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A. MALLIOS 

Dedicated lo the memory of h-ofessor Gottfried Kothe 

O. INTRODUCTION 

The purpose of the following discussion is to obtain the classica1 theorem in the titie of this 
paper as an application of our previous considerations in [29: (i), (ii), (iv), (v)] (an early an- 
nouncement, under the same title, has been given in [29: (iii)] as well). These, including of 
course the present study, concem in effect an abstract (axiomatic) approach to the standard 
differential gwmetry of C" -manifolds and/or o f  complex (analytic) ones withouf employ- 
ing differential calculus at all. So here again one realizes, and essentially in a strengthened 
way, that «certain [fundamental] quantities which apriori depend on the local difherentialge- 
ometry are actuallyglobal topological invariants >> (see e.g. [8: Introduction]). Indeed, our 
treatment is quite topological-algebraic in nature, to the extent that this is accomplished via 
sheafthwry and, in particular, through sheafcohomology. Thus, our study might also be 
viewed as algebraically (viz. opemtor-Lheoretimlly ) orienfed. Yet, to make the exposition 
more comprehensible, we do develop, more or less, the necessary framework for the treatment 
of the theorem in question, materia1 which, otherwise, is fully discussed in [31]. 

On the other hand, the connection of the classical Weil's theorem [45] with the theory of 
gwmetric quantization is standard (see e.g. [ 191). So as a consequence of our study, we also 
exhibit, in brief (in the fina1 section 9), the result of a similar application of our formulation 
of the latler Lheorem (see Theorem 7.1 in the sequel), in conjunction with an interpretation of 
elemcntary (free) particles through (sections of) vecforsheaves ; the latter point of view has 
been essentiaily advocated by S.A. Selesnick (cf., for instance, [38]). Finally, we also give 
in section 8 an outiine of particular concrete cases, apart of c o m e  from that of the classical 
differential geomeuy (rea1 and/or complex), where the present point of view can (in part, see 
e.g. (8.4) below) be applied. In this respect, it is probably worth noting too that these specific 
applications come from abstract (commutative) harmonic analysis (cf., for instance, [35], [36] 
as wdl as [41], [42]). 

1. d-CONNECTIONS. PRELIMINARIES 

To start with we first consider a given (fixed) (I: -algebraized space 

So X stands here for an arbitrary lopoiogicaispace and d fora sheafof (I -algebra over 
X ; the algebras irivolved are, in particular, commutative associative linear algebras over the 
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complexes C , having also identity elements (conceming the sheaf theory applied hereafter, 
we refer for instance to 191, [SI and/or [31]). 

Our second basic assumption is that, apart from (1.1), we are also given a triplet 

(deliberately) called a differential h-iad; here R stands for an A-modde on X ,  viz. a sheaf 
of A-moduies (the upper index «1» of R will presentiy be justified below; thus, we are going 
to consider a suitable finite sequence of relevant A-modules on X - cf. sections 3 , 5  in the 
sequel). Furthermore, 

is a C -line% morphism of the corresponding sheaves of (c -vector spaces on X, satisfying 
the foilowing (Zeibniz) conditiun 

for any s, t in A( U) (viz. local sections of A over an arbitrary open set U c X). In other 
words, a thus defines a denvation (in fact, a (c -derivatiun) of A into R ' . 

We can now establish the foilowing fundamentai notion, for ali that follows. So wc have. 

Definition 1.1. Let ( A ,  a, a') be a given differential triad on a topological space X ,  ami 

E an A-module on X . Then un A-connection of & (in fact, we should cali i! un ( A ,  a, R ' ) - 
connection) is a C -limar morphism 

such that (Leibniz condition) 

forany CY E A ( U )  and s E &(U), with U openin X 

The tensor product appeared in the previous relation (1.6) is meant, of course, with respect 
to A ; this actually will always be the case in the sequel, even for tensor products not adomed. 

So according to our hypothesis for (1.3), and since R ( A )  G A Q % R ' , we see 
that 13 : A + R 1  is, in fact, an A-cunnection u f d  . For reasons that will become clear in 
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the sequel we cail it the standard h'at A -connection of A . On the other hand, by considering 
the canonical C -1inear isomorphism (into) 

( C is viewed here as a conslant shcafon X ), one gets, by virtue of (1.4), 

(ix., a vanishes on every consfant scction of A) .  

n-dimensional) extension of a (see also (1.5)) 
Funhermore, by looking at the frce A-moduk A",  one gets the following n- t h  (or yet 

such that 

(1 . i o >  

One easily proves that (1 .lo) yieids an A -connection of(the A-rnodule) A". As a matter 
of fact, (1.10) is a special case of an analogous formula entailing the induced A-conncction 
fora finite Whitney sum of A-modules each endowed with an A-connection (cf. [31]: chapt. 
VII; section 31). 

On the other hand, one defines the following morphism ofsheaves of (abelian) groups 

(1 .11)  2: A' -+ R 1  

such that 

for any (iocai) section Q E A'( U) 
of units o f d ,  defined by the (complctc) preshcaf of (abelian) groups on X 

(A(  U)). ,  U open in X ;  here A' stands for the sheaf 

(1 .13)  U H ( d ( U ) ) ' ,  U opcn in X, 

the target of (I  .13) being the (abelian) group of units of the C -algebra A( U) (according to 
our hypothesis for A,  see (1.2), the latter algebra is commutative and unital). Motivated by 
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the classica1 situation, we cail(l.11) the logarithmic denvafion of A associated with a. Now, 

justifying OUT cìaim for i7 one proves that 

(1.14) a(s . t )  = 2 (s )  + 3(t), 

for any s, t in A'( U) and U open in X. 

taking the matnx algebra sheafM,(A) , n 2 1, generated by the (complete) presheaf 
In this respect, we still note for later use that one can extend the previous situation by 

( 1.15) U H M , ( A ( U ) ,  U open in X, 

as well as the A-module (in fact, Mn( A) -module, see aiso (1.18) below) 

So one can extend the operators a and 2 (we retain, however, the same notation), accord- 
ing to the relations 

for any a ( aij) E M,(A) (U) = M,( A( U)) , U open in X, and 

- 
(1.18) a( := a-1 . a( a), 

for any a E GL( n, A) (U) = GL( n, A( U))  ; here G,C( n, A) denotes the sheaf of uni& of 
Mn( A) , defined by the complete presheaf 

( 1.19) U H GL(n ,A(U))  = M , ( A ( U ) ) ' ,  U open in X 

So one has (see also (1.15)) 

called the general fineargroup sheafof A of order n (for convenience, we have not stuck 
here with the bold type notation for sections of matrix sheaves, the distinction being clear, 
otherwise, from the context). 

Before we proceed further, we comment briefly on the following example relating the 
preceding with the standard differential geometric context. 
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Example 1.1. Considera (real finite dimensional) C"-manifold X and le1 

(1.21) A E Cy 

be the sheafofgems of C -valued C"-funclions on X . We denote by 

( 1.22) T,(X) := T ( X )  BR a: 

the complexified tangent bundle of X and lei ai be the sheafofgenns o f  C" - 1 -fonns 
on X ( dualof the sheafof germs of sections of the (Cm-) C-vector bundle on X (1.22)). 
Thus, setting 

(1.23) E E (a;)', 

namely, by considering now the sheafofgenns of  ( Cw-) vector fields on X ,  one gets that: 

a Cy - connection, in the sense of Definition 1 . I  , is a 
standard ( f inear)  C" - connection on X .  

( 1.24) 

See, for instance, [33, p. 2891. Of course, one can consider, more generaily, any (fi- 
nite dimensionai Cw-) (I: -vector bundle E on X and Che corresponding sheaves ofgems, 
as above, of IE -valued C"-sections, so that one then gets the classicai notion of a (lineaj 
Cm-connection of IE (ibid.). Now, it is a standard result that any such vector bundle on X ,  
when the latter space is paracompact, admits a (linear Cw-) connection (cf., for instance, 
[46, p. 76, Proposition 1.111). As we note below (see Theorem 2.1) this is due to our last 
hypothesis for X aiong with a subtle cohomologicai property of CF (the latter is thus a fine 
sheaf on X ,  hence acyclic; in tm, this is still the case for any C,"-module on X ,  as for 
example, for "4 above. See e.g. [5, p. 49, Theorem 9.8 and p. 50, Theorem 9.121). 

On the other hand, this is not, for instance, always the case for holomorphic vector bundles 
on a complex (analytic) manifold, according to a standard result of M.F. Atiyah [i]: as we 
shall see, this is due again to the non-vanishing, in generai, of a certain cohomology class, the 
so-cailed Afiyah (obstruction) class (of the bundle under consideration; see e.g. [20, p. 1191 
or yet (2.7) below). However, we do have holomorphic connections for any  (holomorphic) 
vector bundle on a Stein manifold X ; in this case the above class is zero as a result of Cxtan 's 
Theorem B in conjunction with the coherence o f  a i ,  the sheaf o f  genns of  holomorphic 



172 A. Maiiios 

1 -foms on X (for the terminology applied cf., for example, [ 18, p. 230, Theorem B and p. 
2741 or yet [lo, p. 67, Corollary]). So we do nof always have Aconnecfions in case of a 
wmplex (analytic) manifold, with A E O, the sheaf of genns of holomorphic functions on 
X. 

