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Abstract. Analytic continuation of the Cy-semigroup {e~**} on LP(R") generated by the
second order elliptic operator — A is investigated, where A is formally defined by the differential
expression Au = —div(aVu)+ (F-V)u+ Vu and the lower order coefficients have singularities
at infinity or at the origin.
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1 Introduction
In this paper we deal with general second order elliptic operators of the form
(Au)(z) := —div(a(z)Vu(z)) + (F(z) - V)u(z) + V(z)u(z), zeRY,

where N € N, a € C'nWLo(RYN; RV*N) F ¢ C1(Q; RY) and V € L. (Q; R)

loc

and the choice of @ = RY or Q@ = RY \ {0} depends on the location of the
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singularities of F' and V. Under the assumption on the triplet (a, F, V') specified
below we discuss the maximal sector of analyticity for the semigroup {7,(¢)} on
LP = LP(RY) (1 < p < 00) generated by —A with a suitable domain. Because
the domain of A changes with the choice of €2, we describe it when we state the
respective result.

The purpose of this paper is to improve the known sector of analyticity
for {T,(t)}. In Metafune-Pallara-Priiss-Schnaubelt [10] and Metafune-Priiss-
Rhandi-Schnaubelt [11], it is proved that {T,(¢)} is analytic and contractive
in 3(n,), where

X(n) =={z € C\ {0} ; [argz| <n},

_m 1 [(p—2)? 3
g T 1\/4<p—1> a1 /p)

for some 3 > 0 (see (2.1) below) and 6 < p (satisfying 8V > divF'); note that
7p is smaller than

Wy = = — tan_l<u>
P9 2¢/p—1
which is the angle of contractivity for Cp-semigroups generated by Schrodinger
operators (see, e.g., Okazawa [12]). Using Gaussian estimates, one can construct
a non-contractive holomorphic extension of {T},(¢)} to X(n) with n > n,, where
n is independent of p. However, an application of results in Ouhabaz [13, 14]
would give 77 = 72. We instead prove ) = 7 for a certain p and show that p can
be different from 2, see Remark 3 below.

2 Description of our assumption
Let Apmax and A, be the operators respectively defined as follows:

Ap maxtt = Au, D(Apmax) := {u € P AW2P(Q); Au € LP},
Apu = Au, D(A,) :=W*PRN)nD(F-V)nD(V),
where D(F - V) := {u € LP N W,2P(RN); (F - V)u € LP} and D(V) == {u €
LP;Vu € LP}.

Now we present the basic assumption on the triplet (a, F, V') defining A; max
and A,. As in Introduction § stands for RY or RV \ {0}.

(H1) ta = a € C' N WH(RN, RV*N) and a is uniformly elliptic on RY, that

is, there exists a constant v > 0 such that

(a(@)€, &) > v[¢)?, zeRY, ceCV,
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where (-, -) is the usual Hermitian product;

(H2) F € CL(Q;RY), V € L (% R) and there exist three constants 8 > 0, 71,
Yoo > 0 and a nonnegative auxiliary function U € L% (2) such that

[(F(z),6)] <BU(2) (a(x)€,€)7 aazeQ eeCV,  (21)
V(z) —divF(z) >mU(x) a.a.z €, (2.2)
V(z) >vU(z) aa. .z e (2.3)

(H3) the auxiliary function U > 0 in (H2) belongs to C*(Q;R) and there exist
constants cg > ko := max{y1,Yeo} > 0 and ¢; > 0 such that

V(z) <cU(z)+c1 aa.zel (2.4)

and U satisfies an oscillation condition with respect to the diffusion a, that
is,

)\0 = lim
c— 00

et (U@) + o2

This yields a working form of the oscillation condition: for every A > Ay there
exists a constant C > 0 such that

< <a(m)VU(a:),VU(SU)>1/2> . (2.5)

(a(x)VU (z), VU ()2 < MU (z) + C)*?, zeq. (2.6)

In particular, if Q = RV \ {0} then U(z) is assumed to tend to infinity as z — 0.
Example 1 (Maeda-Okazawa [9]). Put aj, = 0;,. Then it is possible to
compute Ao for U(z) := |z|* when a ¢ (—2,1].

