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RELATIVE DOMAINS OF INTEGRAL OPERATORS
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Dedicated to the memory of Professor Gottfried Kothe

SUMMARY. The paper generalizes the known construction of the extended domain of an
integral operator relative to an arbitrary range space. The aim of the generalization is to get
rid of excessive solidity hypotheses imposed in the previous work on the subject.

1. INTRODUCTION

Let (S, ds), (T, dt) be o-finite measure spaces, L°(S), L°(T) be the corresponding spaces
of almost everywhere finite scalar valued measurable functions on § and 7', and let K — a
measurable function on § x 7T'— be the kernel of the integral operator K :

Ku(t) =/k(t,3)u(3)ds.
S

The proper domain D, of K is defined in the usual way:
Dy, ={u€eL’(8S):|K|lu] < ccae}, [K|ul(t)= [ |k(t,8)||u(s)|ds.
S

The spaces L°(S) and L°(T) are furnished with the topologies of convergence in mea-
sure on all subsets of finite measure, defined by some fixed monotone F'-norms pe and pp,
respecuvely.

We recall, [AS, 1967], that D, is fumished with the natural topology given by the F'-
norm u — pg(u) + pp(|K||u]). Dy isasolid F-spaceand K : D, — L° is continuous.

We assume that D is order dense in L°. This nonsingularity assumption implies, by
completeness of Dy , that D, contains a function which is positive a.e. on S

By a subsace of L° we mean a vector subspace; in the case when the subspace has its own
topology, we always tacitly assume that its inclusion in L? is continuous.
Throughout this paper (L, p;) will denote an F'-subspace of L°(T) ; we stress that we

do not assume that L 1s solid.
In [LS, 1988] the maximal extension of an integral operator K with values in L was
studied under the hypothesis that the space

(1.1) Dy, ={u€Dy:Ku€lL}
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1s solid. While realistic in some cases, the hypothesis need not be satisfied in some examples
of interest.

Such an example is provided by the Fourier transform,ie., S=T = R k(t,s) = e™**,
and by the range space L = L%, ¢ > 2. In this case (as one would expect) the space {f €
€ L' : Kf € L9} = Dy, is not solid. An elegant proof of this fact was communicated to

us by C. Datry and G. Muraz.
The extended domain of the Fourier transform with values in L9 was studied in an ad hoc

manner in (S, 1980].
With the possibility in mind that D, ; need not be solid, we take up again the project of
constructing the maximal domain of K relative to L, assuming this time that the space D,

contains a solid subspace which is order dense in L°; in the preceding example, by the M.

Riesz Theorem, D, contains L, with % + -;— =1,

The construction in this paper supersedes that of [LS, 1988], which in turn was a general-
ization of the one in [AS, 1967] dealing with the case when L = L° .

2. EXTENDED DOMAINS RELATIVE TO L
We recall the definition of the extended domain of K (relative to L), [AS, 1967]. Define

(2.1) dg(u) = sup{pp(Kv) :v € DN [ul}, uwelL’(S),

where [u] is the order interval [u] = {v € L° : |v| < |u|}.
Then dg is a (not necessarily finite) group semi-norm on L° and equipped with the cor-
responding (not necessarily finite) group norm

(2.2) B = pg + dy.

L° is a complete metric group. The extended domain D, of K is the closure of Dy in

(L”,f}ﬁr); EK is a solid F'-space and the operator K can be extended by continuity to
D, . We denote this extension by K . The following comments and the theorem explain the

usefullness of K .

Let V be a topological vector subspace of L°(.S). We say that K is V — L semiregular
if

(1) Dy NV isdensein V ;

(ii) K(DgNV) C L andtheoperator K : D, NV — L 1s V — L continuous.

If these conditions are satisfied, then K can be extended by continuity to V' ; this ex-
tension is denoted by K, . When L = L°, we suppress the symbol L and use the term
V -semiregular and the symbol K, . Clearly, V — L semiregular implies V -semircgular.
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Theorem 2.1. Let V be a solid (topological vector) subspace of L°(S) such that K is V
semiregular. Then V is continuously contained in D, and K, = K v (where \, denotes

the retriction to 'V ).

