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Abstract. Analytic continuation of the C0-semigroup {e−zA} on Lp(RN ) generated by the
second order elliptic operator −A is investigated, where A is formally defined by the differential
expression Au = −div(a∇u)+(F ·∇)u+V u and the lower order coefficients have singularities
at infinity or at the origin.

Keywords: Second order linear elliptic operators in Lp, analytic C0-semigroups, maximal
sectors of analyticity.

MSC 2010 classification: primary 35J15, secondary 47D06

1 Introduction

In this paper we deal with general second order elliptic operators of the form

(Au)(x) := −div(a(x)∇u(x)) + (F (x) · ∇)u(x) + V (x)u(x), x ∈ RN ,

where N ∈ N, a ∈ C1∩W 1,∞(RN ; RN×N ), F ∈ C1(Ω; RN ) and V ∈ L∞
loc(Ω; R)

and the choice of Ω = RN or Ω = RN \ {0} depends on the location of the
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singularities of F and V . Under the assumption on the triplet (a, F, V ) specified
below we discuss the maximal sector of analyticity for the semigroup {Tp(t)} on
Lp = Lp(RN ) (1 < p < ∞) generated by −A with a suitable domain. Because
the domain of A changes with the choice of Ω, we describe it when we state the
respective result.

The purpose of this paper is to improve the known sector of analyticity
for {Tp(t)}. In Metafune-Pallara-Prüss-Schnaubelt [10] and Metafune-Prüss-
Rhandi-Schnaubelt [11], it is proved that {Tp(t)} is analytic and contractive
in Σ(ηp), where

Σ(η) := {z ∈ C \ {0} ; | arg z| < η},

ηp :=
π

2
− tan−1

√

(p− 2)2

4(p− 1)
+

β2

4(1− θ/p)

for some β ≥ 0 (see (2.1) below) and θ < p (satisfying θV ≥ divF ); note that
ηp is smaller than

ωp :=
π

2
− tan−1

( |p− 2|
2
√
p− 1

)

which is the angle of contractivity for C0-semigroups generated by Schrödinger
operators (see, e.g., Okazawa [12]). Using Gaussian estimates, one can construct
a non-contractive holomorphic extension of {Tp(t)} to Σ(η) with η ≥ ηp, where
η is independent of p. However, an application of results in Ouhabaz [13, 14]
would give η = η2. We instead prove η = ηp̄ for a certain p̄ and show that p̄ can
be different from 2, see Remark 3 below.

2 Description of our assumption

Let Ap,max and Ap be the operators respectively defined as follows:

Ap,maxu :=Au, D(Ap,max) := {u ∈ Lp ∩W 2,p
loc (Ω); Au ∈ Lp},

Apu :=Au, D(Ap) := W 2,p(RN ) ∩D(F · ∇) ∩D(V ),

where D(F · ∇) := {u ∈ Lp ∩W 1,p
loc (RN ); (F · ∇)u ∈ Lp} and D(V ) := {u ∈

Lp;V u ∈ Lp}.
Now we present the basic assumption on the triplet (a, F, V ) defining Ap,max

and Ap. As in Introduction Ω stands for RN or RN \ {0}.
(H1) ta = a ∈ C1 ∩W 1,∞(RN ,RN×N ) and a is uniformly elliptic on RN , that
is, there exists a constant ν > 0 such that

〈a(x)ξ, ξ〉 ≥ ν|ξ|2, x ∈ RN , ξ ∈ CN ,
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where 〈·, ·〉 is the usual Hermitian product;

(H2) F ∈ C1(Ω;RN ), V ∈ L∞
loc(Ω;R) and there exist three constants β ≥ 0, γ1,

γ∞ > 0 and a nonnegative auxiliary function U ∈ L∞
loc(Ω) such that

|〈F (x), ξ〉| ≤βU(x)
1
2 〈a(x)ξ, ξ〉 12 a.a. x ∈ Ω, ξ ∈ CN , (2.1)

V (x)− divF (x) ≥ γ1U(x) a.a. x ∈ Ω, (2.2)

V (x) ≥ γ∞U(x) a.a. x ∈ Ω; (2.3)

(H3) the auxiliary function U ≥ 0 in (H2) belongs to C1(Ω;R) and there exist
constants c0 ≥ k0 := max{γ1, γ∞} > 0 and c1 ≥ 0 such that

V (x) ≤ c0U(x) + c1 a.a. x ∈ Ω (2.4)

and U satisfies an oscillation condition with respect to the diffusion a, that
is,

λ0 := lim
c→∞

(

sup
x∈Ω

〈a(x)∇U(x),∇U(x)〉1/2
(U(x) + c)3/2

)

<∞. (2.5)

This yields a working form of the oscillation condition: for every λ > λ0 there
exists a constant Cλ > 0 such that

〈a(x)∇U(x),∇U(x)〉1/2 ≤ λ(U(x) + Cλ)3/2, x ∈ Ω. (2.6)

In particular, if Ω = RN \{0} then U(x) is assumed to tend to infinity as x→ 0.