(i) Let U(z) := |2|® (a > 1). Then U € C*(RY) and g = 0. In fact, we have

(@) VU(), VU@ ale™

(U(x) +C)3/2 o (|| +c)3/2 = — 0 (¢ — 00).

(ii) Let U(z) := |z|™® (B > 2). Then U € CY(RM \ {0}) and )y = 0. The
computation is similar as above. In particular, if § = 2, then A\g = 2.
Remark 1. Let A > )\g and C) > 0 as in (2.6) and put

U(z):=U(z)+C\ >0 on Q.

Then U plays the role of a positive auxiliary function for the new (formal)
operator
A=A+ kyC)
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with modified potential

V(z) =V (z)+ koCy>0 on Q,

where ko is as in condition (H3). In fact, the new triplet (a, F, V) satisfies the
original inequalities (2.1)—(2.4) with the pair (U, V) replaced with (U, V):

ol

(F(2),6)] < BU(x) + O3 (al2)¢,€) 32, (
[V(x) + koCy] — divF (z) >y (U(x) + Cy), (
V(@) + koCh > Yoo (U(x) + C), (
Vi(z) + koCy <co(U(z) + Cy) + 1. (

Note further that (2.6) is also written in terms of U:
(a(z)VU (), VU (2))/? < XU (2)*? on Q. (2.6")
In particular, (2.1") and (2.6") yield that

((F-V)U(x)| < BAU(x)? on Q. (2.7)

3 The operators with singularities at infinity

In this section we consider the case where = RV,

Theorem 1. Assume that conditions (H1) and (H2) are satisfied with Q =
RYN. Then one has the following assertions:

(i) Let 1 < ¢ < 00. Then Aymax s m-sectorial in L9, that is, {e™*Aamax} s an
analytic contraction semigroup on L9 on the closed sector X(m/2 —tan™! Cq.B)s

where
(C] - 2)2 /82 71 Yoo -
= —_— —_— i 1

and q' is the Holder conjugate of q. Moreover, CgO(RN) is a core for Agmax-

(ii) Let p € (1,00) be arbitrarily fived. Then the semigroup {e~*4rmax} in asser-
tion (1) admits an analytic continuation to the open sector X(m/2—tan™! Kg.,),
where
Kg~:= min c . 3.2
By 1<g<o0 9,07 (3-2)
Moreover, there exists a constant wy > 0 such that {e=*“otArma)Y forms q
bounded analytic semigroup on LP :

o= Armes| 1y < Moc®0Be* on S(r/2 — tant Ky o). (33)
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Here the constant wo depends only on N, |kl Loy and [|Vaji | foo@mny, while
the constant M. > 1 depends only on e, N, v, B, 71, Yoo and HaijLoo(RN).

(iii) Assume further that (H3) is satisfied with Q = RN . If

B )‘0 71 Yoo
(B0} <y T 4
-2+ 5] <24 2, (34)

then Ap max has the so-called separation property:
[div(aVu)|ze + [[(F - V)ulle + [[Vulzr < C[[(1 + Apmax)ull e (3.5)

for all w € D(Apmax) which implies the coincidence Apmax = Ap and hence
{e=#4%} is analytic in X(m/2 — tan™! K ,).
Here three remarks are in order.

Remark 2. Assertion (i) is a particular case of [15, Theorem 1.3]; note that
the sector of analyticity and contraction property for {e_ZAP’max} is reduced to
the positive real axis (that is, tan™! ¢, 5., — 7/2) as p tends to 1 or to oco.

