection, it 1$
immediate to see that

:rjn = TnSjn

: li‘[X‘- — X
i=1

are extensions of Tps SO that ' should be a product. Since this is a contradiction, the theorem
follows.

J X,

¥

.‘..—.'-"_']

Remark 4.8. Note that Theorem 4.7 yields also the following result: if F' 1s a Fréchet space
such that F(?™ s a twisted first-order quojection for some n, then F is not complemented
In any product.

Corollary 4.9. Let F' be a twisted first-order quojection and G be a (first-order) quojection.
Then F x G is a twisted (first-order) quojection and F®_G is a twisted quojection.

Corollary 4.10. Let (F,) be a sequence of first-order quojection such that F, is twisted for
infinitely many k. Then | [, F, is not a first-order quojection.

Proof. The proof is analogous to that of the second example in 2.4 using, at this tme, Theorem
4.7.
We note that first-order quojections do not have the three-space property that is, 1if

0 -G-F - F—>0

is an exact sequence with G' and F first-order quojections, F' is not a first-order quojection,
in general. To see this let F' be a countable product of twisted first-order quojections. By the

above corollary F' is not of the first-order, but it 1s ¢asy to sec that F' = % with P, and P,

products (and hence of first-order).
The following proposition is a «weak» form of the three-space property for first-order

quojections.

Proposition 4.11. Let X,Y be Banach spaces and les E, ¢ be first-order quojections. Then
we have.

W) If 0 -G —-F—->Y — 0 1sexact, then F' 1s a first-order quojection,

(i) If 0 - X — F — E — 0 1sexact, then F is a first-order quojection.
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Proof. (1) There exists a continuous seminorm p on  such that ker p 1s a product. Since

P'r
cr

&

cr

™
ll
e~
s

Y = =

Q]

-
i~

and Fc% 1S a Banach space, we have that E‘E?";; 1s Banach and hence F' i1s a product by

Theorem 2.2.
(i1) There exists a continuous seminorm p on E such that P = ker p 1s a product. Let
g : F — E be the quotient map and // = ¢~' ( P) . We have the exact sequence

0 - X - HLP 50,

Let » be acontinuous seminorm of /A such thatit induces on X its Banach space topology.
We have that X () ker r = {0}, X+ ker r isclosed in [{ and g is an isomorphism from ker
r onto ker 7, where 7 is the seminorm on P induced by r (recall the proof of Theorem 2.2).

But then ker r 1s a product and hence H 1s a first-order quojecuon. Since -j;} = % = kfp,

£ is a Banach space, and F' is of the first-order by point (i).
From Proposition 4.11 and Theorem 3.2 we obtain the following result for general quo-
jections.

Theorem 4.12. Let F' be a twisted quojection and let X be a Banach subspace of F'. Then

Fo. ,
< IS wisted.

Proof. Let’s suppose that -Jf'{- is a product. By Proposition4.11 (i1), F' 1sa first-order quojecton
and so we may write F' = —E with P aproductand B a Banach subspaceof P. Then X = %
with Y a Banach subspace of P. Since F' 1s twisted, B 1s not contained 1n any Banach
complemented subspace of P, by Theorem 3.2 and hence the same holds for Y. But then
F _ P

—
—

¥ = ¥ 18 twisted by Theorem 3.2 again.

5. ASSOCIATED PREQUOJECTIONS

The last part of this paper dcals with prequojections related to first-order quojections. We
recall that a prequojection is a Fréchet space F' whole bidual F'" 1s a quojecuon. By [11]
we know that, given a separable quojection E such that % 1S not a subspace of w x Z, 2
Banach, there exists a separable countably normed prequojection F' such that F' = E’. Of
course such a prequojection F' is non-trivial, that is, it 18 not a quojection (it has a continuous
norm!).

Let £ = g be a separable first-order quojection with % ¢ wxZ.Write P =[], X, and

B in the form (¥) of Lemma 3.1 with Y C HL X;. For 7 > k, Y} C H{:l X; 1s defined
by Y, = {(I],...,Ij) rz, =T, (z,,...,7,) fork<m< jand (z,,...,2,) EY}.



216 G. Metafune, V.B. Moscatell

The following theorem is the analogue of Theorem 4.2 of [11] stated in the case of standard
quojections.

