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1 Introduction

Left-invariant control affine systems constitute an important class of sys-
tems, extensively used in many control applications. In this paper we classify,
under local detached feedback equivalence, the full-rank left-invariant control
affine systems evolving on certain solvable three-dimensional Lie groups. Specif-
ically, we consider only those Lie groups with Lie algebras of types V Ih (in-
cluding III), V I0, V IIh, and V II0 in the Bianchi-Behr classification.

We reduce the problem of classifying such systems to that of classifying
affine subspaces of the associated Lie algebras. Thus, for each of the four types
of Lie algebra, we need to classify their affine subspaces. A tabulation of the
results is included as an appendix.

http://siba-ese.unisalento.it/ c© 2013 Università del Salento
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2 Invariant control systems and equivalence

A left-invariant control affine system Σ is a control system of the form

ġ = g Ξ (1, u) = g (A+ u1B1 + · · ·+ uℓBℓ) , g ∈ G, u ∈ Rℓ.

Here G is a (real, finite-dimensional) Lie group with Lie algebra g. Also, the
parametrization map Ξ(1, ·) : Rℓ → g is an injective affine map (i.e., B1, . . . , Bℓ
are linearly independent). The “product” g Ξ (1, u) is to be understood as T1Lg·
Ξ (1, u), where Lg : G → G, h 7→ gh is the left translation by g. Note that
the dynamics Ξ : G × Rℓ → TG are invariant under left translations, i.e.,
Ξ (g, u) = g Ξ (1, u). We shall denote such a system by Σ = (G,Ξ) (cf. [3]).

The admissible controls are piecewise continuous maps u(·) : [0, T ] → Rℓ.
A trajectory for an admissible control u(·) is an absolutely continuous curve
g(·) : [0, T ] → G such that ġ(t) = g(t) Ξ (1, u(t)) for almost every t ∈ [0, T ].
We say that a system Σ is controllable if for any g0, g1 ∈ G, there exists a
trajectory g(·) : [0, T ] → G such that g(0) = g0 and g(T ) = g1. For more
details about (invariant) control systems see, e.g., [2], [12], [13], [18], [17].

The image set Γ = im Ξ(1, ·), called the trace of Σ, is an affine subspace of
g. Specifically,

Γ = A+ Γ0 = A+ 〈B1, . . . , Bℓ〉.

A system Σ is called homogeneous if A ∈ Γ0, and inhomogeneous otherwise.
Furthermore, Σ is said to have full rank if its trace generates the whole Lie
algebra (i.e., the smallest Lie algebra containing Γ is g). Henceforth, we assume
that all systems under consideration have full rank. (The full-rank condition is
necessary for a system Σ to be controllable.)

An important equivalence relation for invariant control systems is that of
detached feedback equivalence. Two systems are detached feedback equivalent
if there exists a “detached” feedback transformation which transforms the first
system to the second (see [4], [11]). Two detached feedback equivalent control
systems have the same set of trajectories (up to a diffeomorphism in the state
space) which are parametrized differently by admissible controls. More precisely,
let Σ = (G,Ξ) and Σ′ = (G′,Ξ′) be left-invariant control affine systems. Σ and
Σ′ are called locally detached feedback equivalent (shortly DFloc-equivalent) at
points a ∈ G and a′ ∈ G′ if there exist open neighbourhoods N and N ′ of
a and a′, respectively, and a diffeomorphism Φ : N × Rℓ → N ′ × Rℓ

′

, (g, u) 7→
(φ(g), ϕ(u)) such that φ(a) = a′ and Tgφ ·Ξ (g, u) = Ξ′ (φ(g), ϕ(u)) for g ∈ N
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and u ∈ Rℓ (i.e., the diagram

N × Rℓ
φ×ϕ

//

Ξ
��

N ′ × Rℓ
′

Ξ′

��

TN
Tφ

// TN ′

commutes).