Remark 3. Assertion (ii) states that {e~*4rmax} admits an analytic con-
tinuation without contraction property (in general) to a p-independent sector
¥(m/2 —tan~! Kg ) bigger than X(r/2—tan"' ¢, 5.). Moreover, in general the
constant cy g, does not attain minj«g<oo ¢q,8,4 (= Kp,). In fact, we see by a
simple calculation that

Aegsn)? _ ala—2) | B*(n —7s) (’Yl n %°> -

dg  4(g—1)? * 4q? g q

Therefore if 1 # v, then we have

Aegsn)?|  _ B2 —1e0)
g le=2 4(y1 +70)?

This implies that in the case where v; # v, the sector derived by LP-theory
can be bigger than the one derived by L2-theory. Consequently, we have €28y >
Kj3,. An example with v, # 7 is also given later (see Example 3 below in
Section 4).

Remark 4. It is shown in [10] that A, is m-sectorial of type S(tanw) in
LP, where

£0.

1 lp—2]

2vp—1’
if p satisfies (3.4). Their proof is based on a perturbation technique with the
separation property (3.5) under a setting similar to assertion (iii). Theorem 1
makes it clear that (3.5) is necessary only for the domain characterization of

A,.

o -1 _ -
w = tan CpBry > Wp = tan
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First we describe the key lemma as Lemma 1 which plays an essential role in
proving the existence of analytic continuation for {e~?4rmax} Lemma 1 trans-
plants a bounded analytic semigroup on LP° onto L? without changing the sector
(or angle) of analyticity. Note that Lemma 1 was first proved in Ouhabaz [13]
(for A max associated with symmetric forms), and then in Arendt-ter Elst [2]
and Hieber [8].

Lemma 1. For some py € (1,00) let {T},(t); t > 0} be a Cy-semigroup on
Lpo,

(i) (Gaussian Estimate) Assume that {Tp,(t)} admits a Gaussian estimate with
integral kernel {ki}. For every p € (1,00) define the family {T,(t);t > 0} as
T,(0)f := f and

(T,() f)(z) == /]RN ki(z,y)f(y)dy aa. zeRY, felLP, t>0.

Then the new family {T,(t)} forms a Cy-semigroup on LP.

(ii) (Analyticity) Assume further that {e=“°*T,,(2)} is a bounded analytic semi-
group on LPO in the sector (o) such that for every e > 0 there exists a constant
M. > 1 satisfying

| Tpo (2)]|ro < M.ewoRez vy o ¢ S(1pg — €). (3.6)

Then {T,(t)} has almost the same property as {Tp,(t)}; namely, {e=“VT,(t)}
can be extended to a bounded analytic semigroup {e~*°*T},(z)} in the sector
Y (1bo) such that for every e > 0 there exists M. > 1 satisfying

ITp(2)l|ze < Mee0Re* ¥ 2 € B(th — )

(which is nothing but (3.6) with po and M replaced with p and M., respectively),
where the constant M. depends only on €, N, pg, Yo, Mc, C and b.

Next we note that the (analytic contraction) semigroup {e *42max} admits
a Gaussian estimate. The proof of the following lemma is given in [3, Theorem
4.2].

Lemma 2. Assume that (H1), (H2) and (H3) are satisfied with Q = RN,
Then {e~*42max} admits a Gaussian estimate with nonnegative kernel {k;}
satisfying

lz —y|?

0 < ki(z,y) < CtN/2 exp (wot i

) a.a. (z,y) € RN x RY,

where the constant wy depends only on N, ||aji||r~ and ||Vaji| Lo, while C, b
depend only on N, v, B, 11, Yoo and [Jaze oo
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Next we state a modification of [10, Lemma 2.3]; note that the constant fac-
tors in the inequalities are figured out. It is worth noticing that under conditions
(i) and (ii)

Apmin = A,  D(Apmin) := C°(RY),

is accretive in LP (see, e.g., [10, Proposition 2.2] or [15, Theorem 1.1]).