Example 1 (Maeda-Okazawa [9]). Put ajk = δjk. Then it is possible to
compute λ0 for U(x) := |x|α when α /∈ (−2, 1].

(i) Let U(x) := |x|α (α > 1). Then U ∈ C1(RN ) and λ0 = 0. In fact, we have

〈a(x)∇U(x),∇U(x)〉1/2
(U(x) + c)3/2

=
α|x|α−1

(|x|α + c)3/2
≤ αc−1/2−1/α → 0 (c→∞).

(ii) Let U(x) := |x|−β (β > 2). Then U ∈ C1(RN \ {0}) and λ0 = 0. The
computation is similar as above. In particular, if β = 2, then λ0 = 2.

Remark 1. Let λ > λ0 and Cλ > 0 as in (2.6) and put

Ũ(x) := U(x) + Cλ > 0 on Ω.

Then Ũ plays the role of a positive auxiliary function for the new (formal)
operator

Ã := A+ k0Cλ
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with modified potential

Ṽ (x) := V (x) + k0Cλ > 0 on Ω,

where k0 is as in condition (H3). In fact, the new triplet (a, F, Ṽ ) satisfies the
original inequalities (2.1)–(2.4) with the pair (U, V ) replaced with (Ũ , Ṽ ):

|〈F (x), ξ〉| ≤β(U(x) + Cλ)
1
2 〈a(x)ξ, ξ〉 12 , (2.1′)

[V (x) + k0Cλ]− divF (x) ≥ γ1(U(x) + Cλ), (2.2′)

V (x) + k0Cλ ≥ γ∞(U(x) + Cλ), (2.3′)

V (x) + k0Cλ ≤ c0(U(x) + Cλ) + c1. (2.4′)

Note further that (2.6) is also written in terms of Ũ :

〈a(x)∇Ũ(x),∇Ũ(x)〉1/2 ≤ λ Ũ(x)3/2 on Ω. (2.6′)

In particular, (2.1′) and (2.6′) yield that

|(F · ∇)Ũ(x)| ≤ βλŨ(x)2 on Ω. (2.7)

3 The operators with singularities at infinity

In this section we consider the case where Ω = RN .

Theorem 1. Assume that conditions (H1) and (H2) are satisfied with Ω =
RN . Then one has the following assertions:

(i) Let 1 < q <∞. Then Aq,max is m-sectorial in Lq, that is, {e−zAq,max} is an
analytic contraction semigroup on Lq on the closed sector Σ(π/2− tan−1 cq,β,γ),
where

cq,β,γ :=

√

(q − 2)2

4(q − 1)
+
β2

4

(

γ1
q

+
γ∞
q ′

)−1

(3.1)

and q ′ is the Hölder conjugate of q. Moreover, C∞
0 (RN ) is a core for Aq,max.

(ii) Let p ∈ (1,∞) be arbitrarily fixed. Then the semigroup {e−zAp,max} in asser-
tion (i) admits an analytic continuation to the open sector Σ(π/2−tan−1Kβ,γ),
where

Kβ,γ := min
1<q<∞

cq,β,γ . (3.2)

Moreover, there exists a constant ω0 > 0 such that {e−z(ω0+Ap,max)} forms a
bounded analytic semigroup on Lp :

‖e−zAp,max‖Lp ≤Mεe
ω0Re z on Σ(π/2− tan−1Kβ,γ − ε). (3.3)
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Here the constant ω0 depends only on N , ‖ajk‖L∞(RN ) and ‖∇ajk‖L∞(RN ), while
the constant Mε ≥ 1 depends only on ε, N , ν, β, γ1, γ∞ and ‖ajk‖L∞(RN ).

(iii) Assume further that (H3) is satisfied with Ω = RN . If

(p− 1)λ0

(

β

p
+
λ0
4

)

<
γ1
p

+
γ∞
p ′
, (3.4)

then Ap,max has the so-called separation property :

‖div(a∇u)‖Lp + ‖(F · ∇)u‖Lp + ‖V u‖Lp ≤ C‖(1 +Ap,max)u‖Lp (3.5)

for all u ∈ D(Ap,max) which implies the coincidence Ap,max = Ap and hence
{e−zAp} is analytic in Σ(π/2− tan−1Kβ,γ).

Here three remarks are in order.

Remark 2. Assertion (i) is a particular case of [15, Theorem 1.3]; note that
the sector of analyticity and contraction property for {e−zAp,max} is reduced to
the positive real axis (that is, tan−1 cp,β,γ → π/2) as p tends to 1 or to ∞.

Remark 3. Assertion (ii) states that {e−zAp,max} admits an analytic con-
tinuation without contraction property (in general) to a p -independent sector
Σ(π/2− tan−1Kβ,γ) bigger than Σ(π/2− tan−1 cq,β,γ). Moreover, in general the
constant c2,β,γ does not attain min1<q<∞ cq,β,γ (= Kβ,γ). In fact, we see by a
simple calculation that

∂(cq,β,γ)2

∂q
=

q(q − 2)

4(q − 1)2
+
β2(γ1 − γ∞)

4q2

(

γ1
q

+
γ∞
q ′

)−2

.