Any DFloc-equivalence between two control systems can be reduced to an
equivalence between neighbourhoods of the identity. More precisely, Σ and Σ′

are DFloc-equivalent at a ∈ G and a′ ∈ G′ if and only if they are DFloc-
equivalent at 1 ∈ G and 1 ∈ G′ ([4]). Henceforth, we will assume that any
DFloc-equivalence is between neighbourhoods of identity. We recall an algebraic
characterization of this equivalence.

Proposition 1 ([4]). Σ and Σ′ are DFloc-equivalent if and only if there
exists a Lie algebra isomorphism ψ : g→ g′ such that ψ · Γ = Γ′.

For the purpose of classification, we may assume that Σ and Σ′ have the
same Lie algebra g. We will say that two affine subspaces Γ and Γ′ are L-
equivalent if there exists a Lie algebra automorphism ψ : g → g such that
ψ · Γ = Γ′. Then Σ and Σ′ are DFloc-equivalent if and only if there traces Γ
and Γ′ are L-equivalent. This reduces the problem of classifying under DFloc-
equivalence to that of classifying under L-equivalence. Suppose {Γi : i ∈ I} is
an exhaustive collection of (non-equivalent) class representatives (i.e., any affine
subspace is L-equivalent to exactly one Γi). For each i ∈ I, we can easily find
a system Σi = (G,Ξi) with trace Γi. Then any system Σ is DFloc-equivalent
to exactly one Σi.

3 Affine subspaces of three-dimensional Lie algebras

The classification of three-dimensional Lie algebras is well known. The clas-
sification over C was done by S. Lie (1893), whereas the standard enumeration
of the real cases is that of L. Bianchi (1918). In more recent times, a differ-
ent (method of) classification was introduced by C. Behr (1968) and others
(see [15], [14], [16] and the references therein); this is customarily referred to
as the Bianchi-Behr classification (or even the “Bianchi-Schücking-Behr classi-
fication”). Any solvable three-dimensional Lie algebra is isomorphic to one of
nine types (in fact, there are seven algebras and two parametrized infinite fam-
ilies of algebras). In terms of an (appropriate) ordered basis (E1, E2, E3) , the
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commutator operation is given by

[E2, E3] = n1E1 − aE2

[E3, E1] = aE1 + n2E2

[E1, E2] = 0.

The (Bianchi-Behr) structure parameters a, n1, n2 for each type are given in
table 1. For the two infinite families, V Ih and V IIh, each value of the parameter

Type Notation a n1 n2 Representatives

I 3g1 0 0 0 R3

II g3.1 0 1 0 h3

III = V I−1 g2.1 ⊕ g1 1 1 −1 aff(R)⊕ R

IV g3.2 1 1 0

V g3.3 1 0 0

V I0 g03.4 0 1 −1 se(1, 1)

V Ih,
h<0
h 6=−1 gh3.4

√
−h 1 −1

V II0 g03.5 0 1 1 se(2)

V IIh, h>0 gh3.5
√
h 1 1

Table 1. Bianchi-Behr classification (solvable)

h yields a distinct (i.e., non-isomorphic) Lie algebra.

In this paper we will only consider types III, V I0, V Ih, V II0, and V IIh.
The other solvable Lie algebras (i.e., those of types II, IV , and V ) are treated
in [7]. (For the Abelian Lie algebra 3g1 the classification is trivial.) Furthermore,
type III = V I−1 will be considered as part of V Ih.