Lemma 3. Assume that (H1), (H2) and (H3) are satisfied with Q = RV,
Put

ky(A) = (% + %’j’) —(p— 1)>\<§ + 2) x> o,

and let Cy be a constant in (2.6). If ky(\) > 0, then for every & > koCy (=
Cymax{1,Y0}) and u € C(RY) one has

1

(U + Cullee < = 1€+ A)ull e, (3.7)
kp(A)
[(F-V)ulze + [|[(V + koCx)ul| v
co +5él/(25) 1
<2(1+ o) e o) €+ Aulor, (3.8)

where él/(gﬂ) > 0 depends only on N, p, v and ||ajk||lw1.. Moreover, let & >
1+ koCy. Then there exists C > 0 such that for every u € C§°(RY),

co + B Chy ) 2c
kp(X) & — koCly

Jullwesgeny < C(5+2 N+ Aylln,  (39)

where C' > 0 depends only on N, p, v and ||a;|ly1..

Proof. Define Au = (A + koCy)u for u € CF(RN) and set 1 := & — koCy > 0.
Then (n+ A)u = (£ + A)u so that (3.7) and (3.8) are respectively equivalent to

1Tulle < kp(\) M1+ A)ul| s, (3.10)
I(F - V)ullze + |Vl o
<2(1+ kp(\)eo + BChyp)] + 1 er) (0 + A)ul| o, (3.11)

where U=U+Cy>0and V=V +kyC\ >0 (see Remark 1).
First we prove (3.10). We use the key identity in [15, Section 1]: for every
u € C&(RN), v e Wlf)’cl(RN) and 1 <r < oo,

/R (Awpde = /R ) {mw, Vo) + (v - diZF )uv} do

+ / F <W,“ - “W> dz. (3.12)
RN T T
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Then it follows from (3.12) with r := p and v := UP~'u|u[?~2 € W (RY) that
Re/ (Au)UPYa|ulP~2 dx
RN

DI+ 1) + /R 0P ufP~*{a Im (@Vu), Im (V) do

_divF
[ (7= TRty de =P [ G ap(p V)T de, (313)
RN p
where we have set
I o= / 071 u/P~*(a Re (WVu), Re (aVw)) dz,
]RN
L= / OP=|ulP~2(a Re(@Vu), VD) da.
]RN

Here Young’s inequality and (2.6") apply to give

N L 1/2
|| >1, - 1, (/ UP=3(a VU, VU)|ulP daz)
RN
1

> —/ UP=3(aVU,VU)|ulP dx
4 RN

A2
2 - ZHUUHIEP

Now let > 0. Then by virtue of (2.2), (2.3), (2.6') and (2.7) we can rewrite
(3.13) as

Re / (nu 4+ Auw)UP ™ a|uP~2 dx
RN

divF
2/ (u V)(Jp 1]u\pdx
RN p p

-1 - - - - A2 .
_r-1g / G202 (a0, VO 2 ul? de — (p— 1) [Tl
p RN 4

( + 74.7) / C~7C~7P71|u]p dx
b p RN
1 . . A2
SPoSn [ Or R da - (o - 1) Ol
p RN 4
Therefore we obtain

Re/ (- Aw) 0P fupp 2 e > (2 +L’°—p Lon— —)\2>||U I,
RN p p’
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Thus (3.10) is a consequence of Holder’s inequality.
Next we prove (3.11). It follows from (2.1") and (2.4’) that

I(F-)ull o+ Vaull o < BIITY2(@Vu, Vuy' || o +col|Tul o+er [[ull o (3.14)

Applying [10, Proposition 3.3] to our diffusion a and auxiliary function U >
Cy > 0, we see that for every € > 0 there exists a constant C; > 0 depending
only on N, p, v and ||a;||y1. such that

BTV (aVu, Vu)' /2|, < Be||div(aVu)|| e + 8 Ce||Uul 1o
Plugging this inequality with e = (28)~! into (3.14), we have that
I(F - V)ullze + [IVul e
< I+ Ayl + 3 (1F - Dl + 1Vullss)
+ (co+ BCypa)0ulli + (3 + 1) lullr, n=0.  (3.15)
Here it is worth noticing that since Apmin is accretive in LP, Ap i is also

accretive in LP: .
nllullce < l(n+ Aulle (0> 0). (3.16)