Now, as aiready said, our treatment is quite sheaf-theoretic in character so that in piace of 
vector bundles we consider (in effect, equivaiently, in that case, s e e  e.g. [26, p. 406, Thcorcm 
1.11) the corresponding sheaves of sections. This point of view seems to be aiso in agreement 
with recent uends in the domain of applications of differential geometry (fiber bundle theory) 
in theoretical physics (elementary particle physics, gauge theories); thus cf., for example, [32,  
p. 381 and/or [3]. 

So as follows from the previous Example 1 . 1 ,  not every vector bundle, in gencral admiis 
an Aconnection for any A whatsoever. On the other hand, motivated by the important 
pariicular case of a ( C -) vector bundle, we further adopt throughout the sequel the following 
terminology : 

Thus, given the C -algebraized space (X, A) , as above (cf. (1. i)), a locally free A-mo- 
duie of finite rank over X is called a vector sheaf on X . In particular, by a line sheafon X 
we mean a locally free A-module of rank one (this terminology was inspired, in effect, by a 
similar one applied by S. Lang, see [22, p. i]. 

According to the preceding, we thus conclude that: not every vectorsheafon a topological 
space X, as above (cf. ( l . l ) ,  (1.2)), admifs an A-connecfion, for any A in general (so see 
the next section 2). 

Now, in view of the aforementioned applications, we cali a pair 

consisting of a line sheaf C on X and an A-connection D of C (see Definition l . l ) ,  a 
Maxwell field on X . As a fundamental example of (1.25) one can consider, of course, the 
electromagnefic field of a (fiee) photon; in this respect, see aiso the final section 9 in the 
sequel. On the other hand, a pair 

with E a vector sheafon X and D an A-connection of E is called, in general, a Yang-Mills 
field on X (in this concem, apart from section 9 below, see also, for instance, [32, p. 721 or 
yet [6, p. 4541). 

We briefly discuss in the next section conditions guaranteeing the existence of A-con- 
nections that will be of use in the sequel. On the other hand, a detailed account hereby is 
given in [31, chapt. VII]. 
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2. EXISTENCE OF A-CONNECTIONS 

We explain below, in condensed form, the way one is led to the definition of the Atiyah class, 
as well as to the notion of a Levi-Civita connecfion for a vector sheaf on X . We are going to 
apply al1 this consiantly in the ensuing discussion. 

Thus, suppose we are given a vecfor sheaf E on X ,  say, of rank n; moreover, let U = 

= ( be an open covering of X such that 

within an isomorphism ofthe Al"* -modules concerned. We call such an opcn set U, c X a 
localgauge of E ,  whereas U is then called a local fiame of E .  Now, it is easy to see that: 

the set of al1 local frames of a given vector sheaf E on X is 
a cofinal subset in the set of al1 proper open coverings of X 
( lhe lattcr set being dircctcd under refincment) . 

(2.2) 

(In this respect, see also [ 14, p. 171). 

Ci vita diagram ») 
Accordingly, by applying (1.9), onc gets the following commutative diagram (((Levi- 

(2.3) 

in the sense that one sets 

So, as in the classical case, we do have here too that: the local tnvialization of a given 
vectorsheafyields(aiways, due to our assumption for a, cf. (1.3), (1.4)) a (local) dIUm<on- 
nection (alternatively, c~local A-connections always exim). Thus, the existence of a (global) 
A-connections of E depends on the following 1 -cocycle (A-connection difference) 
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we call (2.5) the Levi-Civita 1 cocycle of E which is thus associated with any given local 
frame U of E :  indeed, setting Uap Va f l  Up( # 01, with o, P in I ,  one obtains 

Thus, the A-module Mn(R') (cf. (1.16)) is in our case the sheafof A-connections 
coefficienis, while by virtue of (2.6) the corresponding Atiyah class of E is given by 

(2.7) o(&) := [ ( D p  - Da)] E H' (x, Mn (" ')) . 

We employ at this place sheafcohomology which, however, at the fina1 stage (Weil's 
theorem, see section 7 below) can be taken as Cech cohomology, since at that point we assume 
our space X to be paracompact. 

Now, the fact that mostly concerns us here is the following result which, neverlheless for 
brevity's sake, we state without proof. For a fu11 account of it cf. instead [31, Lemma 7.1, 
Theorem 9.1 and Theorem 10.21. So one gets the next. 

Theorem 2.1. Let (A,  a, R ') be a given dfferenrial triad on a topological space X with 
R ' being, in particular, a vector sheaf on X . Moreover, let & be a vector sheaf on X . Then, 
E admits an A-connection v, and only v, the corresponding Atiyah clars of E (cf. (2.7) 
above) vanishes. m 

However, we comment a bit more on the previous theorem by pointing out certain partic- 
ular items of its proof that will be also of use in the sequel: thus, in establishing Theorem 2.1, 
one also employs two further equivalent versions of the notion o f m  A-cunnection; namely, 
one such equivalent interpretation of an A-connection is to consider i t  (viz. its existence) as 
(equivaient to) a splitting of the short exact A -sequence (i.e., exact sequence of A -modules) 

Here we set (R ' )*  := HomA(SZ' ,A )  for the dual A-module of a' (another vector 
sheafon X, in view of our hypothesis for SZ ' ; cf. Theorem 2.1). So one gets the relation 

(2.9) E x f i  ( (a ' ) )* ,  End E )  = H '  ( X , M , ,  (il')) 



On an abstraci fom of Weil's iniegraiiiy heorem 175 

(within an isomoq)hism of(abe1ian) groups, cf. ako, for instance, [16, p. 352, Example 41 or 
yet [31]). The last formula relates A-extensions of ( R  ' ) *  by End E ,  as in (2.8), with (2.7), 
the A-module Mn( R I )  being also the structure sheafofany A-extension of the form (2.8). 

In particular, by restricting ourselves to paracompact spaces one can apply diflable (cech) 
cohomology» (cf. section 4 below); thus, by virtue of (2.9), we relate the Atiyah class of a 
given vector sheaf & on X ,  as above, with a coordinate 1 cocycle of E ,  say, 

(see also (1.20)), as well as with the chaciclcristic class of (2.8), denoted by S( 1) ; so one gets 

(2.11) s( = [ (% - Da)] = [ (3 (!La))] € 11' (x, Mn (nl)) 

(Details are given in [31, chapt. VII, Thcorem 9.21). 

to that of a splilting of the short exact A -sequcnce 
On the other hand, one can still considcr an A-connection of E as an equivalent notion 

(2.12) o - a ' (&)  - 9(&)L& - 0 .  

Here we denote by 

(2.13) 71(&) 7'(&) := &@R'(&) 

the A-module (in fact, vectorsheafj on X of the correspondingjet-line sheaf(of yetjet sheaf 
ofordcr, or I stjet sheaf) of E ,  whose A-modulc structure is given by the relation (warning!) 

(2.14) a . ( s @ t )  := cus@(at+ s@.a), 

for any Q E A( U) , s E E( U) and t E R ( E ) (  U) . Thus, one proves the equivalente of 
the d-extensions (2.8) and (2.12), since one gets (see also (2.9)) 

(2.15) E x t i  (&,O'(&)) = il' (X,Mn (R')) = E x f i  ((R')*, &nd E ) .  

So one concludes that: 

any splifting of either one of ( 2  3) or ( 2 . 1 2 )  is equivalenf with fhe 
exisfence of a Levi-Civifa A-connection of E ,  hence with the 
vanishing of the Atiyah class of & in (2.7),  as well . 

(2.16) 
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(in this respect, s e  [31, chapt. VII, Theorem 10.11). As a matter of fact, one realizes that any 
splitting of (2.12), say 

(2.17) D’ : E - 9(&), 
(viz. an d-moxphism, as above, such that x o D’ = l,, with x denoting the (canonical) 
d-morphism, projection of 3’( E )  onto E ,  cf. (2.12) and (2.14)) is of the form 

(2.18) D’ = 1, @ D E (l,, D )  , 
for some uniquely defined d -connection D of E . (Indeed, (2.18) is a chmcterization of 
being D’ a splitting of (2.12); ibid. Proposition 10.1). As a result (see also ibid. Theorem 
10.2), one finally concludes, within the framework of the previous Theorem 2.1, that: 

a given vector sheaf E on X admits an d-connection if, ami only q, 
it also admits a Levi-Civita d-connection; hence (cf . (2.16) above) , 
if , and only if , the Atiyah class of E vanishes. 

(2.19) 

The preceding constitute, in fact, the highlights of the p m f  of Theorem 2.1, that will be 
of help below. On the other hand, concerning the classical counterpart of the above, consult, 
for instance, [i], [6, p. 4381, [32, p. 36 f and p. 38, Proposition 101, [17, pp. 338, 3401. 