An affine subspace Γ of a Lie algebra g is written as

Γ = A+ Γ0 = A+ 〈B1, B2, . . . , Bℓ〉

where A,B1, . . . , Bℓ ∈ g. Let Γ1 and Γ2 be two affine subspaces of g. Γ1 and
Γ2 are L-equivalent if there exists a Lie algebra automorphism ψ ∈ Aut(g)
such that ψ · Γ1 = Γ2. L-equivalence is a genuine equivalence relation. (Note
that Γ1 = A1 + Γ0

1 and Γ2 = A2 + Γ0
2 are L-equivalent if and only if there

exists an automorphism ψ such that ψ · Γ0
1 = Γ0

2 and ψ · A1 ∈ Γ2.) An affine
subspace Γ is said to have full rank if it generates the whole Lie algebra. The
full-rank property is invariant under L-equivalence. Henceforth, we assume that
all affine subspaces under consideration have full rank.
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In this paper we classify, under L-equivalence, the (full-rank) affine sub-
spaces of gh3.4 (including g2.1 ⊕ g1), g03.4, gh3.5, and g03.5. Clearly, if Γ1 and
Γ2 are L-equivalent, then they are necessarily of the same dimension. Further-
more, 0 ∈ Γ1 if and only if 0 ∈ Γ2. We shall find it convenient to refer to an
ℓ-dimensional affine subspace Γ as an (ℓ, 0)-affine subspace when 0 ∈ Γ (i.e., Γ
is a vector subspace) and as an (ℓ, 1)-affine subspace, otherwise. Alternatively,
Γ is said to be homogeneous if 0 ∈ Γ, and inhomogeneous otherwise.

Remark 1. No (1, 0)-affine subspace has full rank. A (1, 1)-affine subspace
has full rank if and only if A,B1, and [A,B1] are linearly independent. A (2, 0)-
affine subspace has full rank if and only if B1, B2, and [B1, B2] are linearly
independent. Any (2, 1)-affine subspace or (3, 0)-affine subspace has full rank.

Clearly, there is only one affine subspace whose dimension coincides with that of
the Lie algebra g, namely the space itself. From the standpoint of classification
this case is trivial and hence will not be covered explicitly.

Let us fix a three-dimensional Lie algebra g (together with an ordered ba-
sis). In order to classify the affine subspaces of g, we require the (group of)
automorphisms of g. These are well known (see, e.g., [9], [10], [16]); a summary
is given in table 3. For each type of Lie algebra, we construct class representa-
tives (by considering the action of automorphisms on a typical affine subspace).
By using some classifying conditions, we explicitly construct L-equivalence re-
lations relating an arbitrary affine subspace to a fixed representative. Finally,
we verify that none of the representatives are equivalent.

The following simple result is useful.

Proposition 2. Let Γ be a (2, 0)-affine subspace of a Lie algebra g. Sup-
pose {Γi : i ∈ I} is an exhaustive collection of L-equivalence class represen-
tatives for (1, 1)-affine subspaces of g. Then Γ is L-equivalent to at least one
element of {〈Γi〉 : i ∈ I}.

Proof. We have Γ = 〈A,B〉 for some A,B ∈ g. Thus Γ′ = A+ 〈B〉 is a (1, 1)-
affine subspace and so there exists an automorphism ψ such that ψ · Γ′ = Γi
for some i ∈ I. Hence ψ · Γ = 〈Γi〉. QED

4 Type V I

The family gh3.4 of Lie algebras (including cases h = 0 and h = −1) has
commutator relations

[E2, E3] = E1 − aE2, [E3, E1] = aE1 − E2, [E1, E2] = 0

in terms of an (appropriate) ordered basis (E1, E2, E3). Here a is a non-negative
parameter (a =

√
−h). However, we shall choose a different basis with respect
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to which the automorphisms take a simpler form (see table 3). Specifically, we
will consider the basis

F1 = E3 F2 = E1 + E2 F3 = −E1 + E2

which has commutator relations

[F2, F3] = 0, [F3, F1] = −(a+ 1)F3, [F1, F2] = (a− 1)F2.

4.1 Type V Ih

Consider the Lie algebra gh3.4 with h < 0. Recall that type III is included
in this discussion. With respect to the ordered basis (F1, F2, F3), the group of
automorphisms takes the form

Aut
(

gh3.4
)

=











1 0 0
x u 0
y 0 v



 : x, y, u, v ∈ R, uv 6= 0







.