Therefore if γ1 6= γ∞, then we have

∂(cq,β,γ)2

∂q

∣

∣

∣

q=2
=
β2(γ1 − γ∞)

4(γ1 + γ∞)2
6= 0.

This implies that in the case where γ1 6= γ∞ the sector derived by Lp-theory
can be bigger than the one derived by L2-theory. Consequently, we have c2,β,γ >
Kβ,γ . An example with γ1 6= γ∞ is also given later (see Example 3 below in
Section 4).

Remark 4. It is shown in [10] that Ap is m-sectorial of type S(tanω) in
Lp, where

ω := tan−1 cp,β,γ > ωp = tan−1 |p− 2|
2
√
p− 1

,

if p satisfies (3.4). Their proof is based on a perturbation technique with the
separation property (3.5) under a setting similar to assertion (iii). Theorem 1
makes it clear that (3.5) is necessary only for the domain characterization of
Ap.
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First we describe the key lemma as Lemma 1 which plays an essential role in
proving the existence of analytic continuation for {e−zAp,max}. Lemma 1 trans-
plants a bounded analytic semigroup on Lp0 onto Lp without changing the sector
(or angle) of analyticity. Note that Lemma 1 was first proved in Ouhabaz [13]
(for A2,max associated with symmetric forms), and then in Arendt-ter Elst [2]
and Hieber [8].

Lemma 1. For some p0 ∈ (1,∞) let {Tp0(t); t ≥ 0} be a C0-semigroup on
Lp0.
(i) (Gaussian Estimate) Assume that {Tp0(t)} admits a Gaussian estimate with
integral kernel {kt}. For every p ∈ (1,∞) define the family {Tp(t); t ≥ 0} as
Tp(0)f := f and

(

Tp(t)f
)

(x) :=

∫

RN

kt(x, y)f(y) dy a.a. x ∈ RN , f ∈ Lp, t > 0.

Then the new family {Tp(t)} forms a C0-semigroup on Lp.

(ii) (Analyticity) Assume further that {e−ω0zTp0(z)} is a bounded analytic semi-
group on Lp0 in the sector Σ(ψ0) such that for every ε > 0 there exists a constant
Mε ≥ 1 satisfying

‖Tp0(z)‖Lp0 ≤Mεe
ω0Re z ∀ z ∈ Σ(ψ0 − ε). (3.6)

Then {Tp(t)} has almost the same property as {Tp0(t)}; namely, {e−ω0tTp(t)}
can be extended to a bounded analytic semigroup {e−ω0zTp(z)} in the sector
Σ(ψ0) such that for every ε > 0 there exists M̃ε ≥ 1 satisfying

‖Tp(z)‖Lp ≤ M̃εe
ω0Re z ∀ z ∈ Σ(ψ0 − ε)

(which is nothing but (3.6) with p0 andMε replaced with p and M̃ε, respectively),
where the constant M̃ε depends only on ε, N , p0, ψ0, Mε, C and b.

Next we note that the (analytic contraction) semigroup {e−tA2,max} admits
a Gaussian estimate. The proof of the following lemma is given in [3, Theorem
4.2].

Lemma 2. Assume that (H1), (H2) and (H3) are satisfied with Ω = RN .
Then {e−tA2,max} admits a Gaussian estimate with nonnegative kernel {kt}
satisfying

0 ≤ kt(x, y) ≤Ct−N/2 exp
(

ω0t−
|x− y|2
bt

)

a.a. (x, y) ∈ RN × RN ,

where the constant ω0 depends only on N , ‖ajk‖L∞ and ‖∇ajk‖L∞ , while C, b
depend only on N , ν, β, γ1, γ∞ and ‖ajk‖L∞.
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Next we state a modification of [10, Lemma 2.3]; note that the constant fac-
tors in the inequalities are figured out. It is worth noticing that under conditions
(i) and (ii)

Ap,min := A, D(Ap,min) := C∞
0 (RN ),

is accretive in Lp (see, e.g., [10, Proposition 2.2] or [15, Theorem 1.1]).

Lemma 3. Assume that (H1), (H2) and (H3) are satisfied with Ω = RN .
Put

kp(λ) :=
(γ1
p

+
γ∞
p ′

)

− (p− 1)λ
(β

p
+
λ

4

)

, λ > λ0,

and let Cλ be a constant in (2.6). If kp(λ) > 0, then for every ξ > k0Cλ (=
Cλ max{γ1, γ∞}) and u ∈ C∞

0 (RN ) one has

‖(U + Cλ)u‖Lp ≤ 1

kp(λ)
‖(ξ +A)u‖Lp , (3.7)

‖(F ·∇)u‖Lp + ‖(V + k0Cλ)u‖Lp

≤ 2
(

1 +
c0 + β C̃1/(2β)

kp(λ)
+

c1
ξ − k0Cλ

)

‖(ξ +A)u‖Lp , (3.8)

where C̃1/(2β) > 0 depends only on N , p, ν and ‖ajk‖W 1,∞. Moreover, let ξ ≥
1 + k0Cλ. Then there exists C > 0 such that for every u ∈ C∞

0 (RN ),

‖u‖W 2,p(RN ) ≤ C
(

5 + 2
c0 + β C̃1/(2β)

kp(λ)
+

2c1
ξ − k0Cλ

)

‖(ξ +A)u‖Lp , (3.9)

where C > 0 depends only on N , p, ν and ‖ajk‖W 1,∞.