Now, another item within the previous context, which will be of use in the sequcl, is 
the locd fonn of an d-connection: thus, by analogy with the classical case of Diffcrcntial 
Geometry, given a vectorsheaf E on X and a localgauge U C X (cf. (2.i)), one concludcs 
that: 

any given A-connection D of E is locally (viz. its restriction to 
an open set U X, as above) uniquely determined by a matrix 
(of e I -forms» on U) (2.20) 

w ( W J  E Mn (SZ’(U>) = M, (il1) (U) 
i .e ., by a (local) section of the sheaf of A-connection coeflicients. 

Therefore, one can consider (the fa t  d-connection) 8 in (1.3), in effect the d-connection 
(1.9), as the «origin», in order to identify further the affine space of A connections of a given 
vector sheaf E on X (in case, of come,  the latter space is non-trivial), modeled on (thc 
A( X) -module) SZ ( End E )  ( X )  , hence locally on Mn( SZ ) ( U) (sec also (2.6)). Thus, by 
considenng a localgauge U of E ,  as above, and an d-connection D of E ,  one obtains (as 
a local form of D )  the relation 

(2.21) D = a + w ,  

for some w ,  given by (2.20). In this respect, sce also [31, chapt. VII; section 4 and Lemma 
11.11. 
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3. CURVATURE 

Another concept which will be of a particular concem to us in the sequel, is that of the curva- 
ture of an A-connection. In this regard, we notc lhat, by contrast with what happened before, 
conceming the existence of A-connections, one can always dcfine the curvature of a given 
A-connection (even of an A-module, in generalj, once we have an appropnately enriched 
framework than that afforded by ( I  .2) (see (3.7) below). So we presently explain this, in brief, 
below contributing thus lo the comprehensiveness of the later text (for more details we still 
refer instead to [3 1, chap. VIII]). 

So assume that we have a diffcrcnfial triad ( A ,  3, i2 ) as above, and lei 

be the A-module on X ,  Zndexleriorpowerof Q '  (thus, this now explains our index « I »  
on the corresponding A-module in (1.2)). 

Furthermore, assume that we are given a C -1inearmorphism 

which first satisfies the following condition 

for any (local) sections a E A( V) and s E R ' ( V )  (V siands here, as always, for an opcn 
sct in X ) .  Second, we still assume that the given operator d' ( ci) obeys the relation 

( 3 . 4 )  d o a = o ]  

viz., equivalently, 

( 3 . 5 )  im 8 C ker d . 

(Indced, the stronger condition of equality in (3.5) will be adopted later on; cf., for instance, 
(5.5) below). Now, as a result of (3.4) and (3.3) (see also (1.14)), we note for later use that 

( 3 . 6 )  d o a = O  

Hereafter, we assume, of course, that: 

(3 .6 ' )  rhe mup d' E d in ( 3  .2)  is meunr aiong wilh rhe properries ( 3 . 3 )  und ( 3 . 4 ) ,  
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unless otherwise specified; cf. for example (5.5) in the sequel. 

sequence (cf. aiso (3.6)) 
The previous map (3.2) is our i st extenur derivative opemtor. Yet, the following finite 

is (deliberately) called a curvature datum on X ; the terminology applied hereby is justified 
by the fact that the preceding framework will provide us with the notion of the curvature of a 
given dconnection, as we shall presently s e .  

Thus, given an A-module E on X endowed with an dconnection D (cf. Dcfinition 
l . l ) ,  consider the following map: 

given by the relation 

(3.9)  D ’ ( s @ t )  := s @ d t +  D s A t  

forany S E & ( U )  a n d t E R ’ ( U ) .  
SZ ’ . But, 

the second member of the same relation defines, in fact, a bafanced map, say, p ;  that is, onc 
has 

Of course, one can extend by (T. -1inearity the previous relation (3.9) to E 

for any (Y E A( V) and s, t as above. Therefore, one can actually extend (3.9) to the whole 
of fì ’ ( E ) ,  by cd -finearity», so that one concludes that 

hence, D’ is a (f 4nearmorphism for the underlying structures of sheaves of C -vector 
spases of the A-modules concerned). 

Now, by extending the classica1 terminology, we cali D’ the i st covariantexleriorderiva- 
live opemtor(with respect to (3.7)) or yet the i stprolongation oflhe given A -connection D . 

On the other hand, the following propeny of the operator DI is needed right below; so 
one has 

(3.12) D ’ ( a . D s )  = cu.D’(Ds)  - D s A a a  
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for any a! E d ( U )  and s E &(U). 
We come now to define, within the preceding framework of (3.7). the following important 

operator which is associated with any given dconnection D ;  it concerns, at first view a 
cf -linearmurphism, in fact, something much more is actuaily me, as we shall presently see. 
Thus, one has the following diagram 

(3 .13)  

We call the operator 

(3 .14)  R(D) R : =  D’ O D ,  

as defined above, the curvature of the d-connection D . 
In this regard, a given dconnection D is said to be Aat, if one has 

(3 .15)  R(D)  E R =  O .  

Thus, one can prove, for instance, that 

(3 .16)  R(8)  = O ,  

concerning the d-connection a : d - Q’ of d considered by (1.13) (in this respect, 
see also the comments after Definition 1 . 1  above; so this now justifies the terminology for 8,  
adopted at the beginning). 

Now, on the strength of (3.12). one funher proves that 

(3 .17)  R( (Y . s )  = ~ . R ( s ) ,  

for any a! E A( U) and s E E( U) . So R is, in effect, an d-murphism of the d-modules 
concemed (cf. (3.13)); Lhat is, one obtains 

In particular, if E is a vectursheafun X, then (3.18) yields (see also, for example, (2.6)) 
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that is, one concludes that: 

the curvature R of a given A-connection D of a vector sheaf E on X 
defines a global section ( O  -cocycle) of the vector sheaf R (End E )  . 

(3.20) 

The above provides now thc farniliar form one has from the classica1 thcory for the cur- 
vature of a conncction, in case one considers a localgauge U C X of E :  namely, one thcn 
obtain (see also (2.6)) 

That is, onc h a  

forany U, as above. So by rcphrazing the classica1 fact, one infers that: 

over a local gauge of a vector sheaf E ,  the curvature of a given 
A-connection of E is expressed as a matrix of a2 -formsa 
( or yet as a matrix-valued u2-formsw) 

(3.23) 

On the other hand, if w E (w,) E M,(R')( U) is the analogous rnatrix of «l-forrns» 
defining the given A-conncction il of E ,  locally on U (cf. (2.20), one obiains thc following 
relation: Cartan 's struclural equalion 

(3.24) R =  ah -k w A & ,  

valid (locally) on any U c X ,  as above (in this respect, cf. also [31, chapt. VIII; (2.8)]. Thc 
particular forrn of (3.24) in case of linc sheavcs will be considerai in the scquel (see (6.15)). 

4. LIFTABLE (SHEAF) COHOMOLOGY 

Before we proceed furthcr to be cngagcd in our rnain conccrn which is, of coursc, thc thcorcrn 
in the title of this paper, wc cornrnent bclow, for clarity's sake, a bit more on ccrtain shcaf 
cohomology-thcorctic conccpts that we apply severa1 tirnes in the cequcl. Indccd, wc usc thc 
fact that: 

in a paracompact ( Iiausdor- ) space X sheaf cohomology 
can be defined by means of the so-called «lifrahle cochains» (4 . I >  
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Thus, consider the following short exact A -sequence on X 

then, for any integer p _> O ,  the corresponding sequence of p-cochains is, in generai, only 
left exact. That is, one gets the exact sequence 

where U stands for any (proper) open covering of X . So by taking the image of $ in (4.3), 
say, 

(4.4) im 1c, cQ(U,&) c CP(U,&) 

(a -vector space of liftable p-cochains), one obtains the following short exact sequence (of 
(G -vector spaces) 

(By an obvious abuse of notation, we use for simplicity the same symbol for the maps 
in ali the above &ree last relations). Thus, by setting 

$ 

one obiains 

HP(X,&) = lim HQ(U,&), 
+ 
U 

which explains (4.1) (in this regard, see also, for instance, [15, p. 180, Proposition 7.3.51). 
Here we consider Cech cohomology (aithough unadorne4 to which, of course, any other 
(sheaf) cohomology theory can (isomorphically) be reduced in case of paracompact spaces 
(see e.g. [44, p. 184, Corollary] or yet [18, p. 215, Theorem 50.21). 

Now, in view of (2.2), we further note that: 

in case & is a vecior shea/ on X, one can consider in (4.7 ) the 
open covering U as ranging over ihe (proper) local frames of &. (4.8) 

The previous fact has been applied, for instance, in (2.7) as a result of the calculations in 

In this concern, we still note that a crucial point in obtaining (4.7) is the argument expressed 
(2.6). 

by the following lemma. We use it too systematically below. So we have: 
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Lemma 4.1. Lei X be a paracompact Ilausabrjjf space, and 

a short exact A-sequence. Moreover, let U = ( Ua)pEl be un open covering of X . Then,Jor 
every p-cocycle 

(4  .lo) 9 E Z P ( U , E ) ,  P 2 o ,  
there exists a refinement U = ( UB)BEr of U and a p-cochain 

(4  . l i )  

such that 

(4.12) 

(here p : J -+ I denotes the refinemeni map ), and 

(4.13) S h =  4f 
where 

(4.14) f E ZP+’(U,F) 

(The map 6 in (4.13) stands, of course, for the corresponding Bockstein operatorj. 

h-oof: Cf. [ 15, p. 180, Lemma 7.3.61 or yet [ 12, p. 33 f, proof of Theorem i]. 