We start the classification with the inhomogeneous one-dimensional case.

Proposition 3. Any (1, 1)-affine subspace of gh3.4 is L-equivalent to exactly
one of the following subspaces

Γ1 = F2 + F3 + 〈F1〉 Γ2,α = αF1 + 〈F2 + F3〉 .

Here α 6= 0 parametrizes a family of class representatives, each different value
corresponding to a distinct non-equivalent representative.

Proof. Let Γ = A + Γ0 be a (1, 1)-affine subspace of gh3.4. First assume that
F ∗
1 (Γ0) 6= {0}. (Here F ∗

1 denotes the corresponding element of the dual basis.)

Then Γ =
∑3

i=1 aiFi +
〈

∑3
i=1 biFi

〉

with b1 6= 0. Hence Γ = a′2F2 + a′3F3 +

〈F1 + b′2F2 + b′3F3〉. The condition that Γ has full rank is then equivalent to
a′2a

′
3 6= 0. Thus

ψ =





1 0 0
b′2 a′2 0
b′3 0 a′3





is an automorphism such that ψ · Γ1 = Γ.
Next assume F ∗

1 (Γ0) = {0} and F ∗
1 (A) = α 6= 0. Then Γ = αF1 + a2F2 +

a3F3 + 〈b2F2 + b3F3〉. A simple calculation shows that b2b3 6= 0 and so

ψ =





1 0 0
a2
α b2 0
a3
α 0 b3




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is an automorphism such that ψ · Γ2,α = Γ.

Lastly, we verify that none of these representatives are equivalent. Γ2,α can-
not be equivalent to Γ1 as F2 and F3 are eigenvectors of every automorphism,
Γ0
2,α = 〈F2 + F3〉, and Γ0

1 = 〈F1〉. On the other hand, as F ∗
1 (ψ · αF1) = α for

any automorphism ψ, it follows that Γ2,α and Γ2,α′ are L-equivalent only if
α = α′. QED

We obtain the result for the homogeneous two-dimensional case by use of
propositions 2 and 3.

Proposition 4. Any (2, 0)-affine subspace of gh3.4 is L-equivalent to
〈F1, F2 + F3〉.

We now move on to the inhomogeneous two-dimensional case.

Proposition 5. Any (2, 1)-affine subspace of gh3.4 is L-equivalent to exactly
one of the following subspaces

Γ1 = F3 + 〈F1, F2〉 Γ2 = F2 + 〈F3, F1〉
Γ3 = F2 + 〈F1, F2 + F3〉 Γ4,α = αF1 + 〈F2, F3〉 .

Here α 6= 0 parametrizes a family of class representatives, each different value
corresponding to a distinct non-equivalent representative.

Proof. Let Γ = A + Γ0 be a (2, 1)-affine subspace of gh3.4. If F ∗
1 (Γ0) 6= {0},

then not both F2 and F3 can be in Γ0.

Assume that F ∗
1 (Γ0) 6= {0} and F2 ∈ Γ0. Then Γ = a1F1 + a3F3 +

〈b1F1 + b3F3, F2〉 with b1 6= 0. Hence Γ = (a3 − a1b3
b1

)F3 +
〈

F1 + b3
b1
F3, F2

〉

.

Thus (a3 − a1b3
b1

) 6= 0 and

ψ =





1 0 0
0 1 0
b3
b1

0 a3 − a1b3
b1





is an automorphism such that ψ · Γ1 = ψ · (F3 + 〈F1, F2〉) = Γ.

