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Abstract. A slight modification to one of Tarski’s axioms of plane absolute geometry is
proposed. This modification allows another of the axioms to be omitted from the set of axioms
and proven as a theorem. This change to the system of axioms simplifies the system as a whole,
without sacrificing the useful modularity of some of its axioms. The new system is shown to
possess all of the known independence properties of the system on which it was based; in
addition, another of the axioms is shown to be independent in the new system.

Keywords: foundations of geometry, absolute geometry, Tarski’s axioms, independence

MSC 2010 classification: primary 03B30, secondary 51F05, 51F10

1 Background

Alfred Tarski’s axioms of geometry were first described in a course he gave
at the University of Warsaw in 1926-1927. Since then, they have undergone
numerous improvements, with some axioms modified, and other superfluous
axioms removed; for a history of the changes, see [11] (especially Section 2), or
for a summary, see Figure 2 in [4].

The axioms are expressed in a one-sorted language, with individual vari-
ables to be interpreted as points, and two primitive relations: betweenness and
congruence. Congruence is denoted ab = cd, and can be interpreted as asserting
that the line segment from a to b is congruent to the line segment from c to d.
Betweenness is denoted B abc, and can be interpreted as asserting that b lies on
the segment from a to ¢ (and may be equal to a or ¢).

The version of the axioms used in [7] (see pages 10-14) consists of ten first-
order axioms, together with either a first-order axiom schema, or a single higher-
order axiom. This version has been adopted in later publications, such as [3] (see
Sections 2.3 and 2.4) and [4] (see Figure 3), and Victor Pambuccian has called
it the “most polished form” of Tarski’s axioms (see [6], page 122).

This semi-canonical version of the system is the result of many simplifica-
tions to the original system of twenty axioms plus one axiom schema. At least
one of these simplifications appears to have taken the form of a slight alteration
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to one axiom in order to allow another axiom to be dropped and subsequently
proven as a theorem.

Specifically, in [9] (see note 18), axiom (ix) is a version of what is called the
axiom of Pasch, which states (modulo notational differences):*

Bapc ABgcb — Jz. Baxzg A Bxpb (OP)

In [10], this has been replaced by axiom A9, which states (again, modulo nota-
tional changes):
Jz. Bapc A Bgeb — Baxg A Bbpx (OP")

The significant change between the two is the reversal of the order of points in
the final betweenness relation. They are easily shown to be equivalent using the
symmetry of betweenness, which states:

B abc — B cba (SB)

The interesting thing is that in [9], (SB) is an axiom (axiom (iii)), but in
[10], it has been removed from the list of axioms. Haragauri Gupta’s proof of
(SB) (see [2], Theorem 2.18) relies on the precise ordering of points in the final
betweenness relation in (OP’).

Also, Wolfram Schwabh&user, Wanda Szmielew, and Alfred Tarski, on page
12 of [7], draw attention to the ordering of points in their version of the axiom
of Pasch (labelled (IP) in this paper), noting that it is important until after
the proof of (SB) (which they call Satz 3.2). Again, their proof of (SB) (which
is essentially the same as this paper’s proof of Lemma 4) relies on the precise
ordering of points in (IP).

Therefore, although it does not appear to be explicitly acknowledged in the
published literature, it seems likely that the change from (OP) to (OP’) was
necessary to allow the removal of (SB) from the set of axioms. It may be the
case that (SB) is a theorem even with (OP), and that this was not known when
it was replaced by (OP’), or that it was known, but (OP’) allows a simpler proof.

In any case, it appears that Tarski was willing to reorder points in his axioms
to allow the simplification of the axiom system as a whole, either by removing
axioms or merely by simplifying proofs of theorems.

In the tradition of such simplifications, this paper presents one further sim-
plification of the axiom system; one of the axioms is slightly modified, allowing
another of the traditional axioms to be proven as a theorem, rather than as-
sumed as an axiom.