We notice here that in the above theorem the space V' need not be complete or metric, the
conditions inadvertently imposed in [AS, 1967]. A simple proof of the modified version of
the result 1s repeated below in a more general setting of Theorem 2.5.

We introduce the solid domain Ay, of K relative to L and the solid domain Az, of K
relative to L :

Ag,={u€Dy:K[ulCL}, Ag,={u€Dg:K[u]lCL}

Clearly, A, and Ay, are solid.

Proposition 2.2. For every u € Ay, , the set K[u] is boundedin L. For every u € Ag, ,
the set K[u) is boundedin L.

Proof. We prove the second statement. Let V, = {v € L° : v € [au] for some a > 0} for
u in Az, . With the unit ball [ u], V, is a solid Banach space contained in D . By solidity of
D ,[u] is bounded in D} and the inclusion V, C Dy is continuous. The continuity of K
from DH into L° and the continuity of the inclusion of L in L° imply, by using the closed
graph theorem, that K : V, — L is continuous and that K [u] is bounded in L. The proof
of the first part is obtained in the same way, replacing K by K and D, by Dy.

It is obvious that A,, C Ak, .
We now make the nonsingularity assumption: A, is order dense in L°(S) .

This is equivalent to a seemingly stronger assumption that A, is order dense in L°.
Indeed, let vy € Dy be such that uy, > 0 a.e. Then the set {min(auy, [v]) sign v; v €

Az, > 0} is contained in Ay, and is order dense in L° if Ag is.

Similarly to (2.1), we define the following group seminorms on L :

dRL(U‘) = SUD{;JL(RU) v € [ u] ﬂﬁRL}, dffL = sup{pL(Ku) ‘v € [u] ﬂﬁh’b}'

Theorem 2.3. The group norms py; = pg+dy, and pi, = pg+dj, aresolid and complete

on L°. py, < pi, . Both norms define on L° topologies stronger than that given by py .

Proof. The completeness proof is the same as for p, (see [AS, 1967]) and we omit it. The
inequality dy; < dg; is obvious. If dy; (u,) — O, then for any sequence (v, ) such that
v, € Dy N[u,],wehave p,(Kv,) — 0 and, by continuity of the inclusion of L in LY, it
follows that d, (u_ ) — 0. This proves the last statement.
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Proposition 2.4. (Ag,;,px,) isan F-space.

Proof. The continuity of multiplication a« — au, v € D, , follows from Proposition 2.2.
If (u,) is a Cauchy sequence in Az, , then (u_ ) converges in Dy to a limit u and, by
conunuity, (ﬁfun) converges to Ku in L°. The incquality p(K(u, —u_)) <dg (u, —
u..) 1mplies that (f(un) is a Cauchy sequence in L, andthat Ku € L. If v € [u], then we
apply the same argument to the sequence (v, ), v, = min(|u_|, |v|) sign v, to conclude that
v € D, and that Kv € L. It follows that u € A, .

Theorem 2.5 (maximality relative to L). Let V be a solid topological vector subspace of

L° suchthat VN Ay, isdensein V andthat K : VN Ay, — L is V -continuous. Then V
is continuously contained in Ay, .

Proof. We show thaton V N Dy, the topology of V' is stronger than the topology of Ay, .

For given € > 0, we find a solid neighborhood N of the originin V' such that p, ( Kv) < ¢
forallve NNAg,. Thendg,(v) <eforallve NNAg,.

A more direct extension of K relative to L 1s obtained by taking the closure of Ay,
in (L%, ps ), which we denote by A,, . The nonsingularity assumption implics that A,

contains a function which is positive a.c. The space (A, ,px;) is asolid F-space with the
following maximality property.