Next assume that F ∗
1 (Γ0) 6= {0} and F3 ∈ Γ0. By a similar argument, we

get Γ = a2F2 + 〈F3, F1 + b2F2〉. Then

ψ =





1 0 0
b2 a2 0
0 0 1





is an automorphism such that ψ · Γ2 = ψ · (F2 + 〈F3, F1〉) = Γ.
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Now, assume that F ∗
1 (Γ0) 6= {0}, F2 /∈ Γ0, and F3 /∈ Γ0. Then Γ =

∑3
i=1 aiFi +

〈

∑3
i=1 biFi,

∑3
i=1 ciFi

〉

with b1 6= 0. Hence Γ = a′2F2 + a′3F3 +

〈F1 + b′2F2 + b′3F3, c
′
2F2 + c′3F3〉 with c′2 6= 0 and c′3 6= 0. Therefore Γ =

a′′2F2 + 〈F1 + b′2F2 + b′3F3, F2 +
c′3
c′2
F3〉 with a′′2 6= 0. Thus

ψ =







1 0 0
b′2 a′′2 0

b′3 0
a′′2 c

′

3
c′2







is an automorphism such that ψ · Γ3 = ψ · (F2 + 〈F1, F2 + F3〉) = Γ.
Lastly, assume that F ∗

1 (Γ0) = {0} and F ∗
1 (A) = α 6= 0. Then Γ0 = 〈F2, F3〉

and so Γ = αF1 + 〈F2, F3〉 = Γ4,α.
We verify that none of these representatives are equivalent. F2 and F3

are eigenvectors of every automorphism. Hence, none of Γ1,Γ2,Γ3,Γ4,α can be
equivalent to any of Γ1,Γ2,Γ3, other than matching a representative with itself.
On the other hand, as F ∗

1 (ψ · αF1) = α for any automorphism ψ, it follows
that Γ4,α and Γ4,α′ are L-equivalent only if α = α′. QED

4.2 Type V I0

Consider the Lie algebra g03.4. With respect to the ordered basis (F1, F2, F2),
the group of automorphisms takes the form

Aut
(

g03.4
)

=











1 0 0
x u 0
y 0 v



 ,





−1 0 0
x 0 u
y v 0



 : x, y, u, v ∈ R, uv 6= 0







.

We start with the inhomogeneous one-dimensional case. The proof of the
following result is very similar to that of proposition 3 and will be omitted.
However, the automorphism

ψ =





−1 0 0
0 0 1
0 1 0





now allows us to change the sign of α (and thus α can always be taken to be
positive).

Proposition 6. Any (1, 1)-affine subspace of g03.4 is L-equivalent to exactly
one of the following subspaces

Γ1 = F2 + F3 + 〈F1〉 Γ2,α = αF1 + 〈F2 + F3〉 .
Here α > 0 parametrizes a family of class representatives, each different value
corresponding to a distinct non-equivalent representative.
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The result for the homogeneous two-dimensional case follows from proposi-
tions 2 and 6.

Proposition 7. Any (2, 0)-affine subspace of g03.4 is L-equivalent to
〈F1, F2 + F3〉.

Lastly, we consider the inhomogeneous two-dimensional case. Again, the
proof of the following result is very similar to that of proposition 5 and will be
omitted. However, the two affine subspaces F3 + 〈F1, F2〉 and F2 + 〈F1, F3〉 are
now L-equivalent, the required automorphism relating the two being

ψ =





−1 0 0
0 0 1
0 1 0



 .

Also, the parameter α can be made positive.

Proposition 8. Any (2, 1)-affine subspace of g03.4 is L-equivalent to exactly
one of the following subspaces

Γ1 = F3 + 〈F1, F2〉 Γ2 = F2 + 〈F1, F2 + F3〉
Γ3,α = αF1 + 〈F2, F3〉 .

Here α > 0 parametrizes a family of class representatives, each different value
corresponding to a distinct non-equivalent representative.

4.3 Summary

We express the results for type V I in terms of the ordered basis
(E1, E2, E3). In some cases, additional automorphisms are used to simplify ex-
pressions.

