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Abstract. In [A. H. DooLEY AND J. W. RICE: On contractions of semisimple Lie groups,
Trans. Am. Math. Soc., 289 (1985), 185-202], Dooley and Rice introduced a contraction of
the principal series representations of a non-compact semi-simple Lie group to the unitary
irreducible representations of its Cartan motion group. We study here this contraction by
using non-compact realizations of these representations.
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Introduction

Since the pioneering paper of Inénii and Wigner [19], the contractions of Lie
group representations have been studied by many authors, see in particular [27],
[24], [14], [11] and [12].

In [16], Dooley and Rice introduced an important contraction of the prin-
cipal series of a non-compact semi-simple Lie group to the unitary irreducible
representations of its Cartan motion group which recovered many known exam-
ples and also illustrated the Mackey Analogy between semi-simple Lie groups
and semi-direct products [23].

In [15], Dooley suggested interpreting contractions of representations in the
setting of the Kirillov-Kostant method of orbits [20], [22] and, in [13], Cotton
and Dooley showed how to recover contraction results by using the Weyl cor-
respondence. In this spirit, we established in [7] a contraction of the discrete
series of a non-compact semi-simple Lie group to the unitary irreducible rep-
resentations of a Heisenberg group (see also [26], [3], [6] and [4]) and, in [10],
we study the Dooley-Rice contraction of the principal series at the infinitesimal
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level. We also refer the reader to [17] for recent developpements on contractions
of representations.

Let G be a non-compact semi-simple Lie group with finite center and let K
be a maximal compact subgroup of G. The corresponding Cartan motion group
G is the semi-direct product V x K, where V is the orthogonal complement of
the Lie algebra of K in the Lie algebra of G with respect to the Killing form.
In [16], the Dooley-Rice contraction of the principal series was established by
using the compact picture for the principal series representations [21], p. 169.
Here, we present the analogous contraction results in the non-compact picture.

This note is organized as follows. In Section 1 and Section 2, we introduce the
non-compact realizations of the representations of the principal series of G and
of the generic unitary irreducible representations of Gy, following [9] and [10].
In Section 3, we study the Dooley-Rice contraction of the principal series in the
non-compact picture. Our main result is then Proposition 4 which is analogous
to Theorem 1 in [16]. Finally, in Section 4, we establish similar results for the
corresponding derived representations.

1 Principal series representations

In this section, we introduce the non-compact realization of a principal series
representation. We follow the exposition of [9] and [10] which is mainly based on
[21], Chapter 7, [30], Chapter 8 and [18], Chapter VI. We use standard notation.

Let G be a connected non-compact semi-simple real Lie group with finite cen-
ter. Let g be the Lie algebra of G. We can identify G-equivariantly g to its dual
space g* by using the Killing form  of g defined by 8(X,Y) = Tr(ad X ad Y)
for X and Y in g. Let 8 be a Cartan involution of g and let g = ¢ $ V be
the corresponding Cartan decomposition of g. Let K be the connected compact
(maximal) subgroup of G with Lie algebra £. Let a be a maximal abelian subal-
gebra of V' and let M be the centralizer of a in K. Let m denote the Lie algebra
of M. We can decompose g under the adjoint action of a:

g=admod ZgA
AeA

where A is the set of restricted roots. We fix a Weyl chamber in a and we
denote by AT the corresponding set of positive roots. We set n = > AEA+ OX
and 1 = >\ a+ g—x. Then n = f(n). Let A, N and N denote the analytic
subgroups of G with algebras a, n and n. We fix a regular element & in a, that
is, A(§1) # 0 for each A € A and an element & in m. Let {y = &1 + &2. Denote by
0(&p) the orbit of & in g* ~ g under the (co)adjoint action of G and by o(§2)
the orbit of £&2 in m under the adjoint action of M.
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Consider a unitary irreducible representation o of M on a complex (finite-
dimensional) vector space E. Henceforth we assume that o is associated with
the orbit o(£2) in the following sense, see [31], Section 4. For a maximal torus
T of M with Lie algebra t, i3(§2, ) € it* is a highest weight for o.

