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THE GENERALIZED RADEMACHER FUNCTIONS
R.M. ARON, M. LACRUZ, R.A. RYAN, A.M. TONGE

Dedicated to the memory of Professor Gottfried Kéthe

In [A & G], the authors introuced the so-called generalized Rademacher functions and
used them to prove that every continuous multilinear form A4 @ ¢y X ... x ¢y — € hasa
trace. In this note, we show that these functions are quite useful in obtaining simple proofs
of various estumates in several different areas of analysis. We first give a simple proof of a
result of 1. Zalduendo [Z], which extends the result cited above from ¢, to £,. Next, we show
how generalized Rademacher functions can be used to provide a new proof of a theorem of
A. Defant and J. Voigt (see, for example [A & M, 3.10]). Then we exhibit this theorem as a
special case of a more general result, which in turn yields other consequences, one new and
one old. Next, we use these functions to derive a new polarization formula for symmetric
multilinear forms, which yields a new proof of an inequality of Harris. Finally, we provide
a sumple proof of a theorem of Pelczynski about the continuity of multilinear mappings with
respect to a certain sequential topology.

We recall [A & G] that for every natural number n > 2, the generalized Rademacher
funcuons (3;.) are defined inducuvely as follows. Let oy = 1,a,,...,a, bethe complex n-

P

th roots of unity. For j = 1,...,nlet I, = (7 ,’ ) and let I, ;denote the j, -th open
Ti Ti

subinterval of length 1/n of Ijl(jlsjg =1,2,...,n). Proceeding like this, it 1s clear how

to define the interval IJ&J’: i forany k. Now s, : [0,1] — C isdefined by setting s, (t) =

a; fort € I;, where 1 <7 < n. There is no harm in setting s,(t) = 1 for all endpoints t.
We list below the basic properties of the sequence (s,) of generalized Rademacher functions
which we will need. The verification of these properties follows exactly the same lines as the
corresponding result for the classical Rademacher funcuons.

Lemmal. (/) Forevery k=1,2,...and t € [0,1], we have |3, (1)|=1.

(2) The integral
] L .
-/ S;‘ (t)Si (t)d't:{l Iftl—..._ 11‘1
’ | " 0 otherwise

(3)If 7y,...,], aredistinct positive integers, then for .::r}.(t) = 3}.(3) or 3}_“) |
! ] — -—_ —_—
m m 1 = ... = =0 |
/ U-l(i)---ﬂ-“(t)dt={ ymy = m, = 0 (mod n)
o ! & 0 otherwise.

We observe that, in view of (2) above, it is perhaps surprising that there are standard type
Khinchin inequalities for the generalized Rademacher functions. This can be see by copying
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the usual proof of Khinchin’s inequality, as found for example in [L & T, Thecorem 2.6.3], and
using Lemma 1, (3).

Recall that for a Banach space E,L(™FE) is the space of continuous n-linear forms
A: FEz...tFE — K,where K = R or €. P("FE) is the Banach space of all continu-
ous m-homogeneous polynomials P : £ — K, that is all functons of the form P(zx) =
A(z,...,z) forsome A € L("E), with ||P|| = sup{|P(z)| : ||z|| € 1}. The symmetric
n-linear form A associated with P 1n this way 1s uniquely determined by P.

Theorem 2 (Zalduendo). Let the scalar field be C . For every p € [1,00), every integer
n< p,andevery P € P(“Ep) .

ICP(e) ]l e < 1IP|

Proof. Since we agree that p/0 is oo, there 1s no harm in assuming that n < p. For each
J € N, choose A; € € such that

n - P—ry
X P(e;) = |P(Ej)|l’ .

Let A be the symmetric n-linear form associated to P, and let (sj) be the sequence of

generalized Rademacher functions corresponding to n. Fixing £ € N and applying Lemma
1,

EIP(E )7+ = EX"P(E )
=1
Lk k k
=./. EZ E;\h “:\fnsfl(t)sjz(t) +9j (t)A(Eh’ J2 "”’E.n)dt

J*l=1 J! }n=1

k

.?1 Sh (t) e.?l E }‘J: Siz(t)e Z /‘\}HS}“('L‘) € dt

11-1 J2=1 Ja=1

!
\.

;S (t)e dt

I
'\.