Theorem 1. Any affine subspace of g03.4 (type V I0) is L-equivalent to ex-
actly one of E2+〈E3〉, αE3+〈E2〉, 〈E2, E3〉, E1+〈E2, E3〉, E1+〈E1 + E2, E3〉,
and αE3 + 〈E1, E2〉, where α > 0. Any affine subspace of gh3.4 (type V Ih, in-
cluding g2.1 ⊕ g1 = g−1

3.4) is L-equivalent to exactly one of the above formal list
for g03.4 or E1 + 〈E1 − E2, E3〉, but with α 6= 0. In both cases α parametrizes
families of class representatives, each different value corresponding to a distinct
non-equivalent representative.

5 Type V II

The family of Lie algebras gh3.5 (including cases h = 0 and h = −1), has
commutator relations

[E2, E3] = E1 − aE2, [E3, E1] = aE1 + E2, [E1, E2] = 0
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in terms of an (appropriate) ordered basis (E1, E2, E3). Here a is a non-negative
parameter (a =

√
h).

5.1 Type V IIh

Consider the Lie algebra gh3.5 with h > 0. With respect to the basis
(E1, E2, E3), the group of automorphisms takes the form

Aut
(

gh3.5
)

=











x y u
−y x v
0 0 1



 : x, y, u, v ∈ R, x2 + y2 6= 0







.

We start with the inhomogeneous one-dimensional case.

Proposition 9. Any (1, 1)-affine subspace of gh3.5 is L-equivalent to exactly
one of the following subspaces

Γ1 = E2 + 〈E3〉 Γ2,α = αE3 + 〈E2〉 .

Here α 6= 0 parametrizes a family of class representatives, each different value
corresponding to a distinct non-equivalent representative.

Proof. Let Γ = A + Γ0 be a (1, 1)-affine subspace of gh3.5. First, assume that
E∗

3(Γ0) 6= {0}. (Here E∗
3 denotes the corresponding element of the dual basis.)

Then Γ =
∑3

i=1 aiEi +
〈

∑3
i=1 biEi

〉

with b3 6= 0. Hence Γ = a′1E1 + a′2E2 +

〈b′1E1 + b′2E2 + E3〉. Thus

ψ =





a′2 a′1 b′1
−a′1 a′2 b′2

0 0 1





is an automorphism such that ψ · Γ1 = ψ · (E2 + 〈E3〉) = Γ.
Now assume E∗

3(Γ0) = {0} and E∗
3(A) = α 6= 0. Then Γ = a1E1 + a2E2 +

αE3 + 〈b1E1 + b2E2〉. Thus

ψ =





b2 b1
a1
α

−b1 b2
a2
α

0 0 1





is an automorphism such that ψ · Γ2,α = ψ · (αE3 + 〈E2〉) = Γ.
We verify that none of the class representatives are equivalent. As 〈E1, E2〉

is invariant under automorphisms, Γ0
2,α = 〈E2〉, and Γ0

1 = 〈E3〉, it follows that
Γ2,α cannot be L-equivalent to Γ2. On the other hand, as E∗

3(ψ ·αE3) = α for
any automorphism ψ, it follows that Γ2,α and Γ2,α′ are L-equivalent only if
α = α′. QED
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The result for the homogeneous two-dimensional case follows by propositions
2 and 9.

Proposition 10. Any (2, 0)-affine subspace of gh3.5 is L-equivalent to
〈E2, E3〉.

Lastly, we consider the inhomogeneous two-dimensional case.

Proposition 11. Any (2, 1)-affine subspace of gh3.5 is L-equivalent to ex-
actly one of the following subspaces

Γ1 = E1 + 〈E2, E3〉 Γ2,α = αE3 + 〈E1, E2〉 .

Here α 6= 0 parametrizes a family of class representatives, each different value
corresponding to a distinct non-equivalent representative.

Proof. Let Γ = A+ Γ0 be a (2, 1)-affine subspace. First, assume E∗
3(Γ0) 6= {0}.