Now we consider the unitarily induced representation

7 =Ind{sn (0 ® exp(iv) @ 1y)

where v = (&1, -) € a*. The representation 7 lies in the unitary principal series
of G and is usually realized on the space L?(N, E) which is the Hilbert space
completion of the space C§°(N, E) of compactly supported smooth functions
¢ : N — E with respect to the norm defined by

]2 = /N (6 (). (v))E dy

where dy is the Haar measure on N normalized as follows. Let (Ei)i<i<n be an
orthonormal basis for n with respect to the scalar product defined by (Y, Z) :=
—B(Y,0(Z)). Denote by (Y1,Ys,...,Y,) the coordinates of Y € n in this basis
and let dY = dY1dYs...dY, be the Euclidean measure on n. The exponential
map exp is a diffeomorphism from # onto N and we set dy = log*(dY’) where
log = exp™ .

Note that 7 is associated with O(&p) by the method of orbits, see [2] and [5].

Recall that NMAN is a open subset of G whose complement has Haar
measure zero. We denote by g = n(g)m(g)a(g)n(g) the decomposition of g €

NMAN. For g € G the action of the operator 7(g) is given by

(7(9)0) (y) = e~ PFrIe8als™ W) 5 (m(g~1y)) " (g™ 'y)) (1.1)

where p(H) = Tra(ad H) = £ > ot A

Recall that we have the Iwasawa decomposition G = K AN. We denote by
g = k(g9)a(g)n(g) the decomposition of g € G.

In order to simplify the study of the contraction, we slightly modify the pre-
ceding realization of 7 as follows. Let I be the unitary isomorphism of L?(N, E)
defined by

(I)(y) = e~ 1B (y).

Then we introduce the realization 7 of 4 defined by m(g) := I~ '#(g)I for each
g € G. We immediately obtain

(W(g)qb) (y) = eiv(loga(y)—loga(n(g~'y)) ,—(p+iv) loga(g‘ly)a(m(gfly))—l (1.2)
o(n(g~'y)).



86 B. Cahen

For g € G and y € N, we have

gy =n(g 'y)m(g " y)alg  y)n(g~'y)

= k(g™ 'y))a(nlg ™ y))a(nmlg ™ y))m(g y)alg  y)n(gy).
Then we get

Hence we obtain

(Tr(g)¢) (y) = civ(loga(y)—loga(g~'y)) ,—plogalg™'y)) 5 (m(gfly)) -1 (1.3)
o(nlg™"y)).

Now, we compute the derived representation dw. We introduce some addi-
tional notation. If H is a Lie group and X is an element of the Lie algebra
of H then we denote by X the right-invariant vector field generated by X,
that is, X*(h) = % (exp(tX))h|t=o for h € H. We denote by pq, pm and ps
the projection operators of g on a, m and n associated with the decomposition
g=n®dm® adn Moreover, we also denote by p, the projection operator of
g on a associated with the decomposition g = ¢ @ a & n. By differentiating the
multiplication map N x M x A x N — NMAN, we easily get the following
lemma, see [5].

Lemma 1. 1) For each X € g and each y € N, we have

2 afexp(t X))l = po(Ad(y~)X)
% m(exp(tX)y)|i=o = pm(Ad(yil)X)

%mexp(my)h:o = (Ad(y) pa(Ad(y™) X)) " ().

2) For each X € g and each g € G, we have

3 a(exp(X)g)li=o = (pa(Ad(F(9) X)) " (@lg)).

From this lemma, we easily obtain the following proposition.
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Proposition 1. For X € g, ¢ € C*°(N,E) and y € N, we have

(dr(X)6)(y) = iv (a(Ad(i(y) ™) X) ) 6(y)
+p (pa(Ad(y™1) X)) ¢(y) + do (pm(Ad(y™) X)) 6(y)
— do(y) (Ad(y) pa(Ad(y™") X)) " ().

2 Generic representations of the Cartan motion
group

In this section we review some results from [9] and [10]. Recall that we have
the Cartan decomposition g = €@V where V is the orthogonal complement of £
in g with respect to the Killing form 3. We denote by py and p{, the projections
of g on ¢ and V associated with the Cartan decomposition.

We can form the semi-direct product Gy := V x K. The multiplication of
G is given by

(v, k).(v', k') = (v+ Ad(k)V', kK)

for v, v in V and k, ¥’ in K. The Lie algebra g of Gy is the space V x £ endowed
with the Lie bracket

[(wa U)v (w,7 U,)]O = ([Uv w/] - [Ulv w]a [U’ U,])

for w, w' in V and U, U’ in &.