!Throughout this article, universal quantifiers scoped over a whole formula are omitted in
order to improve readability.
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2 The axioms

Tarski’s axioms, as stated in [7], pages 10-14, are as follows. The names
are adopted from [3] (Section 2.4), which provides some diagrams and intuitive
explanations for the axioms.

e Reflexivity axiom for equidistance

ab = ba (RE)
e Transitivity axiom for equidistance
ab=pgAhab=1rs — pg=rs (TE)
e Identity axiom for equidistance
ab=cc—a=b (IE)
e Axiom of segment construction

Jz. Bgax A ax = be (SC)

e Five-segments axiom

a#bABabe ABdbd Nab=ad't Abe=bcd Nad=d'd Nbd=bd
—cd=cd (FS)

e Identity axiom for betweenness

Baba — a =10 (IB)
e Axiom of Pasch
Bapc A Bbge — Jx. Bpzb A Bqza (IP)
e Lower 2-dimensional axiom
Ja,b,c. " Babe AN~ Bbca A = Bcab (Log)

e Upper 2-dimensional axiom

p#Eqhap=aqANbp=bgAcp=cq— (BabcV BbcaV Bcab) (Ups)
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e Euclidean axiom

Badt ABbde A a #d— Jx,y. Babx ABacy A Bty (Eu)

e Axiom of continuity

(Ja.Va,y.z € X Ny €Y — Baxy)
— (. Vr,y.x € X Ny €Y — Baby) (Co)

This collection of eleven axioms, Tarski’s axioms of the continuous Euclidean
plane, will be denoted CE;. A similar collection of axioms, denoted CEJ, is
obtained by removing (RE) from CE» and replacing (FS) with

a#=bABabc ABd'V'd Nab=d'V Nbe=bc ANad =d'd ANbd =bd
—de=cd (FS)

The only difference between (FS) and (FS') is the reversal of the first two points
in the last congruence relation.

This paper will show that CE} is equivalent to CEp, and will, in fact, show
a stronger result — Theorem 1 — about a smaller set of axioms.

One of the features of Tarski’s axiom system is its modularity: some texts
omit or delay the introduction of (Co) (see, for example, [1], page 61); (Eu)
can be replaced by another axiom in order to investigate hyperbolic geometry,
or omitted entirely, for absolute geometry (see [5], pages 331-333); (Lo2) and
(Upz) can be replaced by other axioms that characterize other dimensions (see
[10], footnote 5). For this reason, let A denote the collection of axioms (RE),
(TE), (IE), (SC), (FS), (IB), and (IP). These are Tarski’s axioms of absolute
dimension-free geometry without the axiom of continuity. Let A’ denote the
collection of axioms (TE), (IE), (SC), (FS’), (IB), and (IP).

The stronger result that this paper shows is that A’ is equivalent to A.
Thus, the modularity of axioms (Loz), (Up2), (Eu), and (Co) is unaffected by
the proposed change to Tarski’s axiom system.

3 Proof of equivalence

Lemma 1. If (TE) and (SC) hold, then given any points a and b, we have
ab = ab.

Proof. Given a and b, (SC) lets us obtain a point = such that az = ab. Using
this twice in (TE) gives us ab = ab.
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Lemma 2. If (TE) and (SC) hold and a, b, ¢, and d are points such that
ab = cd, then cd = ab.

Proof. By Lemma 1, we have ab = ab. Using ab = ¢d and ab = ab, (TE) tells us
that cd = ab. QED

Lemma 3. If (IE) and (SC) hold, then given any points a and b, we have
B abb.

Proof. Given a and b, (SC) lets us obtain a point z such that B abx and bx = bb.
Then (IE) tells us that b = z, so B abb. QED

Lemma 4. (IE), (SC), (IB), and (IP) together imply (SB).

Proof. Suppose we are given points a, b, and ¢ such that Babc. We also have
Bbce, by Lemma 3. Then (IP) lets us obtain a point x such that Bbxzb and
B cza. According to (IB), the former implies b = x, so the latter tells us that
B cha. QED

Lemma 5. A’ implies (RE).

Proof. Given arbitrary points a and b, (SC) lets us obtain a point x such that
Bbazx and ax = ba. We consider two cases: x = a and = # a.

If 2 = a, then aa = ba. By Lemma 2, we have ba = aa, so by (IE), we have
b = a. Substituting this back into the congruence as necessary gives us ab = ba,
as desired.