Looking now at the corresponding cohomology classes, one obtains 

(4.15) S’([gl) = [ S ( h ) l  = [4%(h))] = r f l  E HP+l(X,F), 

for any [ g] E HP( X, E ) ,  for some [ f] E E P + ’  (X, F) . The crucial fact at this point is 
that, by virtue of (4.12), one actually has that [ g] E H : ( X ,  E ) ,  the latter space being, in ef- 
fect, H P ( X ,  E) as follows from (4.7). Yet, 6’ in (4.15) denotes the corresponding Bockstein 
operator for the long exact cohomology sequence, associated with (4.9). 

Finally, we still recali for latter use the following cohomological classillcation o/ vcctor 
sheaves on X ; that is, one has 

(4.16) (D,”(x) = ~ I ’ ( x , c c ( ~ , A ) ) ,  

within a bijection. Here the first member of the last relation slands for the sct ofisomorphism 
classes of vecforsheaves ofrank n on X, whcreas the second one denotes the usual I st coho- 
mologyset of X with coefficients in the sheaf of (non-abelian, in generai) groups CL( n, A)  
(seealso(l.20). Inthisconcern,cf.,forinsiance [13,p. 11,Theorcm i ]  oryet [31,chapt. VI. 
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5. PRE-WEIL SPACES 

In the preceding, for completeness' sake, we exhibited the necessary materia1 which consti- 
tutes the appropriate context for the rest of our discussion. Now, the spaces in the title of this 
section are, as we shall presently s a ,  the suitable framework in order to deai with a substantial 
ingredient of our final target (Weil's theorem. Therefore, the employed terminology; but see 
also the next section). 

Thus, suppose we are given a curvature datum on a topologicai space X (cf. (3.7), and 
aiso (3 .6 / ) ) ,  andlet 

be the d -modufe on X, 3 rd exterior power of R ' . Now, we further define a (L -finear 
morphism 

by the relation 

(5.3) d 2 ( s A t )  := d ' s A t - s A d ' t r d s A t - s A d t ,  

for any s, t E R ' (U) : namely, in a similar manner as for the map (3.8) (see aiso (3.9)), one 
proves that (5.3) defines a bafanced map ( s e  e.g. (3.10)); hence. one can then extend it, by 
d- f inwi ty ,  to the whole of R 2  (by definition, 2 nd exterior power of the given A-module 
R'). 

Thus, we are now in the position to set the following 

Definition 5.1. B y  a pre-Weil space we mean a paracompacr Hausdorff space X endowed 
with a curvature datum (3.7), where R ' is a vector sheaf on X . Moreover, we assume that 
the previous dara yield the following exact sequence (of sheaves of C -vector spaces) 

(5.4) 

In this regard, we finaily suppose that ali the previous operators appeared in (5.4) commute 
with the corresponding Bockstein (coboundary) operator, whenever one considers the cech  
cohomology on X . 

Accordingly, in Case of a pre- Weif space X ,  we first adopt (by definition) that the pre- 
ceding relation (3.5) hofds, in essence, as an equafity, that is, one has (by hypothesis) the 
relation 

( 5  5 )  ker d' = a(d) ,  
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as well as the relation 

A. MaUios 

(5.6) ker d2 = d' (R') E d R ' .  

We come now to our first basic observation, concerning the main objective of this paper. 
That is, one gets the following result (but see also Scholium 5.1 in the sequel). 

Proposition 5.1. Le( X be a pre-Weil space and w a closed 2-form on X ; viz. we assume 
that 

(5.7) w E n 2 ( X )  such fhaf d w  = O .  

Then, one can associate with w a 2-dirnensional complex cohomology c lan  of X, say. 

(5.8) c (w)  E ? ( X ,  C) E 112(X,  a). 

proof: As a first extract from (5.4), one obtains the following short exact sequence (of 
sheaves of (L -vector spaces; cf. (3.2)) 

Therefore, by considering the corresponding long exacf cohomology sequence, associated 
with (5.9) (cf., for instance, [44, p. 177, (5.18); (a), (c)]), one obtains 

O -I- ( X , d R ' )  - l- ( X ,  R 2 )  -I- ( X , d R 2 )  -+ 
(5.10) - H '  ( X , d R ' )  - ... 

Accordingly, in view of our hypothesis for w (sce (5.7)), 

(5.11) w E ker (r (x ,n2)  -+ r (x,dn2)) z r ( x , ~ R ' )  ( d n ' )  (x); 

that is, the hHofhesis fhat w is closed cnlails, in facf, Lhat 

(5.12) w E (da')  ( X ) S Q 2 ( X ) .  

(Indeed, under fhe assumption of (5.4), the previous conditions (5.7) and (5.12) afe, in effect, 
equivaient; cf. also the next Scholium 5.1). 
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Now, by virtue of (5.4), onc further obtains the following short exact sequence 

Thus, according to (5.12), one gets 

(5.14) w E ( d ~ ' )  (x) r ( x , ~ R ' )  z zo ( u , ~ R * ) ,  

for any open covering U of X ( s e ,  for example, [12, p. 28, Lemma 41). Therefore, on the 
basis of Lemma 4.1, we can find (modulo, eventually, a refinement V of U )  a O -cochain (of 
1 -fonns) 

such that one has 

(5.16) w = d ((O,)) := (d  (O,)) z (d  O,) 

Moreover (cf. (4.13), (4.14)), oncgcts 

(5.17) S ((O,)) S (O,) = ( O a -  O,) E 2' ( U , B d )  

As a final exuact from (5.4), one now gets the following short exact sequence 

(5.18) O - C A d  - ad - O 

Thus, in view of (5.17) and Lemma 4.1, we conclude (modulo, in general, a further re- 
finement, say W ,  of V )  the existence of a O cochain of A, say, 

such ihat 

(In this respect, cf. also (5.16) for the notation applied in the last term of (5.20). Furthermore, 
we should also point out at this piace the obvious abuse of notation employed above, concem- 
ing, namely, the indjces of the open coverings of X considered). Yet (the same lemma) one 
obtains 
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therefore. one now sets 

(5.22) 

which aiso finishes the proof. 8 

The previous result could also bc obtained for any closed p-fom on X ,  viz. for any 
element w E G P ( X )  (:= (ApR ' ) (X) )  with d w ( =  d P ( w ) )  = O ,  undera further suitable 
extension of (5.4). However this, in conjunction wilh its application in defining Chem classes 
of vector sheaves on X, will be taken up elsewhere (sec, for instance, [31]). 

Now, a closed 2-forms w (on a pre-Weil space X, cf. (5.7)) is said to be integrai, in case 
one has (see also (5.22)) 

(5.23) c ( w )  E irn ( H ~ ( x , z )  -, H ~ ( x ,  ai)). 

(The iast part of the previous relation is, of course, the one derived from the canonical inclu- 

sion of the corresponding constant sheaves Z 5 ai ; cf. also, for instance, [4, p. 92, Corollairc 
11 as well as (4.7) above). 

Scholium 5. I .  As aiready remarked, the exactness of (5.4) yields the relation 

(5.24) ( d R ' )  (X) G (d' R*) (X) = ker d2 C R 2 ( X ) .  

(Otherwise, this is also a consequence of the very definition of the exactness of(5.4) al R ; 
see,  for example, [9, p. 114, 9 1.6 and also p. 132, 9 2.51). On the other hand, by looking 
more closely at the proof of Proposition 5.1, we realize that (under (5.16)) 

one actually obtains a map 
c :  ( d  n') (X) - H 2 ( X ,  ai), 

(5.25) 
whenever one has the exactness only of the two sequences 
(5 .13)  and (5 .18);  

hence, not necessarily that of (5.9), as well. Now, this (slight) weakening of the conditions 
of Proposition 5.1 might be of a particular significance for the applications, if one seeks for 
the (full) exactness of(5.4). Furtherrnore, i l is lhe map (5.25) that essentially appears when 
one deals with line sheaves; the lattcr will be our main concern in the next section (see e.g. 
(6.20), as well as the Appendix). 

Now, our next objcctive is to characterize the situation when, in  the particular case con- 
sidered, a given «2-fom» w on X as in (5.7) safisfies (5.23) (of course, this is actually thc 
content of Weil's theorcm, as well). But to this end we still nced some more tcrminology, 
which we are going thus to establish in  the following scction. 
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6. SEMI-WEIL SPACES 

We start with exhibiting the necessary complementary materia1 to that aiready provided by the 
previous Definition 5.1, in order to be able to get the desired form of Weil's theorem. Thus, 
we first have the following. 