Therefore, (3.11) follows from (3.15) as a consequence of (3.10) and (3.16):

I(F - V)ullze + [Vl £
<|l(n+ A)ullzr + 2(co + 28 Cry@p)|UullLr + (1 + 2¢1)[u] e
co+ C~'1/(25) c1

<2 (14 P =
( kpo\) n

Finally, we prove (3.9). Condition (H1) and [6, Theorem 9.11] yield the
well-known elliptic estimate: for every u € C§°(RY),

Y+ Allzs, 720,

[ullwzr@yy < C(div(aVu)|ze + [|ull ),

where C' depends only on N, p, v and ||a;x||y1.0. Now let n > 1. Then we can
derive from (3.8) and (3.16) that

lullwer @y < CUI0 + Ayullze + 20]ullze) + CUE - V)ullze + [Vl o)

co+ B Chyp)

§C<5+2 00

2c ~
+ 5o+ Al w21

Thus we obtain (3.9). This completes the proof of Lemma 3. QED
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Proof of Theorem 1. (i) Let ¢, 3, be the constant defined by (3.1). Then by [15,
Theorem 1.3] we can conclude that for every g € (1,00), Agmax is m-sectorial
of type S(cq3,y) in L4, that is, —Ag max generates an analytic contraction semi-
group {e*Aamax} on L4 on the closed sector ¥(m/2 — tan~! ¢, 5.). Moreover,
we see from [15, Theorem 1.2] that C§°(RY) is a core for Aj max. In fact, by con-
dition (H1) it suffices to show that there exist a nonnegative auxiliary function
W, € L (RN) and a constant 3 > 0 such that

loc
(F(z),€)] < BU,(2)*(a(x)€,6)Y? aa zeRY eeCV, (3.17)
V- di;/F > ¥, ae onRY, (3.18)

Now set )
U, () = (% + Z]L;’)U(x), = 3(% + 7(1%0)_5.

Then we see from conditions (2.1)-(2.3) with © = RY that (3.17) and (3.18)
are satisfied:

(F(x),6)] <BU()/*(a(x)¢, €)'
< BUy(x)(a(2)6, €)'/,
W, (z) < V(z) — divF(z) n V(fc)
B CfiivF(a:)

=V(z) Ty

and hence we can apply [15, Theorem 1.3] to the triplet (a, F,V'). The constant
in (3.17) is reflected to that in (3.1). This completes the proof of assertion (i).

(ii) We want to construct a g-independent analytic continuation for {e~*4amax},
By virtue of Lemma2 we can apply Lemma 1 (i) with pg = 2 to {e~#42max},
Namely, the new family {7}(t); ¢ > 0} of bounded linear operators on L? defined
as

TON@ = [l i@y, e L@, >0

with the kernel of e~ *42max forms a Cy-semigroup on L? for every 1 < g < oo.
Denote by B, the generator of {T,(t)} on L4. Noting that C§°(RY) is a core for
Ag max, we deduce that —B; = A; max and hence we obtain

T,(t) = e tamax ¢ >0,

This implies by Theorem 1 (i) that {T,(z)} = {e~*4¢max} is an analytic contrac-
tion semigroup on L9 on the closed sector X(m/2 — tan™! ¢, g, ).
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Next let go € (1,00) be as defined by

c = min c = Kg,.
QO»B;’Y 1<q<oo q,ﬁﬁ 5’7

Then we see that {T,(t)} satisfies the assumption of Lemma 1 (ii) with

(po,¥o) == (qo, m/2 — tan™' Kjg.,).