Theorem 2.6. Let V be a solid topological vector subspace of L° such that V N A K IS
densein 'V and K : V NAyg; — L is V -continuous. Then V is continuously contained in

AK’L-
We note that if the space D, i1s not solid, then it 1s not contained in Az, . In fact, if
f € Dy, is such that [ f] 1s not contained in Dy, , then f & Az, . Otherwise the order

interval [ f] would be contained in Az, N D, and K| fl = K[ f] would be contained in
L , contrary to the assumption.

Remark. The hypotheses of Theorem 2.6 are equivalentto K being V — L semircgular. In
fact, under these hypotheses, wehave A, NV =D, NV.

The inclusion A, NV C Dy NV 1sobvious. Tosee that D, NV C A, NV, lct
u € D NV and consider v, € Ap; NV suchthat v, — u iIn V. By solidity of V', we
may assume that v, € [u]. Then Kv, — K,;(u) in L and Kv, — Ku a.c. It follows
that Ku = Ky;(u) € L and u € D, . The same argument shows that [u] C D, and
u€ Q.

We recall that for a solid subspace V of L°, the space V* is defined by

Vi={ueL’:[u]lNVisbounded in V}.
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—

Proposition 2.7. A,, C Az, C A}, and dyp =dg, on By, .

Proof. Since K is A,, — L semiregular, the first inclusion follows from Theorem 2.5. If
u € Ag,; and € > O then, by Proposition 2.2, for some A > 0,p;,(AKv) < € for all
v € [u]. It follows that dy; (M) < e forall v € [u] NA,; which implies the second
inclusion. The last equality 1s obvious.

The 1nclusion 1n the above Proposition can be reversed under additional conditions on L
introduced in the next Section.

Remark. The constructions as in (2.3) can be carried out for F'-norms p,; with special prop-
erties (€.g. norms, p-norms). d,, may then inherit properties of p, .

3. SPECIAL CLASSES OF RANGE SPACES L

We now consider some assumptions on the space L which allow to obtain inclusions of the
extended domains, mentioned in the preceding section and to carry out the construction of the
extended domain relative to L, using a sublattice of D, rather than its solid subspace.
Conditions imposed on L involve C-sequences. We recall that a sequence (z_) C L 1S
a C -sequence in L if, for every numerical sequence (a,) convergent to 0, the series Xa
1s convergent in L.
We will use the «if» part of the following standard result.

Proposition 3.1. A sequence (z.) isan arbitrary F-space X is a C-sequence iff the set of
all finite sums Xa_,z,.,|a.| < 1,isboundedin X .

It 1s known, [O, 1951], that for every C -sequence (z,) In L, the series £z _ is conver-
gentin L°. Hence, by the continuity of the inclusion of L in L°, for eery C -sequence (z,)

in L, the sum Tz _ existsin L°.

The conditions we impose on L are the following:

(c,) If (z_) isa C-sequencein L, then Zz € L (it is not required that the series be
convergent in L ).

(c) If (z,) isa C-sequence in L, then Xz is convergentin L.

We remark that (¢ ) is weaker than (¢) and that (c,) is satisfied in many concrete func-
tion spaces, in particular in any dual space in the sense of Kdthe. An intermediate condition
between (c,) and (c¢) was introduced in [D, 1974] under the name of bounded Fatou prop-
erty. By [K, 1975], L satisfies (c) iff it does not contain a linearly homeomorphic copy of
Co -

The following statement is immediate and is listed for the sake of reference.

The space L satisfies (c) iff forevery C-sequence (z,) mm L,z — 0 in L.
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We now show how (c,) allows one to replace A, in the construction of A, , by a
sufficiently large sublattice of D, .

Let A C Dy, bea vector sublattice of L? . We consider the following conditions on A :

(3.1) A is order dense in L°. For every u € A, theset K([u] NA) i1s bounded 1n L.

Given such A, one can carry out the constructuon of the F'-norm dy; as tollows. First
d,; isdefined on A by the formula (2.3), the least upper bound being extended over [u]NA .