Proof. Define Ãu := (A + k0Cλ)u for u ∈ C∞
0 (RN ) and set η := ξ − k0Cλ > 0.

Then (η+ Ã)u = (ξ+A)u so that (3.7) and (3.8) are respectively equivalent to

‖Ũu‖Lp ≤ kp(λ)−1‖(η + Ã)u‖Lp , (3.10)

‖(F · ∇)u‖Lp + ‖Ṽ u‖Lp

≤ 2
(

1 + kp(λ)−1[c0 + β C̃1/(2β)] + η−1c1
)

‖(η + Ã)u‖Lp , (3.11)

where Ũ = U + Cλ > 0 and Ṽ = V + k0Cλ > 0 (see Remark 1).
First we prove (3.10). We use the key identity in [15, Section 1]: for every

u ∈ C∞
0 (RN ), v ∈W 1,1

loc (RN ) and 1 ≤ r ≤ ∞,

∫

RN

(Au)v dx =

∫

RN

[

〈a∇u,∇v〉+

(

V − divF

r

)

uv

]

dx

+

∫

RN

F ·
(

v∇u
r ′
− u∇v

r

)

dx. (3.12)
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Then it follows from (3.12) with r := p and v := Ũp−1u|u|p−2 ∈W 1,1(RN ) that

Re

∫

RN

(Ãu)Ũp−1u|u|p−2 dx

= (p− 1)(I1 + I2) +

∫

RN

Ũp−1|u|p−4〈a Im (u∇u), Im (u∇u)〉 dx

+

∫

RN

(

Ṽ − divF

p

)

Ũp−1|u|p dx− p− 1

p

∫

RN

Ũp−2|u|p(F · ∇)Ũ dx, (3.13)

where we have set

I1 :=

∫

RN

Ũp−1|u|p−4〈aRe (u∇u),Re (u∇u)〉 dx,

I2 :=

∫

RN

Ũp−2|u|p−2〈aRe(u∇u),∇Ũ〉 dx.

Here Young’s inequality and (2.6′) apply to give

I1 − |I2| ≥ I1 − I1/21

(∫

RN

Ũp−3〈a∇Ũ ,∇Ũ〉|u|p dx
)1/2

≥ − 1

4

∫

RN

Ũp−3〈a∇Ũ ,∇Ũ〉|u|p dx

≥ − λ2

4
‖Ũu‖pLp .

Now let η ≥ 0. Then by virtue of (2.2′), (2.3′), (2.6′) and (2.7) we can rewrite
(3.13) as

Re

∫

RN

(ηu+ Ãu)Ũp−1u|u|p−2 dx

≥
∫

RN

( Ṽ − divF

p
+
Ṽ

p ′

)

Ũp−1|u|p dx

− p− 1

p
β

∫

RN

Ũp−2Ũ1/2〈a∇Ũ ,∇Ũ〉1/2|u|p dx− (p− 1)
λ2

4
‖Ũu‖pLp

≥
(γ1
p

+
γ∞
p ′

)

∫

RN

Ũ Ũp−1|u|p dx

− p− 1

p
βλ

∫

RN

Ũp−3/2Ũ3/2|u|p dx− (p− 1)
λ2

4
‖Ũu‖pLp .

Therefore we obtain

Re

∫

RN

(ηu+ Ãu)Ũp−1u|u|p−2 dx ≥
(γ1
p

+
γ∞
p ′
− p− 1

p
βλ− p− 1

4
λ2
)

‖Ũu‖pLp .



Analyticity for C0-semigroups generated by elliptic operators 73

Thus (3.10) is a consequence of Hölder’s inequality.
Next we prove (3.11). It follows from (2.1′) and (2.4′) that

‖(F ·∇)u‖Lp+‖Ṽ u‖Lp ≤ β ‖Ũ1/2〈a∇u,∇u〉1/2‖Lp+c0‖Ũu‖Lp+c1‖u‖Lp . (3.14)

Applying [10, Proposition 3.3] to our diffusion a and auxiliary function Ũ ≥
Cλ > 0, we see that for every ε > 0 there exists a constant C̃ε > 0 depending
only on N , p, ν and ‖ajk‖W 1,∞ such that

β ‖Ũ1/2〈a∇u,∇u〉1/2‖p ≤ β ε‖div(a∇u)‖Lp + β C̃ε‖Ũu‖Lp .