Therefore for every p € (1,00), {T,(t)} on LP admits an analytic continuation
to the sector X(m/2 — tan™! Kg ) such that

1T (2)||lLr < MeeoRe% 2 € 5(1/2 —tan™ ' Kp, — ), (3.19)

where the constant M. depends only on e, N, v, 3, 71, Vo0 and ||a;i||zoc. Con-
sequently, the identity theorem for vector-valued analytic functions (see, e.g.,
[1, Theorem A.2]) implies that {T,,(z)} is nothing but the analytic extension of
{e=#Apmax} to the sector X(m/2—tan~! Kjz.) and hence using (3.19), we obtain
(3.3). This completes the proof of assertion (ii).

(iii) It suffices to show that Apmax = A, if (H3) and (3.4) are satisfied with
Q = RY. By definition we see that Ap C Ap max. Conversely, let u € D(Ap max)-
Since CS°(RY) is a core for A, max, there exists a sequence {u,} in C§°(RY)
such that

Up = u, Aup = Apmaxu  in LP (n — 00).

Applying Lemma 3 with £ = 1 + kqC'y, we see that for every n € N,

[unllw2r@yy + 1(F - V)un| e + [Vl e

co + BC1y2s)

§(0+1)(5+2 -
P

(& + Aallz

Letting n — oo, we see that u € W2P(RM) N D(F - V)N D(V) = D(A,). This
completes the proof of A, = A; nax- QED

Example 2. We consider a typical one-dimensional Ornstein-Uhlenbeck op-
erator

(A,0)(z) == —v"(z) + 2v'(x)

in L}, (the LP-space with respect to the invariant measure e~/ 2dx). Chill-
Fasangovd-Metafune-Pallara [4] show that the Cp-semigroup on L, generated
by —A, is analytic in the sector ¥(w,) and that the angle @, = 7/2 — w), of
analyticity is optimal.
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Here, applying Theorem 1 (ii), we give another derivation of their angle wy,.
Using the isometry u — e‘x2/2pu, we can transform A, into A:

d*u 2\ du p—1 5 1
in the usual space LP(R"Y). Thus we obtain
1

= T) = —233 x':p_1:v2—f
alz) =1, F(z): (1 p), Vi) =" ;

in our notation. Setting U(z) := 22, the triplet (a, F,V + 1) satisfies conditions
(H1) and (H2) with respective constants

B=lp=2/p, n=0@-1)/P =7
In fact, (2.1)-(2.3) are computed as

[(F(2), &) =p~'Ip—2|U(2)"/¢] < BU(x) + 1)/,

(V@) +1) — divF () = 2 YWy + L > U@ + ),

S

p—1
P2

Viz)+1= U(x) + — > Yoo (U(x) +1).

=

This leads us to the angle w, introduced in Introduction:

: (¢—2)?%  (-2?2_ [p—2
K = f == - t .
07 T 1 2o \/4(q “) Tapon T agpoT e

This shows that the domain of analyticity in this case is at least X (/2 — wp)
in a form of sector with vertex at the origin. Moreover, U(z) satisfies (2.4) and
(2.5) in (H3) with ¢g = 1 and A9 = 0, respectively. Hence A has a separation
property (3.5).

4 The operators with local singularities

In this section we deal with the case 2 = R\ {0}. In this case C5°(RV\ {0})
is not a core for Ay max in general. In fact, C§°(RY\{0}) is not dense in W2P(RY)
if p > N/2. Therefore Theorem 1 (i) and (ii) may be false if RY is replaced
with R \ {0}. Nevertheless we can show that Theorem 1 (iii) remains true
even if 0 = RV \ {0} because A, = A, max can be approximated by a family of

operators {Ags) ; 0 > 0} with those properties in Theorem 1 (i), (ii) and (iii).
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Theorem 2. Let 1 < p < oo. Assume that conditions (H1), (H2) and
(H3) are satisfied with Q@ = RN \ {0}. Let Kg., be the constant determined by
(3.2). If (3.4) holds, then {e=*47} admits an analytic continuation to the sector
Y(m/2 —tan~! Kg.). In this case Ay has the separation property (3.5).

Before proving Theorem 2, we introduce our approximation for the lower
order coefficients. This is a modified version of Yosida approximation.