Recall that § is positive definite on V' and negative definite on ¢ [18], p. 184.
Then, by using 3, we can identify V* to V and £* to €, hence gj ~ V* x £ to
V' x £. Under this identification, the coadjoint action of G on g ~ V' x £ is then
given by

(v,k) - (w,U) = (Ad(k)w, Ad(k)U + [v, Ad(k)w])

for v, win V, kin K and U in ¢, see [25].

The coadjoint orbits of the semi-direct product of a Lie group by a vector
space were described by Rawnsley in [25]. For each (w,U) € g ~ go, we denote
by O(w,U) the orbit of (w,U) under the coadjoint action of Gy. In [9], we
proved the following lemma.

Lemma 2. 1) Let O be a coadjoint orbit for the coadjoint action of Gy on
95 =~ go. Then there exists an element of O of the form (§1,U) with & € a.
Moreover, if & is reqular then there exists o € m such that (&1,&2) € O.

2) Let &1 be a regular element of a. Then M is the stabilizer of & in K.
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In the rest of this note, we consider the orbit O(&,&2) of (£1,&2) € a x m C
g5 ~ go under the coadjoint action of Gy. As in Section 1, we assume that &; is
a regular element of a and that the adjoint orbit o(&2) of & in m is associated
with a unitary irreducible representation o of M which is realized on a (finite-
dimensional) Hilbert space E. Then O(&1,&2) is associated with the unitarily
induced representation

o = IndgoxM (ei” ® cr)
where v = (&1, ) € a* (see [22] and [25]). By a result of Mackey, 7y is irreducible
since o is irreducible [29]. We say that the orbit O(&1,&2) is generic and that
the associated representation 7 is generic.

Let Oy (&1) be the orbit of &; in V under the action of K. We denote by p the
K-invariant measure on Oy (&) ~ K/M. We denote by 7o the usual realization
of 7y on the space of square-integrable sections of a Hermitian vector bundle
over Oy (&1) [22], [28], [25]. Let us briefly describe the construction of 7. We
introduce the Hilbert Go-bundle L := Gy X ivg, E over Oy (&) ~ K/M. Recall
that an element of L is an equivalence class

[g,u] = {(g.(v,m),e_i"(”)o(m)_lu) lveV,me M}

where g € Go, u € E and that Gy acts on L by left translations: g [¢’,u] :=
[9¢', u]. The action of Gy on Oy (&) ~ K/M being given by (v, k). = Ad(k)¢,
the projection map [(v,k),u] — Ad(k)&; is Go-equivariant. The Gy-invariant
Hermitian structure on L is given by

(lg,ul, [g,u]) = (u,u)p

where g € Gg and u, v’ € E. Let Hg be the space of sections s of L which are
square-integrable with respect to the measure pu, that is,

sl = [ (50, s(€) du(©) < o
Oy (&1)
Then 7y is the action of Gy on Hy defined by

(Fo(g) s)(€) = gs(g™".€).

Now we introduce a non-compact realization of 7g. We consider the map
71y — Ad(k(y))€1 which is a diffeomorphism from N onto a dense open subset
of Oy (&) [30], Lemma 7.6.8. We denote by k -y the action of k € K ony € N
defined by 7(k -y) = Ad(k)7(y) or, equivalently, by k -y = n(ky). Then the

K-invariant measure on N is given by (771)*(u) = e_Q’i(log @) dy [30], Lemma
7.6.8. We associate with each s € Hg the function ¢ : N — E defined by

s(r(y) = [(0,k(y)) , e’1o52 W) g ()]
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We can easily verify that J : s — ¢ is a unitary operator from Hg to L?(N, E)
and we set mo(v, k) := J7g(v,k)J ! for (v, k) € Go. Then we obtain

(mo(v. k)p)(y) = e~PUose(THBAGWIE 5 (1m(k1y)) ™ 6 (n(k~y)
(2.1)
see [10].
The computation of dmg is similar to that of dm. By using Lemma 1, we
obtain the following proposition.

Proposition 2. For (v,U) € go, ¢ € C°(N,E) andy € N, we have

(do(v,U)6) (y) = iB (Ad(k())é1,v ) 6(y)
+p (pa(Ad(y1)U)) $(y) + do (pm(Ad(y~HU)) ¢(y)
— do(y) (Ad(y) pa(Ad(y ) U)) " (y).