Plugging this inequality with ε = (2β)−1 into (3.14), we have that

‖(F · ∇)u‖Lp + ‖Ṽ u‖Lp

≤ 1

2
‖(η + Ã)u‖Lp +

1

2

(

‖(F · ∇)u‖Lp + ‖Ṽ u‖Lp

)

+ (c0 + β C̃1/(2β))‖Ũu‖Lp +
(η

2
+ c1

)

‖u‖Lp , η ≥ 0. (3.15)

Here it is worth noticing that since Ap,min is accretive in Lp, Ãp,min is also
accretive in Lp:

η‖u‖Lp ≤ ‖(η + Ã)u‖Lp (η ≥ 0). (3.16)

Therefore, (3.11) follows from (3.15) as a consequence of (3.10) and (3.16):

‖(F · ∇)u‖Lp + ‖Ṽ u‖Lp

≤‖(η + Ã)u‖Lp + 2(c0 + 2β C̃1/(2β))‖Ũu‖Lp + (η + 2c1)‖u‖Lp

≤ 2
(

1 +
c0 + β C̃1/(2β)

kp(λ)
+
c1
η

)

‖(η + Ã)u‖Lp , η ≥ 0.

Finally, we prove (3.9). Condition (H1) and [6, Theorem 9.11] yield the
well-known elliptic estimate: for every u ∈ C∞

0 (RN ),

‖u‖W 2,p(RN ) ≤ C(‖div(a∇u)‖Lp + ‖u‖Lp),

where C depends only on N , p, ν and ‖ajk‖W 1,∞ . Now let η ≥ 1. Then we can
derive from (3.8) and (3.16) that

‖u‖W 2,p(RN ) ≤C(‖(η + Ã)u‖Lp + 2 η‖u‖Lp) + C(‖(F · ∇)u‖Lp + ‖Ṽ u‖Lp)

≤C
(

5 + 2
c0 + β C̃1/(2β)

kp(λ)
+

2c1
η

)

‖(η + Ã)u‖Lp , η ≥ 1.

Thus we obtain (3.9). This completes the proof of Lemma 3. QED
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Proof of Theorem 1. (i) Let cq,β,γ be the constant defined by (3.1). Then by [15,
Theorem 1.3] we can conclude that for every q ∈ (1,∞), Aq,max is m-sectorial
of type S(cq,β,γ) in Lq, that is, −Aq,max generates an analytic contraction semi-
group {e−zAq,max} on Lq on the closed sector Σ(π/2 − tan−1 cq,β,γ). Moreover,
we see from [15, Theorem 1.2] that C∞

0 (RN ) is a core for Ap,max. In fact, by con-
dition (H1) it suffices to show that there exist a nonnegative auxiliary function
Ψq ∈ L∞

loc(R
N ) and a constant β̃ ≥ 0 such that

|〈F (x), ξ〉| ≤ β̃Ψq(x)1/2〈a(x)ξ, ξ〉1/2 a.a. x ∈ RN , ξ ∈ CN , (3.17)

V − divF

q
≥ Ψq a.e. on RN . (3.18)

Now set

Ψq(x) :=
(γ1
q

+
γ∞
q ′

)

U(x), β̃ := β
(γ1
q

+
γ∞
q ′

)− 1
2
.

Then we see from conditions (2.1)–(2.3) with Ω = RN that (3.17) and (3.18)
are satisfied:

|〈F (x), ξ〉| ≤βU(x)1/2〈a(x)ξ, ξ〉1/2

≤ β̃Ψq(x)
1
2 〈a(x)ξ, ξ〉1/2,

Ψq(x) ≤ V (x)− divF (x)

q
+
V (x)

q ′

=V (x)− divF (x)

q
,

and hence we can apply [15, Theorem 1.3] to the triplet (a, F, V ). The constant
in (3.17) is reflected to that in (3.1). This completes the proof of assertion (i).

(ii) We want to construct a q-independent analytic continuation for {e−zAq,max}.
By virtue of Lemma 2 we can apply Lemma 1 (i) with p0 = 2 to {e−zA2,max}.
Namely, the new family {Tq(t); t ≥ 0} of bounded linear operators on Lq defined
as

(Tq(t)f)(x) =

∫

RN

kt(x, y)f(y) dy, f ∈ Lq(RN ), t > 0,

with the kernel of e−tA2,max forms a C0-semigroup on Lq for every 1 < q < ∞.
Denote by Bq the generator of {Tq(t)} on Lq. Noting that C∞

0 (RN ) is a core for
Aq,max, we deduce that −Bq = Aq,max and hence we obtain

Tq(t) = e−tAq,max ∀ t ≥ 0.

This implies by Theorem 1 (i) that {Tq(z)} = {e−zAq,max} is an analytic contrac-
tion semigroup on Lq on the closed sector Σ(π/2− tan−1 cq,β,γ).
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Next let q0 ∈ (1,∞) be as defined by

cq0,β,γ = min
1<q<∞

cq,β,γ = Kβ,γ .

Then we see that {Tq0(t)} satisfies the assumption of Lemma 1 (ii) with

(p0, ψ0) := (q0, π/2− tan−1Kβ,γ).

Therefore for every p ∈ (1,∞), {Tp(t)} on Lp admits an analytic continuation
to the sector Σ(π/2− tan−1Kβ,γ) such that

‖Tp(z)‖Lp ≤Mεe
ω0Rez, z ∈ Σ(π/2− tan−1Kβ,γ − ε), (3.19)

where the constant Mε depends only on ε, N , ν, β, γ1, γ∞ and ‖ajk‖L∞ . Con-
sequently, the identity theorem for vector-valued analytic functions (see, e.g.,
[1, Theorem A.2]) implies that {Tp(z)} is nothing but the analytic extension of
{e−zAp,max} to the sector Σ(π/2− tan−1Kβ,γ) and hence using (3.19), we obtain
(3.3). This completes the proof of assertion (ii).