Theorem 3.1. Let E be a separable first-order quojection with % ¢ w X Z, Z Banach.
There exists a separable countably normed prequojection F such that F' = E' and we have
the following exact sequences:

O =B —-H—-2F—=90

and

k

¢

0 -G > F — 1_.[1=1 L 5 ()

Y
where H and G are separable countably normed prequojections such that H' = P' and
G, @1}# Xf
Proof. We may write, with the notation of Theorem 3.2

p (H:-I !
L= B quﬂj n>k \ “;)

and we have ker R_ = Fﬂ;xl'” .Letg, :J[L, X; — Ha,;l—x— be the quotient map. Then 1t 1s
immediate that g 1s an 1Isomorphism from X onto L ‘Y X2 The hypothesis -‘};— ¢ wXZ

means exactly that X~ ker R__, 1s a non-quasi-reflexive Banach space for infinitely many
n > k (cf. [11]) and so we may suppose that X _ is non-quasi-reflexive for all n > k. Since
F 1s separable, X 1s separable too (for n > k). By Lemma 2 of [11], for every n > k we
can find sequences (z7) C X", and (z}*) C X, so that:

(1) || z¢ ||= 1, (zp) isabasic sequence in X" and X, ()5pan(zp) = {0};

(i) || i |I< 4, (z}) is total over X,, + 5pan(z}) and (z},2}) = 4. Let W, =

= 3p{z¢} C X", and u}® be Hahn-Banach extensions of z}* to H‘f‘— (here we consider

~ Yo 1 xX
X, Y

. 2 via g, ).
Let y* = g1 (u) € (I]i.; X;)'. Of course we have that || y* ||< 4, yi*(z) = 0 for
every z € Y, and (y;*) istotal over X_+ W, .

Let J, =5 0™ @27 TI“H X;x W, — W,, whereeg, >0 and ), ¢, < ¢

1=1

sothat || J, ||[< 5. J, isinjectiveon X _,, + W_,,
Let S, -1’[;‘*1‘ X, xW._,, —]IL, X,x W, bedefinedby S, (z, 'w) =(P,z,J, (z,w))
for z € T[]y X;, w € W,,, (P, is the canonical projection of ™ X. onto J]%,
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By the main theorem of [11], H = proj, ., (][;.; X; x W,,S,) is a separable countably

normed prequojection such that H' = P’.

IFZ‘:H;}&me] — W, is defined by J =%, 62" @z dnd.S' H-'—‘—

xW_,, — H.?i x W_ is defined by §n(3:,w) = (R,z, J. (z,w)) forz € H-‘—'i and

A m‘l

w € W_,,, then we have, again by the main theorem of [11], that

_ (T, X, =
F = proj,, kH S’n)

is a separable countably normed prequojection such that F' = E'.

. X . 1
Let r @ J][L, X, x W_ — H'}—,J— x W_ be the quotient map whose kernel 1s Y .

By construcuon of J  and fn it follows that §ﬂ_, r
r=(r,): H — F.

Sincekerr, =Y = Sn+1( 1) =S ., (kerr ) =P, ,(Y,,) itfollows that r
surjective and that ker r = proj_(ker r_,S_ ) = proj (Y, ,P,) = B and this yields the
first exact sequence. Since r_ (for n > k) 1s an 1somorphism from Xpsy X oo X X x W,

onto a +X*L}1,” X2 x W, and S
W._,S,.) isasubspace of F'. Againby [11] we have that G is a separable countably normed
prequojection and G' = P, X . Since G, considered as a subspace of F, has the reduced

projective representation

r. 19, ; and so we have a map

n

=r1,,S, itfollows that G = proj,, ([ i1 X%

nln

Y

n

YV +11 . . X. -
G: projﬂ:_bk ( . H"‘k*l - X Wnlgn> !

it follows that

F _ . ¢
P g (g,

G Yn + Hi=k+l X:’

where the L are the maps induced by the §ﬂ on the quoticnt spaces.

& r k
. : X, . . T X, ‘ ‘
But 1t 1s easily scen that },—%ﬁl——; is isomorphic to 44— and that L, is an isomor-
" i=k+1 0

X
~ IL—'-—‘ which establishes the second exact sequence of the theorem.

o
phism, so that & ¥
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