Definition 6.1. Lei ( A ,  a, SZ ') be a given dflerential triad on a topological space X ,  A' the 

sheaf of uniu of A and 8 the corresponding logarithmic derivation of A,  associared with 
a (cf. section I ) .  Now, by  an exponentiai sheaf diagram on X ,  we mean the following short 
exact sequence of sheaves (of abelian groups on X ) along with the associated iriangle (of 
sheaf morphisms) which we also assume IO be commutative 

So conceming the previous dcfinition, we accept, in particular, that 

where i 
Thus, we still set the next. 

( - 1) i .  Indeed, we need bclow the preceding concept combined with that in (3.7). 

Definition 6.2. By a semi-Weil space we mean a paracompact Hausdotff space endowed 
with a curvature datum (eh (3.7)) and an exponential sheaf diagram, as above. Here we 
still assume that the operator (exponential sheaf morphism) e commutes with the Bockstein 
operator 6 (so this operator IOO is cohomologically acceptable). 

We discuss in the sequel (see thus section 8) a concrete particular case where a situation 
like that describcd by the above definition can be occurred (for more relevant details we re- 
fer, however, to [31, chapt. 61). On the other hand, as a first consequence of the preceding 
terminology, we can give now thc next fundamental result. So we have. 

Lemma 6.1. Let (CI D )  be a Maxwellfreld ( s e  (1.25)) on a semi-Weil space X .  Then, 
modulo an eventual translation of D by an element of SZ * ( E n d  C) (X) R ( X )  , the 
corresponding curvature form, say R, of the d-connection of C unaèr consideration, yields 
an integral2-form on X ; viz. one gets 
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Bcrof: By hypothesis C (a lineshcafon X ) admits an A -connecfion D ,  so Lhat (cf. Thcorem 
2.1) the corresponding Atiyah class of L vanishes; Le., we have 

D(C) := [(DP - O,)] = [g ( q a P ) ]  = O E H '  (X,Ql) 

(see aiso (2.7) for n = 1 ). In this regard, we reca11 (cf. section 2) that 

is a O -cochain derived from a Levi-Civita diagram for C (cf. (2.3)), which can bc associated 
with any given local framc, say U = ( UajoGl, of C .  Furthermorc, C being a line sheaf on 
X, one gets in particular that 

since one has 

within an isomotphism of A-modules; cf., for instance, [ l i ,  p. 116; (5:1.3.17)] or yct [31, 
chapt. 41. Thus, by considering the Levi-Civita 1-cocycle of C, which corresponds to (6.5), 
one oblains 

6 (D,) = (DP - Da) E 2' ( U , Q ' )  

(cf. also (2.5) or yet (2.6) for n = 1 ). Yet by referring LO (6.4) 

srands thcre for a coordinale lcocycle of C ,  associated with Lhe given local frame U of C, 
as above. 

On the other hand, by virtue of (2.19) and (6.4), one infers that C admils a Levi-Civita 

A -connection, as weii, say 5, whose 1 -cocycle ( A  -connection difference) is given by (6.8). 
Now, on the strength again of (6.4), one gets 

(6.10) (DP - Da) = 6 (8,) E 2' ( U , Q ' ) ,  
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for some O -cochain (of 1 -forms) 

(6.11) (e,) E ( U , Q ' ) .  

At this point we also remark (for latter use, as well) that one may still assume, in addition 
to (6.10), the following relation 

(6.12) 

with (e,) given by (6.1 1) (in this respect, one actually proves that the two cocycles (a( g,@)) 

and 6( 0,) are (cgauge equivalenfx,, via the (local) cccoordinatizationx, of C (cf. (2.3)), hence 
the relation (6.12), in vicw of (6.4) and (6.10). For details see, however, [31, chapt. VII, 
section 81). 

Now, the local f o m  of 5, with respect to U ,  is given by the relation 

(6.13) 
- 

51"- u, = D, - e,, a E I ,  

so that the O-cochain ( O,) may be considered as the corresponding local A -connection form 

representing 6 (cf. also (2.20), (2.21)). Moreover, ihe two A-connections D m d  5 of C ,  
considered hitherto, difler by an element of i2 ( &nd C) ( X) = (cf. (6.6)) i2 ' (X) , viz. one 
has 

(6.14) D - z, E nyx) = zo ( U , Q * >  

(cf. the comments before (2.21) or yet [31, chapt. VII, Proposition 4.11). This aiso explains 

our claim in the statement of the lemma, by further considering the curvature form of 5 ; thus, 
we have 

(6.15) R ( D )  E R = (d  e,). 

(The last relation is a conscqucnce of (3.24) and our previous conclusion for the O-cochain 

At  this point we still remark that one can also direclly conclude (apart from (3.19)) Ihat R 
dehnes aglobal 2-fonn on X : namely, one gets in view of (6.12) and (3.6) (see aiso ( 3.6 I ) )  ; 

(e,) ). 

(6.16) 6 (d  O,) = d (6 (O,)) = d (3  ( g , ~ ) )  = 0 , 
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so that one obtains 

(6.17) R =  (do,) E Zo ( U , d R ' )  ( d R ' )  ( X ) - k 2 2 ( X ) ,  

as asserted. 
Yet, we shail prove that R is integra], in the seme that it  provides an integral(2-dimension- 

al) cohomology class of X (cf. (6.21) below; in this respect, see also the next Scholium 
6.1): indeed, based now on (6.9), the short exact (exponential sheaf) sequence in (6.1) and 
on Lemma 4.1, in conjunction with our hypothesis for X, we conclude the existence of a 
I cochain 

such that 

(6.19) e ((f .8))  := ( e  (f.8)) = (g.8) 

(In (6.18) V stands for an eventual refinement of U ,  while we still abuse the notation for the 
indices). Furthermore (again Lemma 4. i ) ,  one gets 

(6.20) 6 ( f a 8 )  G E Z 2 ( U ,  ker e )  Z 2 ( U , Z )  

(since, in view of (6.1), one has ker e Z ). The previous 2-cocycle determines now the 
desired 2-dimensionalintegralcohomologyclassof X, which is thus provided by R = ( d  O,) 
(cf. also e.g. (5.25)); i.e., we set 

(6.21) 

and this also terminates the proof of the lemma. 8 

Scholium 6.1. Suppose we are given a topological space X endowed with a curvature 
datum(cf. (3.7))andlet ( C , D )  beaMaxwdlfieldon X. Now,if (e,) E Co(U,R') i sa  
Ococha'n of I-forms of X whjch locally represents D ( s e  (2.20) for n = 1 or yet (2.21)), 
then the curvature of D is given by a similar relation to (6.17) (yet, within the present more 
generai context); viz. one has 

(6.22) R ( D )  =: R =  (d9,) E ( d R ' ) ( X ) k 1 2 ( X )  
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(cf. also (3.24)). On the other hand, the (global) 2-form provided by R,  as bcfore, can be 
considered as a cfosedfonn on X ,  as follows: namely, by definition, this means that 

(6.23) dR= O ,  

where d E d2 : R 2  -+ R 3  is the C -fincarmotphism defined by (5.3). So if we further 
assume that 

(6.24) d2 o d ’  = O ,  

then, as immediately follows from (6.22), R is a closcd 2-form on X . 
Now, by definition, a Bianchi dalum on a topological space X, is a curvature datum (cf. 

(3.7)) which is further endowed with an opcrator d2 d,  as above, in such a way that (6.24) 
be satisfied (the termilology here is due, for instance, 10 the fact that within the previous 
framework one can obtain thc corresponding Lo our case Bianchi’s idenfilx but in this concem, 
we refer instead to [31, chapt. VIII, Thcorem 3.11). 

Thus, as a consequencc of the preceding, one concludes that: 

given a Bianchi datum on a topological space X and a Maxwell field 
( C ,  O) on X (cf . ( 1.25)), the curvature R of D yields a closed 
2 Yorm on X; viz . one has, in particular , R E R ( X )  wiih dR = O .  

(6.25) 

More specificaily, in case of a semi-Weil space X which is supplicd, in particular, with 
a Bianchi datum, we cail such a space a semi- Wcif-Bianchi space, one concludes (by supple- 
menting thus Lemma 6.1) that: 

every Marwell field (CI O) on a semi -Weil-Bianchi space X 
determines an integral closed 2 Yorm (cf . e .g. (5.23)) ; 
this is accomplished through the curvature form of an A-connection 
of C, an eventual suitable translatc of the given A-connection D.  

(6.26) 

It  is to be noted here that, as in the classica1 theory, the previous (integral) cohomology 
class corresponds to a suitably defined Chcrn cfass of C, whcn in the particular case consid- 
ered A fulfils the appropriate conditions [31]. 

Now, our final aim is to obtain a converse of the above Lemma 6.1 (in effect, of (6.26) 
within the appropriate framework); but to this cnd we shall need the wholc machinery pro- 
vided by al1 the previous notions, considered so far. So we discuss i t  in the ncxt section. 
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7. WEIL SPACES 

As aiready said we get in this section a converse of Lemma 6.1 (in fact, of (6.26)); thus, its 
combination with the iatter result will supply us with the desired form of Weil's theorem. So, 
for convenience, we first set the following. 

Definition 7.1. A pre-Weil space X which is a semi-Weil space, as well, is called a Weil 
space. 