(iii) It suffices to show that Ap,max = Ap if (H3) and (3.4) are satisfied with
Ω = RN . By definition we see that Ap ⊂ Ap,max. Conversely, let u ∈ D(Ap,max).
Since C∞

0 (RN ) is a core for Ap,max, there exists a sequence {un} in C∞
0 (RN )

such that

un → u, Aun → Ap,maxu in Lp (n→∞).

Applying Lemma 3 with ξ = 1 + k0Cλ, we see that for every n ∈ N,

‖un‖W 2,p(RN ) + ‖(F · ∇)un‖Lp + ‖V un‖Lp

≤(C + 1)
(

5 + 2
c0 + β C̃1/(2β)

kp

)

‖(ξ +A)un‖Lp .

Letting n → ∞, we see that u ∈ W 2,p(RN ) ∩D(F · ∇) ∩D(V ) = D(Ap). This
completes the proof of Ap = Ap,max. QED

Example 2. We consider a typical one-dimensional Ornstein-Uhlenbeck op-
erator

(Aµv)(x) := −v ′′(x) + xv ′(x)

in Lpµ (the Lp-space with respect to the invariant measure e−x
2/2dx). Chill-

Fašangová-Metafune-Pallara [4] show that the C0-semigroup on Lpµ generated
by −Aµ is analytic in the sector Σ(ω̃p) and that the angle ω̃p = π/2 − ωp of
analyticity is optimal.
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Here, applying Theorem 1 (ii), we give another derivation of their angle ωp.

Using the isometry u 7→ e−x
2/2pu, we can transform Aµ into A:

(Au)(x) := −d
2u

dx2
+
(

1− 2

p

)

x
du

dx
+
(p− 1

p2
x2 − 1

p

)

u

in the usual space Lp(RN ). Thus we obtain

a(x) ≡ 1, F (x) :=
(

1− 2

p

)

x, V (x) :=
p− 1

p2
x2 − 1

p

in our notation. Setting U(x) := x2, the triplet (a, F, V + 1) satisfies conditions
(H1) and (H2) with respective constants

β = |p− 2|/p, γ1 = (p− 1)/p2 = γ∞.

In fact, (2.1)–(2.3) are computed as

|〈F (x), ξ〉| = p−1|p− 2|U(x)1/2|ξ| ≤ β(U(x) + 1)1/2|ξ|,

(V (x) + 1)− divF (x) =
p− 1

p2
U(x) +

1

p
≥ γ1(U(x) + 1),

V (x) + 1 =
p− 1

p2
U(x) +

1

p ′
≥ γ∞(U(x) + 1).

This leads us to the angle ωp introduced in Introduction:

Kβ,γ = inf
1<q<∞

√

(q − 2)2

4(q − 1)
+

(p− 2)2

4(p− 1)
=
|p− 2|

2
√
p− 1

= tanωp.

This shows that the domain of analyticity in this case is at least Σ(π/2 − ωp)
in a form of sector with vertex at the origin. Moreover, U(x) satisfies (2.4) and
(2.5) in (H3) with c0 = 1 and λ0 = 0, respectively. Hence A has a separation
property (3.5).

4 The operators with local singularities

In this section we deal with the case Ω = RN \{0}. In this case C∞
0 (RN \{0})

is not a core for Ap,max in general. In fact, C∞
0 (RN\{0}) is not dense inW 2,p(RN )

if p > N/2. Therefore Theorem 1 (i) and (ii) may be false if RN is replaced
with RN \ {0}. Nevertheless we can show that Theorem 1 (iii) remains true
even if Ω = RN \ {0} because Ap = Ap,max can be approximated by a family of

operators {A(δ)
p ; δ > 0} with those properties in Theorem 1 (i), (ii) and (iii).
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Theorem 2. Let 1 < p < ∞. Assume that conditions (H1), (H2) and
(H3) are satisfied with Ω = RN \ {0}. Let Kβ,γ be the constant determined by
(3.2). If (3.4) holds, then {e−zAp} admits an analytic continuation to the sector
Σ(π/2− tan−1Kβ,γ). In this case Ap has the separation property (3.5).

Before proving Theorem 2, we introduce our approximation for the lower
order coefficients. This is a modified version of Yosida approximation.