Suppose, on the other hand, that x # a. Lemma 4 and Bbax tell us that
Bxzab. Lemma 1 tells us that xa = xa, ab = ab, and aa = aa. We make
the following substitutions in (FS'): a,a’ — z; b,b',d,d" — a; and ¢, — b.
Then all of the hypotheses of (FS’) are satisfied, and its conclusion is that
ab = ba. QED

Lemma 6. If (RE) and (TE) hold, then (FS') is equivalent to (FS).

Proof. Because the hypotheses of (FS) and (FS’) are identical, we need only
show that their conclusions are equivalent.

(RE) tells us that ¢d = dc and de = cd.

If cd = ¢d’, then c¢d = dc together with this fact and (TE) let us conclude
that de = dd'.

Similarly, if de = ¢/d’, then dc = ed together with this fact and (TE) let us
conclude that cd = dd'.

Therefore (FS') is equivalent to (FS). QED

Theorem 1. A’ is equivalent to A.
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Proof. By Lemmas 5 and 6, A’ implies (RE) and (FS). A’ contains all of the
other axioms of A, so A’ implies A.

By Lemma 6, A implies (FS'), and it contains all of the other axioms of A,
so A implies A’.

Therefore A’ is equivalent to A. QED

As an immediate corollary, we have the following:

Corollary 1. CE} is equivalent to CE,. QED

4 Independence results

The first part of Section 5 of [11] (see pages 199 and 200) concerns the
independence of Tarski’s axioms. One problem seen there is that the various
historical changes to Tarski’s axioms often force a reconsideration of previ-
ously established independence results. This paper’s suggested simplification
of Tarski’s axioms is no exception, so this section aims to establish which of the
known independence results apply to the specific set of axioms CE}.

Because CE; and CE/ differ only in their subsets A and A’, Theorem 1 tells
us that the axioms in CE) but not in A" are independent if and only if they are
independent in CEj;. In fact, we can go further than this.

Theorem 2. Suppose that (Ax) is an aziom of CE, other than (TE) or
(FS'). If (Ax) is independent in CEx then (Ax) is also independent in CE}.

Proof. Note that (Ax) is not (TE), because this was explicitly excluded; nor
is it (RE) or (FS), because these are not axioms of CEj, from which (Ax) was
chosen. Therefore CE; \ { (Ax) } contains (RE), (TE), and (FS), so by Lemma
6, CE2\ { (Ax) } - (FY).

All of the axioms of CE, other than (FS’) are also axioms of CEj, so
CEx \ {(Ax)} F CE, \ {(Ax)}. Therefore, if CE, \ {(Ax)} F (Ax), then
CE> \ { (Ax) } F (Ax). Taking the contrapositive of this statement, we see that
if (Ax) is independent in CE; then it is independent in CEj. QED

This allows us to adopt almost all of the independence results known for
CEs.

Corollary 2. (SC), (IB), (Loz), (Up2), (Eu), and (Co) are each individu-
ally independent in CE}.

Proof. The independence of each of these axioms in CE; is noted in [7], page
26.

The remaining independence result noted in [7] can also be adapted to CE:
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Theorem 3. (FS') is independent in CE}.

Proof. The existence of a model M demonstrating the independence of (FS) in
CE; is noted in [7], page 26. Because M satisfies (RE) and (TE), but violates
(FS), we can conclude, using Lemma 6, that M also violates (FS'). M satisfies
every other axiom of CE}, because all such axioms are also axioms of CE, (and
are not equal to (FS)); therefore, M demonstrates the independence of (FS')
in CES.

Because of the absence of (RE) from CE), we can easily show the indepen-
dence of (TE) in that axiom system:

Theorem 4. (TE) is independent in CE}.

Proof. We proceed as is usual in independence proofs, by defining a model M
of every axiom of CE} except (TE). As in the real Cartesian plane (the standard
model of CEj, and hence of CE}), we take R? to be the set of points, and define
betweenness so that Babc if and only if b = ta + (1 —t) ¢, for some ¢ with
0 <t < 1. Departing from the standard model, we define congruence so that
ab = cd if and only if a = b.