Thus, in a Weil space X being, by definition, a paracompact Hausdorffspace (see Defi- 
nition 5.1), one is supplied with a curvature datum (ibid.) and, in fact, with a Bianchi datum 
(cf. Scholium 6.1), due to the exact sequence (5.4). Moreover, X being a semi-Weil space 
one is also endowed with an expnential sheafdiagram, like (6. I). 

The preceding framework is presently applied in the next result. That is, we obtain the 
following. 

Lemma 7.1. Let X be a Weil space and w un integra1 closed 2-form on X ; i.e., we assume 
that 

( 7  . i )  w E Q 2 ( X )  with d w  = O 

and such that (cf. (5.8) and (5.23)) 

Then, there exists a Manuell field (C, 8) on X ,  having w as the curvature form of the 

A-connection 5. 
Rmf Based on (7.1) and Proposition 5.1, we conclude that 

( 7  -3) 

such that 

w = (do,) E ( d n 1 ) ( X ) % 2 * ( X )  

(7.4) (e,) E co ( u , ~ ' ) .  

Moreover, one has (see (5.20)) 

(7.5) S (e,) = (afaP) E Z ' ( V , d d ) S z '  (V ,Q1)  , 

for some I-cochain 
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such that, in view of (5.21) and (7.2), one obtains 
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(7.7) c ( w )  := [s ( f a 8 ) ]  E H 2 ( X , Z ) S H 2 ( X ,  C )  

In particular, we thus assume in virtue of (7.2) that 

(In the previous argument we considered an eventuai refinement V of the open covering U 
appeared in (7.4); in this respect, see also the comments after the relation (5.20) in the pre- 
cedi ng) . 

Now, by applying (6.1), we set 

(7.9) 

(see also (7.6)); but on the strength of (7.8) and since, in view of (6.1), Z E ker e, one 
obtains 

(7.10) 

Therefore, one has in particular that 

So we can now define (see also (4.6) ior n = 1 ) 

(7.12) C := [ (gaB)] E H' (X,d')  @ A ( X ) ,  

which we contend thus to be the desired line sheafon X : 
Namely, we first prove that C admits an A-connection. Indeed, one obrains 

Accordingly, concerning the Atiyah class of C ( s e  (2.7) and (2.1 l)), one gets 
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Hence (cf. Theorem 2.1), C admits a Levi-Civita A -connection, say 5. Now, modulo a 
suitable change of the Levi-Civita 1-cocycle ( D a  - D,) (see (2.5)) and an eventual transla- 

tion of the resulting A-connection via an element of S ì  (X) (cf. also the comments bcfore 

(2.21)), one may assume that 5 is locally given by the relation 

(7.15) 51"- G D, = D, - e,, a E i 

(By an obvious abuse of notation, we retained above, for simplicity, the same symbol for 5). 
Thus, ( O,) E Co (U, CI * ) , as given by (7.4), may be considered as the local A -connecfion 

I- fom represenling 5 (see e.g. (2.20), for n = 1 . Yet, here again a «pcrturbalion» as bcfore 
of the A-connection involved might be in sight, conceming (2.21)). Therefore, Ihe pair 

(7.16) (C, 8) 

is a Maxweff fieldon X such that (Cartan's suuctural equation, see (3.24)) one has 

(7.17) R ( 5 )  E R =  (do,) = (by (7.3)) w ,  

and this terminates the proof. 

As a consequence of the preceding two Lemmas 6.1 and 7.1 (cf. also (6.26)), we are now 
in the position to state the following theorem. On the other hand, conceming the standard 
form of this classica1 result, see [45, p. 90, Lemma 21 or yet [19. p. 133, Proposition 2.1.11. 
So we have. 

Theorem 7.1. (A. Weil). Ler X be a Weil space and w a closed 2-form on X . Then, the two 
following asserrions are equivalent : 

1) w is integrai; viz. it detennines a (2-dimensional) cohomology class of X ,  say, c( w ) E 

E H 2 ( X , Z ) S H 2 ( X ,  a:). 
2) w is the curvature form of an A -connedon of a line sheaf on X . 

As a matter of fact, that which we actually proved above is the following more genera1 
statement (see also Definition 7.1): 

(7.18) 

Every Maxwell field ( C ,  D )  on a semi -Weil-Bianchi space X 
yieldr (through the curvature of a possible suitable translate of D )  
an integral closed 2 -form. In parlicular , if X is a Weil space 
then , conversely , rhe above is rhe only way that such forms arise. 
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8. EXAMPLES 

As alrcady said we consider below a certain particular instance, where the previous context 
can be appiied. Indeed, the point of view exhibited by the ensuing discussion was also the 
initial motive to the abstract (axiomatic) framework, as this was presented in the preceding. 
Yet, analogous considerations of S.A. Selesnick in the context of commutative unital Banach 
algebms (see e.g. [36]) triggered off, in effect, our initial study referred to the matenal that 
will be discussed in the sequel. 

So, as we shall presently see, the spectrum of a certain appropriale class of topological 
algebms is a semi- Weil-Bianchi space. Now, conditions under which this could also be made 
into a Weil space are yet unclear (cf., for instance, (8.1 1) below). On the other hand, concern- 
ing the generai terminology and results on topological algcbms that we apply below we refer 
to [25]. 

Thus. suppose wc have a commutative Pl;ik regularsemi-simple locaily m-convex (topo- 
logicai) cf -algebra A , having an identity element and an equ.continuous spectrum 

(ibid.); now, it has been proved in [27] (cf. also [23, p. 488, theorem 6.11) that A is a 
geomeLric algebra, in the sense that one has 

(8.2) A = T(X,d)  E d ( X ) ,  

within an isomovhism o f  (I: -algebras. Here A stands fora suitable agebrasheaf(the Gel’fand 
sheafof A ) over X (indeed, A is a sheafof topologicalalgebras on X ,  viz. a sheaf generated 
by a topologicalalgebmpresheafon X ; cf., for instance, [27] or yet [31]). 

Now, following (within the above more generai framework) the reasoning of [36] (see  also 
[35]), assume further that our topological algebra A , as above, carries a continuous involutjon 
«*», with respect to which A is self-adjoinl; by the latter term we mean that thecorresponding 
Gel’fand map of A is a -moIphism (see e.g. [25, p. 481 fu). 

Thus, by a Sclesnick algebra we mean a commutative unital Ptak regular semi-simple 
locally m-convex (f -algebra A which is also self-adjoint with respect to a continuous in- 
volution and has an equicontinuous spectrum M (  A ) . 

Of course, the hypothesis on a Selesnick algebra implies, among other things, that its 
spectrum M( A )  is actually a compact (Hausdorfo space (cf. [25, p. 186, Corollary 1.51). 
So a Banach algebra of the previous t y p  is, in particular, the Fourier algebra A(G)  of  a 
compact abelian group G (cf. e.g. [35, p. 322, Theorem 3.31 and [37, p. 7041; see also, for 
instance, [34, p. 1041). 
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On the other hand, an important speciai instance of a Selesnick algebra (that cannol be a 
normed one!), is the algebra 

(8.3) A = C"(X)  , 

of (f -valued C"-functions on a compact (Hausdorff) 2 nd countable smoolh (viz.  Cm-) 
manifold X, endowed wilh the respective Cw-topology; thus, one gets X = M( A), within 
a homeomoIphism (cf. [25, p. 227, Thcorem 2.11. See also Example 1.1 in the foregoing). 

Yet, another example of a Selesnic (topological, not necessarily normed) algebra from 
funclion algebra iheoT, is the algebra O( K )  of -valued c&caliy holomorphic» functions 
on a compacl Stein set K of a Slein manifold X (in this regard, cf. [27]; see also [25, p. i34 

Thus, in connection with our considerations in the preceding, one can prove now the fol- 
ffl). 

lowing. 

the spectrum M( A) of any given Selesnick algebra A is a 
semi - Weil-Bianchi spuce ; here one employs the corresponding 
Gel '-fard sheuf A of A [ 271 and then the de Rham - Kahler complex 
(eventuaily not exact!) of A (see [28], [31]). 

(' .4) 

Namely, following [36] one proves the existence of an exponential shcafdiagram for A, 
like (6.1) above. In this respect, one defines the exponential sheaf morphism e : A -+ A' by 
the relation 

(8 5)  e(s) := exp 27ris, 

for any (iocai) section s E A( V ) ,  U open in X ;  we note at this point that the previous 
relation makes sense, since the exponential function coperates» on any complefe (in fact, 
a-complete is enough) locally mconvex algebra with an identity element (see e.g. [24, p. 
492, (5.1)], as well as [28] or yet [31]). 