Lemma 4. Let § > 0. Under the assumption in Theorem 2 put

T )72,
Fy(e) = {év( )1+ 68U ()72, ;:06 (1)
x x))~! T
Us(x) = {([5]_(1)(“5[]( N~ ;ioé (4.2)
V(x) 110U (z)? 28X6(U(z) + Cy)?

a.a. zeRY, (4.3)

5@ = 1 50@ T Trou@r T A1 ou@))
where A and C are the constants in (2.6). Then
Fs e CYRY; RY), Us e CYRY;RY), V;e L®RY;R) (4.4)
and the triplet (a, F5, V5) and Uy satisfy
Fs— F in L. RV \ {0} RY), V5=V in L. (RN \ {0};R)  (4.5)

and (2.1)-(2.3) with Q = RV:

[(Fs(x), )| < BUs(x)*(a(2)€, &), zeRN, e, (4.6)
Vs(z) — divFs(z) >1Us(x) a.a. zeRY,
Vs(x) > vs0Us () a.a. e RY.

Moreover, for 6 < 1/Cy, one has (2.4) and (2.6) for the triplet (a, F5,Vs) :
Vs(z) <(co+ 71 + 26N Us(x) + c1 + 28MC), (4.9)
(a(z)VUs(x), VUs(2))"? < A(Us(@) + Cr)*/2. (4.10)

Proof. We can verify (4.4) and (4.5) by a simple computation. Now we prove
conditions (H2) and (H3) for the approximated triplet (a, Fy, Vs). Since the
original triplet (a, F, V) satisfies conditions (2.1) and (2.3) with Q = RV \ {0},
we see that (4.6) and (4.8) are satisfied: the case of x = 0 is clear and

(F@), 6] _ BU) (a2, &
(14+46U(x))? — (1+ 6U(x))1/2

V(x) Yoo U ()
Vil#) 2 150 21+ o0~ U@

[(F5(x),€)| = = BUs(x)"*(a(z)€, &)/,
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Furthermore, combining (2.2) and (2.7), we obtain (4.7):
Vs(x) — divFs(x)

V(x) — divF(z) 6U (z)? BAU ()% — |(F - V)U(z)|
Z THeu@)E T MOr0@eE TR U@y
- U(x) SU (z)?
=M A 0@ T A+ U ()2
=71Us(x).

Now we prove (4.9) and (4.10). We see from (2.4) that for every § € (0,1/C,],
0Cy + 5U(:B)) U(x) + Cy
14+6U(x) /(1+0U(x))?
<(co+ 71 + 26N Us(x) + c1 + 2B8AC,,.
It follows from the estimate (2.6) for the original triplet (a, F, V') that
(a(x)VU (z), VU (x))/2
(1+46U(x))?
A U(x) + C\\3/2
< ( )
(140U (z))1/2\ 1+ 6U(x)
<\(Us(z) + Cy)*2.

Vi) < (co +m)Us(x) + e +28A(

(a(x)VUs(x), VUs())? =

This completes the proof of Lemma 4. QED

Proof of Theorem 2. In view of (3.4) we fix A > )¢ satisfying

(p—l))\(ﬁ—i-i) <Dy Joo

For § > 0 let Fj, V5 and Us be as (4.1)—(4.3). Then Lemma 4 implies that the
approximate triplet (a, F5, V5) satisfies (H2) and (H3) with Q = RY and (3.4).
Thus the triplet (a, Fj, Vy) satisfies the assumption in Theorem 1 (iii). Therefore
we can define a family {A:Efs) ; 0 > 0} approximate to A, in L?:

D(AY) = W2 (RN),
Ay = —div(aVu) + (Fs - V)u+ Vsu, ue D(AY).