Because the real Cartesian plane is a model of CE}, and M differs from the
real Cartesian plane only in its definition of congruence, we can conclude that
M is a model of all of the axioms of CE) that make no mention of congruence.
Those axioms are (IB), (IP), (Loz), (Eu), and (Co).

The definition of congruence ensures that M trivially satisfies (IE).

Choosing = = a ensures that (SC) is satisfied.

The hypotheses of (FS') include a # b and ab = d'b’, which implies a = b;
this contradiction in the hypotheses means that (FS’) is vacuously true.

The hypotheses of (Upg) imply that a = b = ¢ = p; it is always the case
that B ppp, so (Upe) is satisfied.

Finally, in M, it is the case that (0,0) (0,0) = (0,0) (0, 1), but not the case
that (0,0)(0,1) = (0,0)(0,1), so M does not satisfy (TE).

Because M satisfies every axiom of CE} except (TE), we can conclude that
(TE) is independent in CEj. QED

Notice that M in the proof of Theorem 4 also violates (RE) (because it is not
the case that (0,0)(0,1) = (0,1)(0,0)), so this model would not demonstrate
the independence of (TE) in CEj, which is, as far as the author is aware, still
an open question.

We now have independence results for all of the axioms of CE} except (IE)
and (IP). As far as the author knows, the independence of these in CE; is
still an open question (see also [11], pages 199 and 200), although there are
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independence results relating to these axioms in other versions of Tarski’s axiom
system.

Gupta shows the independence of (IE) (his axiom A5; see [2], pages 41
and 41a), but only in the context of a particular variant of Tarski’s axiom
system. This variant uses a weaker but more complicated form of the upper 2-
dimensional axiom, Gupta’s A’12;? his independence model for (IE) also violates
(Upz), which is trivially equivalent to his original axiom A12.

Lestaw Szczerba established the independence of a version of the axiom of
Pasch within a certain variant of Tarski’s axiom system (see [8]). This variant
used, instead of (Eu), an axiom essentially asserting that any three non-collinear
points have a circumcentre.?

5 Conclusions

Although this paper has not answered the question of whether (RE) is inde-
pendent in the axiom system of [7], it has demonstrated that (RE) is superfluous
to Tarski’s axioms of geometry. Even in a proper subset of the axioms, a slight
modification to (FS) allows (RE) to be proven as a theorem, and therefore re-
moved from the set of axioms. This simplification of the axiom system does
not diminish its deductive power or the important ways in which it exhibits
modularity.

Besides removing one of the axioms not known to be independent in the
unmodified axiom system, the modified system allows an easy proof of the inde-
pendence of (TE), which was also not known to be independent in the unmodi-
fied system. The two remaining independence questions for the new system are,
as far as the author knows, still open questions for the old one; furthermore,
if either axiom is shown to be independent in the old system, then Theorem 2
would immediately establish its independence in the new one.

As well as trying to resolve these remaining independence questions, future
work might seek other slight modifications to the axioms that may allow even
known independent axioms to be dropped. That this may be possible can be

2Tt seems that A’12 in Gupta’s thesis ought to include u # v among the hypotheses, as A12
does. Taken exactly as it is printed, A'12 is violated by the real Cartesian plane whenever z,
y, and z are any non-collinear points and u = v.

3There appears to be a typographical error in the statement of this axiom in [8] (page 492).
His axiom A8’ states (in our notation):

Ip. = (BabeV Bbea V Beab) — ap = bp A bp = ¢b

It seems that the second congruence relation in the consequent should state bp = cp; see also
[11], pages 199 and 184.
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seen by considering Gupta’s fully independent version of Tarski’s axioms for
plane Euclidean geometry (see [2], pages 41-41c).

His version had eleven axioms,*

some of which were deliberately made more
complicated in order to allow easy proofs of the independence of other axioms
(see, for example, his note on the independence of his axiom A7 on page 41b).
The system adopted by [7] already has simpler axioms than Gupta’s system
(which he used only for the demonstration that a fully independent system is
possible), but this article’s further simplification now shows that a reduction
in the number of axioms is also possible, without making any of them more

complex, despite Gupta’s system being fully independent.
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