Then Γ =
∑3

i=1 aiEi+
〈

∑3
i=1 biEi,

∑3
i=1 ciEi

〉

with c3 6= 0. Hence Γ = a′1E1+

a′2E2 + 〈b′1E1 + b′2E2, c
′
1E1 + c′2E2 + E3〉. Now either b′1 6= 0 or b′2 6= 0, and so

[

b′2 −b′1
b′1 b′2

] [

v1
v2

]

=

[

a′2
a′1

]

has a unique solution. By a simple argument, it follows that v2 6= 0 (as Γ is
inhomogeneous). Therefore

ψ =





v2b
′
2 v2b

′
1 c′1

−v2b′1 v2b
′
2 c′2

0 0 1





is an automorphism such that ψ·Γ1 = ψ·(E1+〈E2, E3〉) = Γ. Indeed, ψ·Γ0
1 = Γ0

and

ψ · E1 = v2b
′
2E1 − v2b′1E2

= (a′1 − v1b′1)E1 + (a′2 − v1b′2)E2

= a′1E1 + a′2E2 − v1(b′1E1 + b′2E2) ∈ Γ.

Now assume E∗
3(Γ0) = {0} and E∗

3(A) = α 6= 0. Then Γ0 = 〈E1, E2〉 and
so Γ = αE3 + 〈E1, E2〉 = Γ2,α.

Finally, we verify that none of the class representatives are equivalent. As
〈E1, E2〉 is invariant under automorphisms, it follows that Γ2,α cannot be equiv-
alent to Γ1. Then again, as E∗

3(ψ ·αE3) = α for any automorphism ψ, it follows
that Γ2,α is L-equivalent to Γ2,α′ only if α = α′. QED
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5.2 Type V II0

Consider the Lie algebra g03.5. With respect to the ordered basis (E1, E2, E3),
the group of automorphisms takes the form

Aut
(

g03.5
)

=











x y u
−ςy ςx v

0 0 ς



 : x, y, u, v ∈ R, x2 + y2 6= 0, ς = ±1







.

The proof of the following result is very similar to that of propositions 9 and
11, and will be omitted. (Again, the homogeneous two-dimensional case follows
by proposition 2.) However, the automorphism ψ = diag(1,−1,−1) now allows
us to change the sign of α (and thus α can always be taken to be positive).

Proposition 12. Any affine subspace of g03.5 is L-equivalent to exactly
one of E2 + 〈E3〉, αE3 + 〈E2〉, 〈E2, E3〉, E1 + 〈E2, E3〉, and αE3 + 〈E1, E2〉.
Here α > 0 parametrizes families of class representatives, each different value
corresponding to a distinct non-equivalent representative.

5.3 Summary

Theorem 2. Any affine subspace of g03.5 or gh3.5 (type V II0 or V IIh, re-
spectively) is L-equivalent (with respect to the different ordered bases) to exactly
one of E2 + 〈E3〉, αE3 + 〈E2〉, 〈E2, E3〉, E1 + 〈E2, E3〉, and αE3 + 〈E1, E2〉,
where α > 0 for g03.5 and α 6= 0 for gh3.5. In both cases α parametrizes fam-
ilies of class representatives, each different value corresponding to a distinct
non-equivalent representative.

6 Final remarks

A description of controllable single-input right-invariant systems on simply
connected solvable Lie groups, up to dimension six, was obtained by Sachkov
[19]. These results are of a different nature to those obtained here. (Besides, no
equivalence relations were considered in [19].)

Agrachev and Barilari [1] recently classified the invariant sub-Riemannian
structures on three-dimensional Lie groups. We, however, are concerned with the
equivalence of the underlying invariant distributions. Invariant sub-Riemannian
structures can be related to certain classes of invariant optimal control prob-
lems; two such problems are cost-equivalent only when the underlying invariant
control systems are detached feedback equivalent ([8]).

The present paper forms part of a series in which the full-rank left-invariant
control affine systems, evolving on three-dimensional Lie groups, are classified.
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A summary of this classification can be found in [5]. The other solvable cases
are treated in [7], whereas the semisimple cases are treated in [6].
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Type (ℓ, ε) Conditions Equiv. repr.