Now, the corresponding «differential» framework is further established by employing a 
(sheaf-theoretic) Kahler lheory of  dfferentials for A .  So the point of view developed in the 
preceding sections has here a special bearing; in this concern, cf. also, for instance, [28] 
and/or [31]. Thus, one gets in particular that: 

for  any Selesnick algebra A the conclusion of (6.26 ) holds good 
(cf . also ( 7  .18)), relative to its spectrum M( A 1. ( 8.6) 

In this regard, it is yet worth mentioning here that: 

the Gel Ifand sheuf A of any Pt&k-Silov-Q (for shon, PQS-, 
so in particular of any Sefesnickalgebra A (see aiso [ 251) is alwaysfine ( 8.7) 
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Cf. (271, [311 or yet [35, p. 319, Proposition 2.5, iii) for p = O I. Therefore, given that 
our base space X ,  viz. the specuum of A (cf. (8.i)), is, as already said above, a compact 
(Hausdori?J space, A is acycfic (cf. [5,  p. 49, Theorem 9.81); hence, Ihe same hofds true 
for every A-module on X (ibid., p. 50, Theorem 9.12). Thus, in view of Theorem 2.1, we 
further obtain that: 

every vector sheaf on ihe spectrum M( A) of a PQS-algebra (hence, 
a fortiori of any Selesnick algebra) A admiis an A-conneciion, with 
A being the corresponding Ce1 Ifand sheaf of A . 

( 8  .SI 

Of course, in case of the algebra A ,  as in (8.3), the respective Gel'fand sheaf of A is the 
slruclure sheaf C," of the manifold X under consideration (see also e.g. (1.21) above). 

Scholium 8.1. In connection with the exact sequence in (5.4) one could consider, instead 
(in fact, more naturally!), the cxaclness of  lhc following sequence (of shcaves of (f -vecior 
spaces on X ) 

We reca11 that, in view of our hypothesis (cf. (1.8)), we always have (f 5 ker a.  Thus, 
one gets an analogous result Lo Proposition 5.1 by an obvious rephrasing of (5.8); viz. one 
should then have 

(8.10) c ( w )  E H 2 ( X ,  ker a) ,  

forany closed 2-fom on X . Now, the previous sequence (8.9)provides, of course, exactness 
at A ; however, 

further exaciness of ( 8 . 9 ) ,  wiihoui , namely , posiulaiing ii , 
migh be in close conneciion with the very siruciure of a given 
topologicalalgebra A , whose Gel Yand sheaf is A 
( take e .g. a Selesnick algebra, as above) . 

(8.11) 

So in the important particular instance of the algebra (8.3), the exactness of the analogous 
sequence Lo (8.9) (and, in effect, to (5.4)) is, of course, a consequence of the Poincaré Lemma 
(see, for example, [9, p. 133, Example 2.5.1 and p. 181, Example4.7.31 or yet [44, p. 190, (3) 
and p. 156, Corollary (a)], [43, p. 2031). Now, the latter depends on the topology of X, i.e., 
on that of the spectrum of (the topological algebra) A ; hence, in tm (Silov, Arens-Royden 
et al.), on ihe structure of A . 
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In this regard, an analogous study (however in case of discrete algebras) by S .  Teleman 
(see e.g. [41], [42]), conceming an absh-act fonn ofde Rham’s theorem. is here akin to the 
above problematic (specuiation). Thus, the locallyacyclicalgebm of Teleman might give an 
example, when suitably topologized. In conclusion, we are thus in pursuit of: 

topological algebras A satisfying (8.2 ) ( viz . geometric ( topological) 
algebras [ 23,  p .487; Q 61, even with acyclic Gel ‘fand sheaves) , whose 
spectra are Weil spaces in the moàijed sense of the sequence ( 8 . 9 ) .  

(8.12) 

So for an algebra A as above, by referring, in effect, to its Gel’fand shcaf A ,  the full 
fonn of Weil’s theorem (cf. Theorem 7.1), as modified now by the rclation 

(8.13) c ( w )  E H 2 ( X , Z ) S H 2 ( X ,  ker a) ,  

wodd be in force. 
Finally, within the same vein of thoughts, we further note that by considcring thc p f y -  

nomiai algebra A f (T [ti , . . . , t,] in n variables, one gcts an example of a (discrete) 
Q1 -algebra for which the corresponding de Rham-KiThler complex is exact. Cf. [21, p. 612, 
Theorem 12.31. 

9. ELEMENTARY PARTICEES. PREQUANTIZATION 

As a further outcome of the preceding, we give below a breezy discussion on certain thoughts 
to which we are led, in connection with a standard appiication of Weil’s integraIity thcorem 
to quantum mechanics [ 191, [48] and an interpreiation of elementary particles in terms of 
sections of vector sheaves. Thus, our exposition here is aiming only at an indication of the 
interrelation of the above two facts, while we refer instead to [30] for further dctails. 

So, according to an interpretation due to S.A. Selesnick (see e.g. [38]), tiee elemen- 
tary pariicles obeying Bose-Einstein sfatistics (or yet integmi-spin particles) may correspond 
to mnk one projective A -moddes, where A is given by (8.3) for a suitable (compact) 
C”-manifold (representing an empty finite universe). Furthermore, similar modules ofrank 
greater than one may represent free particies obeying Fermi-Dir& statistics. 

On the other hand, the C“-analogue of the classicai Serre-Swan theorem (see, for instance, 
[23, p. 481, Theorem 4.21 for an ampie generalization of this result) identifies uie previous 
modules with C”-(complex) vector bundles on X, having the respective dimension (rank). 
However, (Cw-) veclor bundles on X may, in tum, be iàentified with the corrcsponding 
iocaily free sheaves (of their C”-sections) , these being too offinite d, that is with vector 
sheaves on X (here the cccoefficient sheaf» A is given by (1 -21); in this respect, see also e.g. 
[26, p. 406, Theorem 1 .i]). 
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Now. it is also standard to consider (cf., for instance [38] or yet [7, pp. 364,  3751) the 
field sifengih of a given elementq particle as represented by the curvafure fonn of an a p  
propriately defined connection form (ccgauge potenLial»; see also e.g. (2.3). We recall that 
connections here always exist, yet globally, A E CF being a fine sheafon the cornpact X ; 
cf. aiso, for instance, Theorern 2.1 in the preceding). Accordingly one comes to the conclu- 
sion that: 

every free boson yield ) corresponds lo a Manuell Jeld (L, D )  
on X which thus yields, through its field suength (cf . (6.26) 
or yet (7  .18)), un integra1 cohomology class . Therefore ( by 
further employing a standard prequantization argument [48] one 
obtains that) every such elementary particle is pre-quantizable. 

(9 .I) 

Furthermore, by viewing (free) fennionsas corresponding to (sections of) R ' (see [38], as 
well as (1.23) above), one may further consider a Yang-Mills field (R ' , D )  (cf. also (1.26)) 
as representing the free fermion (field) involved. In this regard, the connection D can be 

derived by the effect on R of a free boson, say (C, 6) (ccmediating forces by Lhe exchange 
of bosonsw); that is, mathematicaily speaking, we let the boson in question «act» on R by 
tensoring, so that one has 

Thus, the presence here of the (auxiliary) free boson C is focally undiscemibfe, its con- 
uibution being that it provides us, via its force (curvature of E), with a (pre-)quantizing line 
sheaf for R . As a matter of fact, D yiels an integrai cohomology class, as well, by pufling- 
back that of 5 (see e.g. [9, p. 2001, and also (7.18) above). Therefore, one again obtains 
that: 

every free fermion is pre-quantizable. Hence, by virtue of ( 9  . i ) ,  we 
conclude that the same holds good for every free elementary particle. (9.3) 

So according u, the preceding one gets already frorn the ouiset a ccpre-quantizing fine bun- 
dfe (or rather a line sheaf)» without thus to have first to look for the appropriate Hamiltonian 
frarnework. This is, of course, in agreement with thc point of view of georneuic quantiza- 
tion theory (see, for instance, [40]); yet, it rnight also be viewed as a further justification of 
the claim that «quantiration is providcd by the physical law iiselfw (cf. [47, p. 3231). Fur- 
thermore, one realizes that shcaf cohomufogy lics al the basis of the mathernatical strutture 
involved in field quantities, which are uscd to dcscribc a ccgeometrized befd iheory». In this 
respect, see also [32] and/or [2], [391. 
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APPENDIX 

Based on Scholium 5.1 and on the proofs of Lemmas 6.1 and 7.1, we can get the following 
variant of Weil's Theorem 7.1; conceming the terminology applied below see aiso the previous 
section 9. Thus, we have the next. 

Theorem. Let X be a paracompact Hausabrff space enabwed wiih a curvature (Bianchi) 
datum (cf. (6.24)) 

( A , a , Q ' , d , Q 2 ) ,  

where R ' is a vector sheaf on X ,  such that the following sequence is exact 

Moreover, suppose thai we are given the next commutative exponential sheaf diagram; 

n' 

Then, the only integra1 (closed 2-) forms on X of ihe type w E Zo (U, d R ') are field 
strengihs of Maxwellfields on X . m 

The previous result reinforces Theorem 7.1 regarding the exact sequence (5.4), however, 
this at the cost of the type of the (ciosed) 2-forms on X considered; on the other hand, the 
particular type of these forms is aiways occurred in case of line sheaves, as a result of Cxfan 3 
sbuctural equalion (see (3.24)). 