Lemma 4. Let δ > 0. Under the assumption in Theorem2 put

Fδ(x) :=

{

F (x)(1 + δU(x))−2, x 6= 0,

0, x = 0,
(4.1)

Uδ(x) :=

{

U(x)(1 + δU(x))−1, x 6= 0,

δ−1, x = 0,
(4.2)

Vδ(x) :=
V (x)

1 + δU(x)
+

γ1δU(x)2

(1 + δU(x))2
+

2βλδ(U(x) + Cλ)2

(1 + δU(x))3
a.a. x ∈ RN , (4.3)

where λ and Cλ are the constants in (2.6). Then

Fδ ∈ C1(RN ; RN ), Uδ ∈ C1(RN ; RN ), Vδ ∈ L∞(RN ; R) (4.4)

and the triplet (a, Fδ, Vδ) and Uδ satisfy

Fδ → F in L∞
loc(R

N \ {0};RN ), Vδ → V in L∞
loc(R

N \ {0};R) (4.5)

and (2.1)–(2.3) with Ω = RN :

|〈Fδ(x), ξ〉| ≤βUδ(x)1/2〈a(x)ξ, ξ〉1/2, x ∈ RN , ξ ∈ CN , (4.6)

Vδ(x)− divFδ(x) ≥ γ1Uδ(x) a.a. x ∈ RN , (4.7)

Vδ(x) ≥ γ∞Uδ(x) a.a. x ∈ RN . (4.8)

Moreover, for δ ≤ 1/Cλ, one has (2.4) and (2.6) for the triplet (a, Fδ, Vδ) :

Vδ(x) ≤ (c0 + γ1 + 2βλ)Uδ(x) + c1 + 2βλCλ, (4.9)

〈a(x)∇Uδ(x),∇Uδ(x)〉1/2 ≤λ(Uδ(x) + Cλ)3/2. (4.10)

Proof. We can verify (4.4) and (4.5) by a simple computation. Now we prove
conditions (H2) and (H3) for the approximated triplet (a, Fδ, Vδ). Since the
original triplet (a, F, V ) satisfies conditions (2.1) and (2.3) with Ω = RN \ {0},
we see that (4.6) and (4.8) are satisfied: the case of x = 0 is clear and

|〈Fδ(x), ξ〉| = |〈F (x), ξ〉|
(1 + δU(x))2

≤ βU(x)1/2〈a(x)ξ, ξ〉1/2
(1 + δU(x))1/2

= βUδ(x)1/2〈a(x)ξ, ξ〉1/2,

Vδ(x) ≥ V (x)

1 + δU(x)
≥ γ∞U(x)

1 + δU(x)
= γ∞Uδ(x).
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Furthermore, combining (2.2) and (2.7), we obtain (4.7):

Vδ(x)− divFδ(x)

≥ V (x)− divF (x)

(1 + δU(x))2
+ γ1

δU(x)2

(1 + δU(x))2
+ 2δ

βλŨ(x)2 − |(F · ∇)Ũ(x)|
(1 + δU(x))3

≥ γ1
U(x)

(1 + δU(x))2
+ γ1

δU(x)2

(1 + δU(x))2

= γ1Uδ(x).

Now we prove (4.9) and (4.10). We see from (2.4) that for every δ ∈ (0, 1/Cλ],

Vδ(x) ≤ (c0 + γ1)Uδ(x) + c1 + 2βλ
(δCλ + δU(x)

1 + δU(x)

) U(x) + Cλ
(1 + δU(x))2

≤ (c0 + γ1 + 2βλ)Uδ(x) + c1 + 2βλCλ.

It follows from the estimate (2.6) for the original triplet (a, F, V ) that

〈a(x)∇Uδ(x),∇Uδ(x)〉1/2 =
〈a(x)∇U(x),∇U(x)〉1/2

(1 + δU(x))2

≤ λ

(1 + δU(x))1/2

(U(x) + Cλ
1 + δU(x)

)3/2

≤λ(Uδ(x) + Cλ)3/2.

This completes the proof of Lemma 4. QED

Proof of Theorem 2. In view of (3.4) we fix λ > λ0 satisfying

(p− 1)λ
(β

p
+
λ

4

)

<
γ1
p

+
γ∞
p ′
.

For δ > 0 let Fδ, Vδ and Uδ be as (4.1)–(4.3). Then Lemma 4 implies that the
approximate triplet (a, Fδ, Vδ) satisfies (H2) and (H3) with Ω = RN and (3.4).
Thus the triplet (a, Fδ, Vδ) satisfies the assumption in Theorem 1 (iii). Therefore

we can define a family {A(δ)
p ; δ > 0} approximate to Ap in Lp:

{

D(A
(δ)
p ) := W 2,p(RN ),

A
(δ)
p u := −div(a∇u) + (Fδ · ∇)u+ Vδu, u ∈ D(A

(δ)
p ).

Let ω0 be the constant as in Theorem 1 (ii) depending only on N , ‖ajk‖L∞ and

‖∇ajk‖L∞ . Then −A(δ)
p generates a bounded analytic semigroup {e−z(ω0+A

(δ)
p )}

in the open sector Σ(π/2− tan−1Kβ,γ), with two norm bounds:

‖e−zA
(δ)
p ‖Lp ≤ 1, z ∈ Σ(π/2− tan−1 cp,β,γ),
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and for every ε > 0 there exists a constant Mε ≥ 1 such that