V I0

(1, 1)
F ∗
1 (Γ0) 6= {0} F2 + F3 + 〈F1〉

F ∗
1 (Γ0) = {0}, F ∗

1 (A) = ±α, α > 0 αF1 + 〈F2 + F3〉
(2, 0) 〈F1, F2 + F3〉

(2, 1)
F ∗
1 (Γ0) 6= {0} F2 ∈ Γ0 ∨ F3 ∈ Γ0 F3 + 〈F1, F2〉

F2 /∈ Γ0 ∧ F3 /∈ Γ0 F2 + 〈F1, F2 + F3〉
F ∗
1 (Γ0) = {0}, F ∗

1 (A) = ±α, α > 0 αF1 + 〈F2, F3〉

V Ih

(1, 1)
F ∗
1 (Γ0) 6= {0} F2 + F3 + 〈F1〉

F ∗
1 (Γ0) = {0}, F ∗

1 (A) = α 6= 0 αF1 + 〈F2 + F3〉
(2, 0) 〈F1, F2 + F3〉

(2, 1)
F ∗
1 (Γ0) 6= {0}

F2 ∈ Γ0 F3 + 〈F1, F2〉
F3 ∈ Γ0 F2 + 〈F3, F1〉

F2 /∈ Γ0 ∧ F3 /∈ Γ0 F2 + 〈F1, F2 + F3〉
F ∗
1 (Γ0) = {0}, F ∗

1 (A) = α 6= 0 αF1 + 〈F2, F3〉

V II0

(1, 1)
E∗

3(Γ0) 6= {0} E2 + 〈E3〉
E∗

3(Γ0) = {0}, E∗
3(A) = ±α, α > 0 αE3 + 〈E2〉

(2, 0) 〈E2, E3〉

(2, 1)
E∗

3(Γ0) 6= {0} E1 + 〈E2, E3〉
E∗

3(Γ0) = {0}, E∗
3(A) = ±α, α > 0 αE3 + 〈E1, E2〉

V IIh

(1, 1)
E∗

3(Γ0) 6= {0} E2 + 〈E3〉
E∗

3(Γ0) = {0}, E∗
3(A) = α 6= 0 αE3 + 〈E2〉

(2, 0) 〈E2, E3〉

(2, 1)
E∗

3(Γ0) 6= {0} E1 + 〈E2, E3〉
E∗

3(Γ0) = {0}, E∗
3(A) = α 6= 0 αE3 + 〈E1, E2〉

Table 2. Affine subspaces of Lie algebras
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Type Commutators Automorphisms

V I0

[F2, F3] = 0




1 0 0
x u 0
y 0 v



 ,





−1 0 0
x 0 u
y v 0



 ; uv 6= 0[F3, F1] = −F3

[F1, F2] = −F2

V Ih

[F2, F3] = 0




1 0 0
x u 0
y 0 v



 ; uv 6= 0[F3, F1] = −(a+ 1)F3

[F1, F2] = (a− 1)F2

V I0

[E2, E3] = E1




x y u
y x v
0 0 1



 ,





x y u
−y −x v
0 0 −1



 ; x2 6= y2[E3, E1] = −E2

[E1, E2] = 0

V Ih

[E2, E3] = E1 − aE2




x y u
y x v
0 0 1



 ; x2 6= y2[E3, E1] = aE1 − E2

[E1, E2] = 0

V II0

[E2, E3] = E1




x y u
−y x v
0 0 1



 ,





x y u
y −x v
0 0 −1



 ; x2 6= −y2[E3, E1] = E2

[E1, E2] = 0

V IIh

[E2, E3] = E1 − aE2




x y u
−y x v
0 0 1



 ; x2 6= −y2[E3, E1] = aE1 + E2

[E1, E2] = 0

Table 3. Lie algebra automorphisms