Remarks (added in proof). (i) By suitably modifying the proof of Theorem 2.1, we can 
dispense with the hypothesis that Q ' is a vector sheaf on X ; namely, itsuffices to be just an 
A-moduieonX, asin ( d , a , R ' ) .  
(ii) Conceming the Theorem in the Appendix, one can finally state the following (more amply 
realizable, see below) version of Weil's Theorem: namely, for any semi- Weil Bianchi space 
X, foiwhich H ' ( X , A )  = H 2 ( X , A )  = H ' ( X , Q ' )  = O ,  anyz E H 2 ( X , Z )  isofthe 
fonn z = z( w ) , ivhem w is the curvature f o m  o f  an A -connection of a line sheafon X ; ;.e., 
w E LZ2(X), suchthatw = (do,), with(8,) E P(L4,R') .  Andconversely, thecurvature 
form of an A-connection of a line sheaf on X is of the above type. As an application, one 
can consider (in a canonical way) as X the s p e c m  of any Selesnick algebra or yet thal one 
ofany self-adjcnt Frécilet-$ilov algebra (non-compact spectrum; see aiso e.g. [28]). 



On an abstraa form of Weil's integraliry theorcm 

REFERENCES 

[ i ]  M.F. A n Y w .  Complexanalyiic conneciionr infrber bundles. Trans. Amer. Math. Soc., 85 (1957). pp. 181- 
207. 

SJ. Avi& C.J. I s t u .  Quaniumfield iheory and/iber bundles in genera1 space-iime. in: «Receni Develop- 
menis in GravitationN. Cargèse 1978.347-401; M. Lcvy - S. Deser (eds.). Plenum Press, New York, 1979. 

D. BUE-. Gauge iheory and variaiional principles. Addison-Wesley. Reading , Mass.. 1981. 

N. BOURBAKI, Théorie des enrembles. chap. 3, Hermann, Paris. 1967. 
G.L BRENDON. Sheafiheory. McCraw-Hill. New York. 1967. 

N.P. B U ~ D A H L ,  A M ~ Y S ~ S  on analyiic spaces and non-self-dual Yang-Millsfielak. Trans. Amer. Math. Soc., 
288 (1985). pp. 431-469. 

Y. COQUET-BKWMT, C. DE WIIT-MoKEm, M. DLI./UU)-BLEICK, A ~ l y s k ,  manifoldr and physics, (revised 
ed.), North-Holland, Amsterdam, 1982. 

J.L. DWm, Curvature and characieriiiic classes, Lecture Hoics in Mathemaiics. 640, Springer-Verlag. 
Berlin. 1978. 

R. G O D M N T .  Topologie algébrique ei ihéorie des fairceaiu, (3 ème éd.), Hermann. Paris, 1973. 

H. GRAUERT, R. REMMFRT, Theory of Siein spaces. Springer-Verlag, Berlin, 1979. 

A. GKOTHENDIECK. J.A. DIEUDO"~. Élémenls de g é o d i r i e  algébrique, I ,  Spinger-Verlag. Bcrlin, 1971. 
R.C. GU"iNG, Leciures on Riemann surfaces, Princeion L'niv. Press. Princeion, h'J. 1966. 

R.C. GLT"ING. Leciures on vecior bundles over Riemann surfaces, Princeton Univ. Press. Princeton. NJ, 
1 %7. 

E HIKZEBRUCH, Topological meihods in algebraic geomeiry. (3rd ed.), Springer-Verlag. Berlin. 1978. 

L. H O M ~ E K .  An iniroduciion io complex analysk in severa1 variables, (2nd. ed.). h'orth-Holland, Ams- 
terdam. 1973. 

N. JACOBSON. Basic algebra, / I ,  W.11. Freeman, San Francisco. Ca., 1980. 

M. KAROUBI, C. ~ K U S T E ,  Algebraic iopology via dif/ereniial geomeiry, Cambridge Univ. Press. Cambridge, 
1987. 

L. Kaw, B. KAw, Ilolomorphic funciioni of several variables, W. de Gmyter. Berlin, 1983. 

B. KOSTAKT. Quanfizaiion and uniiary represeniniionr. in: akc iures  in Modern Analysis and Applications, 
I l » ;  Iecture Notes in Maihcmatics, 170 (1970). pp. 87-208, Springcr-Verlag. Berlin. 

J.L. KOSZUL. Leciures onfiber bundles anddiflerential geomeiry, Tala Inst. Fund. Res.. Bombay. 1960. 

S. LANG. Algebra, (2nd ed.), Addison-Wesley. Rcading, Mass.. 1984. 

S. MG. Iniroduciion io Arakelov Theory. Springer-Verlag. New York, 1988. 

A. WIOS, Vecior b d e s  and K-iheory over iopological algebras. J .  Math. Anal. Appl.. 92 (1983). pp. 
4 5 2 - 5 06. 

A. MALLIOS. Ilerrniiian K-iheory over iopological '-algebras. J. Math. Anal. Appl.. 106 (1985). pp. 454- 
539. 
A. .%LIOS, Topological ulgebras: selecied iopics, North-llolland, Amsterdam. 1986. 

A. WIOS, Confinuous vecior bundles over iopological algebras, / I ,  J. Math. Anal. Appl.. 132 (1988). pp. 
401-423. 

A. m i ì o s ,  Topological algebras: localizaiionr and exfensionr. (in preparaiion). 

A. MAUIOS, On ihe de Rhan-Kahler complex of ihe Gel'fand sheaf of a iopologicnl algebra. J .  Math. Anal. 

A. WIOS, (i) On ihe exkience of A-conneciions. abstracis Amer. Math. Soc., 9 (6) (1988). p. 509. 
(ii) A- conneciioni as spliiiing exfenrionr, ibid., 10 (2) (1989). p. 186. (iii) On an absiraci form of Weil's 
Lii~graliiy iheorem. ibid.. 10 (4) (1989). p. 312. (iv) On ihe curvniure o f a n  A-conneciion, ibid., 10 (5) 
(1989).p. 410. (v) Local formo/ A-conneciionr. Sirucfural equafions. ibid.. 11 (4) (1990). p. 354. 

Appl. 175, 1993. 143-168. 



A. Mailios 

[30] A. MALLIOS, Vecior sheaves and second quanfidion, (LO appear). 

[31] A. WOS, Geometry of vecfor sheaves, (in preparatim). 
[32] Yu.1. MA”, Gaugefieìd fheory and complex geomefry, Springer-Verlag. Berlin, 1988. 
1331 J.W. MLNOR. J.D. STASHEFF, Characferisfic classes, Princeton Univ. Press, Princetm. NJ. 1974. 
[34] H. RE-, Classica1 harmonic analysis and locally compacf groups. Oxford Univ. Press. Oxford. 1968. 

[35] S.A. SUESNICK, Waffs cohomology for a class of Banach algebra and fhe dualify of compacf abelbn groups, 
Math. Z, 130 (1973).pp. 313-323. 

[36] S.A. SELESNICK, Line b d e s  and harmonic curalysis on compacf groups, Math. Z., 146 (1976). pp. 53-67. 

[37] S.A. SELESN~CK, Rank OM projecfive modules over certain Fourier algebra, in uApplications of Sheaves». 
PIWC. Res. Symp., Darham (1977), pp. 702-713; Lecture Notes in Mathematics, 753 (1971), Springer-Verlag, 
Berlin. 

[38] S.A. SELESNICK, Second quanfizafion, projecfive modules, and local gauge invarinnce, Intem. J .  Theory 
Phys.. 22 (1983), pp. 29-53. 

[39] S.A. SELESNICK, Geomefrical symmefry breaking, Nuovo Cimento. 83A (1984). pp. 175-190. 
[40] D.J. SMMS, N.M.J. WOODHOUSE, Leciures on geomeiric quanfizufion, Lecture Notes in Physics. 53 (1976). 

Springer-Verlag. Berlin. 
[41] S. TELEMAN, Theory of harmonic algebras wiih upplicaiions io von Neumann algebras and cohomology of 

locally compacf spaces (de Rham’s fheorem) , in «Lectures on the Applicaticm of Sheaves LO Ring Theory». 
pp. 99-315; Lecture Notes in Mathematichs. 248 (1971), Springer-Verlag, Berlin. 

[42] S. TELEMAN. The fheorem of de Rham for harmonic algebras, J .  Algebra, 23 (1972), pp. 271-290. 

[43] I. VAISMAN, Cohomology anddifferenfinl f o r m ,  Marceii Dekkem New York, 1973. 
1441 EW. WARNER, Founàufions of differenfiable manifoàs and lie groups, Springer-Verlag. New York, 1983. 

[45] A. WEIL, Iniroduciion à I’éfude des wriéfés kdhlériennes, (nouv. éd.), Hermann, Paris, 1971. 

[46] R.O. WU, Dtffereniiai U M I Y S ~  on complex manifolds. Springer-Verlag, New York, 1980. 
[47] C. VON WESTENHOLZ. Differenfial f o r m  in mafhemafical physics, (revised ed.), North-Holiand, Amsterdam. 

1981. 
1481 N. WOODHOUSE, Geomefric quanfizafion, Oxford Univ. Press, Oxford. 1980. 

Received September 12,1990 
A. Maiiios 
Mathematical Institute 
University of Athens 
Panepistimiopolis 
Athens 15784 