‖e−zA
(δ)
p ‖Lp ≤Mεe

ω0Rez, z ∈ Σ(π/2− tan−1Kβ,γ − ε), (4.11)

where Mε depends only on ε, N , ν, β, γ1, γ∞ and ‖ajk‖L∞ . Moreover, A
(δ)
p has

the separation property (3.5): for every u ∈W 2,p(RN ) (= D(A
(δ)
p )),

‖u‖W 2,p(RN ) + ‖(Fδ · ∇)u‖Lp + ‖Uδu‖Lp ≤ C‖u+A(δ)
p u‖Lp , (4.12)

where C is independent of δ ∈ (0, 1/Cλ].
Next we prove the m-sectoriality of Ap. Let v ∈ D(Ap). Then by the defini-

tion of A
(δ)
p we have v ∈ D(A

(δ)
p ) and A

(δ)
p v → Apv (δ ↓ 0) in Lp. We see from

the sectoriality of A
(δ)
p that Ap is also sectorial in Lp. It remains to prove the

maximality: R(I +Ap) = Lp. Let f ∈ Lp. We see from the m-accretivity of A
(δ)
p

that for every δ > 0 there exists uδ ∈ D(A
(δ)
p ) such that

uδ − div(a∇uδ) + (Fδ · ∇)uδ + Vδuδ = f.

Hence (4.12) yields that for every δ ∈ (0, 1/Cλ],

‖uδ‖W 2,p(RN ) + ‖(Fδ · ∇)uδ‖Lp + ‖Uδuδ‖Lp ≤ C‖f‖Lp . (4.13)

It follows from (4.13) that there exist a subsequence {uδm}m with δm ↓ 0 (m→
∞) and a function u ∈W 2,p(RN ) ∩D(U) such that

uδm → u (m→∞) weakly in W 2,p(RN ),

Uδmuδm → Uu (m→∞) weakly in Lp(RN ).

It follows from (2.4) that V u ∈ Lp. The Rellich-Kondrachov theorem implies
that

uδm → u in W 1,p
loc (RN ).

Using Fatou’s lemma, we see that

‖(F · ∇)u‖pLp ≤ lim inf
m→∞

‖(Fδm · ∇)uδm‖pLp ≤ Cp‖f‖pLp .

Thus we have u ∈ D(Ap). By (4.5) in Lemma 4 we deduce that

(Fδm · ∇)uδm → (F · ∇)u in Lploc(R
N \ {0}),

Vδmuδm → V u in Lploc(R
N \ {0})

and hence we obtain u+Apu = f , that is, R(I +Ap) = Lp. This completes the
proof of the m-sectoriality of Ap.
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Consequently, the Hille-Yosida generation theorem modified by Goldstein [7,
Theorem 1.5.9] implies that −Ap generates an analytic contraction semigroup
{e−tAp} on Lp. Furthermore, applying Trotter’s convergence theorem (see, e.g.,
[5, Theorem III.4.8]), we deduce that for every f ∈ Lp and t ≥ 0,

e−tA
(δ)
p f → e−tApf in Lp.

Finally, by Vitali’s theorem (see, e.g., [1, Theorem A.5]) we see from (4.11) that
{e−tAp} admits an analytic continuation to the sector Σ(π/2 − tan−1Kβ,γ).
Moreover,

‖e−zAp‖Lp ≤ 1, z ∈ Σ(π/2− tan−1 cp,β,γ),

and for every ε > 0,

‖e−zAp‖Lp ≤Mεe
ω0Rez, z ∈ Σ(π/2− tan−1Kβ,γ − ε). (4.14)

Noting that (4.14) implies the continuity at the origin, we finish the proof.
QED

Example 3 (A case where γ1 6= γ∞). We consider the following operator

Au = −∆u+
bx

|x|2 · ∇u+
c

|x|2 ,

that is, (a, F, V ) and Ω in our notation are given by

ajk(x) := δjk, F (x) :=
bx

|x|2 , V (x) :=
c

|x|2 , Ω = RN \ {0};

note that this operator has a singularity at the origin. Taking the auxiliary
function U as U(x) := |x|−2, we can see that the respective constants in (H2)
are given by

β = |b|, γ1 = c− b(N − 2), γ∞ = c.

Thus γ1 6= γ∞ if N 6= 2 and b 6= 0. We also have λ0 = 2 (see Example 1). Hence
if b, c and p satisfy (3.4), that is, if

p− 1 +
2

p
|b| = (p− 1)λ0

(

β

p
+
λ0
4

)

<
γ1
p

+
γ∞
p ′

= c− b(N − 2)

p

holds, then we can apply Theorem 2 to the operator A and hence the conclusion
of Remark 3 yields that c2,β,γ > Kβ,γ .



Analyticity for C0-semigroups generated by elliptic operators 81

References

[1] W. Arendt, C. J. K. Batty, M. Hieber, F. Neubrander: Vector-Valued Laplace
Transform and Cauchy Problems, Monographs in Mathematics 96, Birkhauser Verlag,
Basel, 2001.

[2] W. Arendt, A. F. M. ter Elst: Gaussian estimates for second order elliptic operators
with boundary conditions, J. Operator Theory 38 (1997), 87–130.

[3] W. Arendt, G. Metafune, D. Pallara: Schrödinger operators with unbounded drift,
J. Operator Theory 55 (2006), 185–211.
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