Let wo be the constant as in Theorem 1 (ii) depending only on N, ||a;i| >~ and

é
IVag||Lee. Then —Al(f) generates a bounded analytic semigroup {e_z(wﬁAé )}
in the open sector X(m/2 — tan~! Kj,), with two norm bounds:

(6) 3
Heszp lop <1, z€X(n/2-— tan~"' Cp,ﬂ,v%
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and for every € > 0 there exists a constant M. > 1 such that

—zA) woRez _ -1 _
le* ||p» < Mee , z€X(r/2—tan" Kz, —¢), (4.11)

where M. depends only on €, N, v, 8, 71, Yoo and ||a;x||zoc. Moreover, Al(f) has

the separation property (3.5): for every u € W2P(RV) (= D(Al(f))),
lullw2p@y + I (Fs - V)ull o + [Usull o < Cllu + AP ull 1, (4.12)

where C is independent of § € (0,1/C,].

Next we prove the m-sectoriality of A,. Let v € D(A,). Then by the defini-
tion of Az(f) we have v € D(A}fs)) and Az(,a)v — Apv (6 1 0) in LP. We see from
the sectoriality of A})&) that A, is also sectorial in LP. It remains to prove the
maximality: R(I 4+ A,) = LP. Let f € LP. We see from the m-accretivity of Az(fs)

that for every ¢ > 0 there exists us € D(Ags)) such that
us — div(aVug) + (F5 - V)us + Vsus = f.
Hence (4.12) yields that for every § € (0,1/C,],
[usllw2p@ny + [[(Fs - V)uslle + [|Usus|le < C f| e (4.13)

It follows from (4.13) that there exist a subsequence {us, }m with dp, [ 0 (m —
o) and a function u € W2P(RY) N D(U) such that
us, —u (m — o00) weakly in W2P(RY),
Us, us, — Uu (m — 00) weakly in LP(RY).
It follows from (2.4) that Vu € LP. The Rellich-Kondrachov theorem implies

that

us,, — U in VVli’f(]RN).

Using Fatou’s lemma, we see that
|(F - D)ully, < liminf (B, - V)us,, 5y < O]
Thus we have u € D(A,). By (4.5) in Lemma 4 we deduce that

(Fs,, - V)ug,, — (F-V)u in L (RY\ {0}),
Vo s, — Vu in L, (RV\ {0})

and hence we obtain u + Ayu = f, that is, R(I + A,) = LP. This completes the
proof of the m-sectoriality of A,.
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Consequently, the Hille-Yosida generation theorem modified by Goldstein [7,
Theorem 1.5.9] implies that —A, generates an analytic contraction semigroup
{e*tAP} on LP. Furthermore, applying Trotter’s convergence theorem (see, e.g.,
[5, Theorem I11.4.8]), we deduce that for every f € LP and t > 0,

()
et f et f in LP,

Finally, by Vitali’s theorem (see, e.g., [1, Theorem A.5]) we see from (4.11) that
{e~*%} admits an analytic continuation to the sector ¥(m/2 — tan™t Kjg, ).
Moreover,

le=**)lr <1, 2 € 3(r/2 —tan" ' ¢pg5),
and for every € > 0,
le™*4 | r < M.eR*, 2 € B(r/2 — tan™ ' K, —¢). (4.14)

Noting that (4.14) implies the continuity at the origin, we finish the proof.

QED

Example 3 (A case where 71 # 7). We consider the following operator

b
v Vu—i—i

Au=—Au+ — .
LSRNt LR FE

that is, (a, F, V') and €2 in our notation are given by

bx c
ajr(x) =0, F(z):= e Vix) = EE Q=RN\ {0};
note that this operator has a singularity at the origin. Taking the auxiliary
function U as U(z) := |z|~2, we can see that the respective constants in (H2)
are given by
B=1b], m=c—b(N—-2), v =c

Thus 71 # Vo if N # 2 and b # 0. We also have A\g = 2 (see Example 1). Hence
if b, ¢ and p satisfy (3.4), that is, if

2 A b(N —2
p—l—i—]b]:(p—l)/\o(ﬂ—i-()) By Do N Z2)
p p 4 pp p
holds, then we can apply Theorem 2 to the operator A and hence the conclusion

of Remark 3 yields that cp 5, > Kg,.
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