3 Contraction of group representations
Let us consider the family of maps ¢, : Gy — G defined by
cr(v, k) = exp(rv) k
for v € V, k € K and indexed by r €]0, 1]. One can easily show that

lim ¢, l(cr(g) (d) =99

r—0
for each g, ¢’ in Go. Then the family (¢;,) is a group contraction of G to Gy in
the sense of [24].

Let (£1,£2) € go as in Section 2. Recall that m is a unitary irreducible
representation of G associated with (£;,&2). For each r €]0,1], we set & :=
(1/r)&1 + &2 and we denote by 7, the principal series representation of G corre-
sponding to O(&;).

We have to take into account some technicalities due to the fact that the
projection maps a, m and 7 are not defined on G but just on NMAN. We begin
by the following lemma.

Lemma 3. For each k € K, the set U, :== {y € N | k™ly € NMANY} is
an open subset of N whose complement in N has measure zero.

Proof. For each k € K, we set Vj := NMAN NkNMAN. Note that G\ V}, =
(G\NMAN)U(G\ kNMAN) has Haar measure zero. On the other hand, we
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have Vi = UyM AN hence G\ Vy = (G\ NMAN) U (N \ Uy)MAN. Thus we
see that (N \ Uy)M AN also has Haar measure zero. Since the restriction of the
Haar measure dg on G to NMAN is e2?1°29) dy da dm dn where dy, da, dm and
dn are Haar measures on N, A, M and N [30], p. 179, we conclude that N \ Uy
has measure zero.

We denote by Co(N, E) the space of compactly supported continuous func-
tions ¢ : N — E and by C§°(N, E) the space of compactly supported smooth
functions ¢ : N — E. We have the following proposition.

Proposition 3. For each (v,k) € Go, ¢ € Co(N,E) and y € Uy, we have
}}_I}(l) WT(CT(Ua k))(b (y) = 7I'0(U, k) ¢(y>

Proof. By using the expressions for 7, and my given in Section 1 and Section 2,
we have just to verify that

lim (61, oga(y) ~ log (k™" exp(~rv)y)) = A(A(E()E1,v).

But we have

a(k™" exp(—rv)y) = a(exp(—rv)y) = a(exp(—rv)k(y)a(y)i(y))
= a(exp(—r Ad(k(y)~"v))a(y).

Then we get
a(y)a(k ™" exp(—rv)y) ™" = dexp(—r Ad(k(y) "))~

Thus, by using Lemma 1, we have

diilog a(y)a(k " exp(—rv)y) " |mo = pa(Ad(k(y) L)v).

Hence the result follows. QED

In order to establish the L2-convergence, we need the following lemma.

Lemma 4. Let U be an open subset of N such that N\ U has measure zero.
Then, for each ¢ € Co(N,E) and each ¢ > 0, there exists 1 € Co(N, E) such
that supp ) C U and || — ¢|| < e.
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Proof. Let | - | denote the Euclidean norm on # (see Section 1). We endow N
with the distance d defined by d(y,y’) = |logy —logy'|. Let ¢ € Co(N, E) and
g > 0. Let C be a compact subset of N such that C C U Nsupp ¢ and

/ dy < (1+4sup [[6(y)[3) "' e

(Unsupp ¢)\C yeN

In particular, we have § := d(C, N\U) > 0. Let V:={y € N : d(y,C) < §/2}.
Then V is an open set such that C C V C V C U. Consider now the function
Y : N — E defined by

d(y, N\V)

VW) = 500 + dly, N\ V)

?(y)-

Note that v is well-defined since the intersection of C with the adherence of
N\ V in N is empty. Moreover, we have the following properties

(1) suppy C V C U and supp ) C supp ¢;
(2) supyen [V(W)le < supyen 16(y) [l 5;

(3) ¥(y) = ¢(y) for each y € C.

This implies that

t/uw@wﬂﬂwﬁwy:/ ) — S@)I% dy
N

UNsupp¢

=/ W) — o()|3 dy

(Unsuppg)\C

ﬂwmww@/ dy
yeN (Unsuppp)\C

<e.

QED

Proposition 4. 1) Let ¢, ¢ in L?>(N, E) and (v, k) € Go. Then we have
lim (7 (cr (v, k)6, ) = (w0 (v, k), ).

2) Let ¢ € L*(N, E) and (v,k) € Go. Then we have

li 0 |7 (er (v, k)@ — mo(v, k)| = 0.