Once this 1s accomplished, d; is extended (o L° by monotonicity. The latter step requires
some additional hypotheses on L related to the condition (¢, ) . The resulting construction
supersedes the one in Section 2 with seemingly weaker hypotheses. Although useful for some
purposes, this weakening of the requirements on A s illusory, as shown in the next Proposi-
tion.

Proposition 3.2. If L satisfies (c,) and if Dy, contains a lattice A satisfying (3.1), then

the solid hull of A is contained in D ; . In particular, A, is order dense in L° .

Proof. 1t is sufficient to prove that forevery u € A, [u] 1scontainedin D, . lf v € [u], we
write v = v, — v_ (a sum of four terms in the complex case) and prove that v, and v_ are
in D, . By the hypothesis, there 1s a sequence vy, = 0,v,. € A,n€ N ,suchthat v_ T v,.
The order boundedness of K implies that the sequence (Kv,_,, — Kv,) 1sa C-sequence in
L with the sum Kv, . It follows from (c) that Kv, € L.

The proof of the proposition shows also that if L satisfies (¢ ) and if D, is order dense

but not solid in L° , then D x cannotbe alattice. In particular, if K is the Fourier transform,
then the space D, considered in Sectuon 1 is not a lattice.

Let V be a topological subspace L°. Recall that:

V has the o -Levi property if, for every sequence (v ) boundedin V,v_ > 0,
and v € L%, such that v, T v a.e., it follows that v € V.

V has the o -Lebesgue property if the conditions v, € V,v_ | 0 a.e imply that
v, — OinV.

The spaces D and D x are known to have both the o -Levi and the o -Lebesgue prop-
erties.

Proposition 3.3. If L satisfies (c,) ,then Ag; has the o-Levi property.

Proof. Let (u_) be a bounded sequence in Az, ,u. > 0,uy, = 0 and suppose that u_ T u
a.e. Since D has the o-Levi property and (u,) is bounded in D, , it follows that u € D,
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and that Ku = lim Ku_ in L°. Also, the sequence (u, —u__,) isa C-sequence in Az,
(by Proposition 3.1) and (Ku, — Ku__,) isa C-sequence in L (by Proposition 2.2) and
Ku=)(Ku,—Ku_,) € L.If ve&[u],thenthe same argument applied to the sequence

(v,),v, =min(u_,|v]) sign v,shows that Kv € L and hence u € Ag, .
Theorem 3.4. If L satisfies (c,),then AL, = Ay, .

Proof. If u > 0,u € E‘-ﬁ:;,s then by the nonsingularity assumption, we can find a sequence
v, T u suchthat u, € A., and, by Proposition 3.3, u € Az, . The definition of ‘Efu_,

implies that (u_) 15 bounded in .3“ and hence in Ag, . The reverse inclusion is given by
Proposiuon 2.7,

If Az, = A, , then Proposition 3.3 implies that A, , has the o-Levi property. This
equality does not seem to follow from (c_ ) alone.

Theorem 3.5. If L satisfies (c), then Ay, = Ay, and Ay, has the o-Levi property. Also,

in this case Ay, has the o-Lebesgue property.

I

Proof. We first prove that Eﬂx ;, has the o-Lebesgue property. If u, € Ag;,u, | O and
if dg;(u,) /4 O, then the series X (u, — u__;) cannot converge in Az, , or else it would
have to converge 10 u, and (u,) would have to converge to 0 in Az, . Choosing, if nec-
essary, a subsequence and using the definition of dg, , we find v, € [u, — u,_, ;] such that

p; (Kv,) # 0. Since (v,) isa C-sequence in Ag,,(Kwv,) isa C-sequence in L and the

series £ Kv_ converges in L. We get a contradiction.
To complete the proof, suppose that u > 0,u € Ag,. Since A, 1s order dense in

LY, we find u € Ag;,u. > 0,suchthat v, T u a.e. Then, by the o-Lebesgue property,

di(u—u ) <dg,(u—u)—0 withn—ooand u € E‘h’b'
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