T—
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Proof. 1) We can assume without loss of generality that ¢, 1 € Co(N, E). More-
over, by Lemma 4, we can also assume that supp ¢ C Ui. We have

(e (e (0, K)) ) = / (o (e (0, 1)) $(), (5)) i dy.

supp ¢

By Proposition 3, for each y € supp ¢, the integrand

1 (y) = (m(cr (v, k) o(v), ¥ (y)) E

converges to (mo(v, k)é(y),¥(y))r when r — 0. In order to obtain the desired
result, it suffices to verify that the dominated convergence theorem can be ap-
plied. This can be done as follows.

First we claim that there exists ro > 0 such that for each r € [0, 7] and each
y € supp), we have k=t exp(—rv)y € NMAN. Indeed, if this is not the case,
then there exists a sequence 7, > 0 converging to 0 and a sequence y,, € supp ¥
such that k= exp(—7,v)y, € G\ NMAN for each n. Since supp is compact,
we can also assume that 1, converges to an element y € supp . Then we get
k~ly € G\ NMAN. This a contradiction.

Since the projection maps a and 7 are continuous on NM AN, there exists
¢ > 0 such that, for each » < ry and each y € supp v, we have

e—PUlog a(k™  exp(—rv)y)) .

Then, by taking into account the expression for m,(c. (v, k)), we get

1Ir(y)] < ¢ sup lo()e-llv@)le

for each r < rp and each y € supp ), hence the result.
2) Since 7 and 7 are unitary, for each ¢ € L?(N, E) we have

17 (er (v, k) — mo (v, K)SII* = 2[[6]1* — 2 Re {mr(cr (v, k)) b, mo(v, k) b)
which converges to 2||¢||> —2 Re (mo(v, k), mo (v, k)¢) when 7 — 0 by 1). QED

Remarks (1) In fact, 2) of Proposition 4 asserts that mo is a contraction of
() in the sense of [24] (see also [8]).

(2) By using the Bruhat decomposition G = J,,cjy MANwMAN where W
is the Weyl group, it is easy to see that (. KNMAN = () then the set of all
elements y € N such that k~'y € NMAN for each k € K is also empty. Hence,
it seems to be difficult to get uniform convergence on the compact sets of G in
Proposition 4 as in Theorem 1 of [16].
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4 Contraction of derived representations

In this section, we give similar contraction results for the derived represen-
tations.

For each r €]0,1], we denote by C, the differential of ¢,. Then the family
(C,) is a contraction of Lie algebras from g onto go, that is,

lim G, ([Cr(X), Cr(Y)]) = [X, Y]o

for each X, Y € go. We also denote by C; : g* ~ g — g; ~ go the dual map of
C,. Then we note that lim,_,o C* (&) = (&1, £2)-

Proposition 5. 1) For each (v,U) € go, ¢ € C°(N,E) and y € N, we
have
lim dm (G (v, U))é (y) = dmo(v, U) ¢(y)-
2) For each (v,U) € gy and ¢, ¢ € C°(N, E), we have
tim (dr, (G (v, U)), ) = (dmolv,U)6, ).
3) For each (v,U) € gy and ¢ € C°(N, E),we have
li_r>r(1) ||dm, (Cr(v,U))¢p — dmg(v, U)ol = 0.
Proof. We immediately deduce 1) from Proposition 1 and Proposition 2. Note
that another proof of 1) by the Berezin-Weyl calculus can be found in [10].
Moreover, by using Proposition 1 and Proposition 2 again, we see that if ¢ €
C$°(N, E) then dm,.(Cy(v,U))¢, dmo(v,U)p € C§°(N,E) C L*(N,E). Hence

the expressions (dm,(Cr(v,U))¢, 1) and (dmo(v, U)¢, 1) make sense for ¢, 1 in
C§°(N, E) and we easily obtain 2). Finally, to prove 3), we write

ldry (Cr(v,U))¢p — dmo(v, U)g||* = [|dm (Cr (v, U)) |1 + |ldmo(v, U)g||*
—2Re(dm, (Cr(v,U))¢, dmo(v,U)).

By 2), we see that

lim (dm, (Cr(v,U))¢, dmo(v, U)p) = (dmo(v, U), dmo(v,U)e).

r—0

By the same arguments, we verify that
lim |dr, (Cr (v, U))|* = [|dmo (v, U)o

Then the result follows. QED
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