<P -1, A2, -0, 26, 0,0,..0] 1

L n/p
=PIl { D IMIP
J=1

Easy arithmetic yields the result.
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Note that the proof makes heavy use of the assumption that K = € . An analogous result
holds for K = R , namely

H(-P(Ej))“F—;L‘ < c(n,p)||P|]

for every P € P("£)),and every n < p. However, ¢(n, p) is not 1 in general, and in fact

the best constants c(n,p) are not known. For example, if P(z,,z,,...) = :1:% — a;% for

(zy,24,...) € £, ,then ]|(1F:’(Ej;))||3—j1r = \/2_||P“

As we now show, the same general argument provides a simple proof of a recent result
of A. Defant and J. Voigt concerning absolutely summing multilinear operators. We recall
that a sequence (z;) in a Banach space E is weakly summable if for all ¢ € E’, we have
Y 1 le(z;)] < oo. The vector space of all weakly summable sequences in E' is denoted

2. ( E) and is a Banach space when endowed with the norm

I(z) |y, = sup Z lo(z;)|.

llll<1 5o

If £,,...,E,_ , and F' are Banach spaces, the collection of all continuous n-linear maps
Fyx...xE, — Fisdenoted L(FE,,...,E_; F). A continuous n-linear mapping A :
E, x ...x E, — F issaid to be absolutely summing if for all (z!) € £ (E,),(z?) €
2L (Ey),...,(z?) € £LL(E)), the sequence A(zx},z?,...,z?) is in £'(F), that is,

grg e
0o
Z”A(:E;I:I?:;If?)” < OQ.
1=1

Each such mapping A induces an n-linear map A : £L(E,) x ... x £.(E.) — £'(F),
and 1t 1s straightforward that

A=), (27)s - (EN) oy < ClED - -y

1S the in-

|All
fimum of the constants C for which the inequality above holds. If we restrict each (:c{ )
to be of the form (:-:{ ,0,0,...) then the above inequality reduces to ||A(z],...,z7)|| <
Cllzi]| .- -]|z}]], so that ||A]| < ||A|l,,- The following result appears in [A & M, 3.10]. We

cmphasize that the proof offered below simplifies the original proof of A. Defant and J. Voigt,
although it works only for the complex scalar field.

for some constant C. We agree that the absolutely summing norm of A,

as’?

Theorem 3 (A. Defant and J. Voigt). Let K be the real or complex scalar field. Then for
all A€ L(E,,...,E_;K) we have ||A|| = ||A|l|,,- In particular, every continuous n-linear
scalar valued mapping A E, x ... x E_— K is absolutely summing.

Proof. As mentioned above, our proof of the isometry works only for K = €. Given
A E x...xE_— C and (z},...,z") € E;, x...x E_,i=1,...,m,choose \; €
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C,|>| = 1 suchthat |[A(z],...,z?)| = A\PA(z),...,z?). Let (s;) be the sequence of
generalized Rademacher functions corresponding to n. Then

m m
Y A=),z = ) AT A(e,. 2l
1=1 i=1

1 ™m
:/ E .ll-l...}\{ S (t)-gl (t)A(I;I l"'!I:'l)dt
0 . n 4 n 1 »

<JIA|| max $ 1> X s Oz || N s (9]

0<t<]

<[l -1(z1, 22, Ty 0,0, ) Iy - 1(2T, 25, 20, 0,0, )

Since m was arbitrary, it follows that ||4||,, < ||4]|, and the proof is complete.

Note that there 1s apparently no hope that the above argument can be modified to obtain
the 1sometry in case K = R . However, it is possible to view Theorem 3 as a special case of
a more general result, which also admits another theorem of Alencar and Matos [A & M] as a
special case, and which allows us to establish a multilinear form of Grothendieck’s inequality.

We need some terminology. Partition the integers {1,...,n} into two disjoint blocks
{a;,...,a,} and {b,,...b, }, where of course r + s = n. Consider a continuous multilinear
map A: B, x...x E_ — F. Whenweselect z, € E (1 < j < r) wecandefine a

ﬂ-}'
«projection»
A : By

Iu] l'"Inr 1

X...XEb._"}F,

by
A !__Iﬂr(:sbl,.“,zb’) = A(z,...,x.).

I"I

It 1s quite clear that

(%) [

21

< NAJHzg - - -llzq, I

Control of the absolutely summing norms of the projcection yields a surprising amount of
information.
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Theorem 4. Let the scalar field be € . For some subset {a,,...,a_} of {1,...,n}, let all

the projections A of the n-linearmap A € L(E,,..., E_; F') be absolutely summing

Iﬂl ’+*.IH

and satisfy
(%) | A

gy vesTo, I as

< Kllz, |-

Then A is also absolutely summing with ||A||,, < K.

Proof. Choose :5’1 ..o, 7] in E;(1 < 7 < m) and use the Hahn-Banach theorem to select
p; € F{ with ||p;]| = 1 and

|A(z;,....s)|| = 0;(A(zi,...,2})).
If {b;,...,b,} ={1,...,n} —{a,,...,a_}, it will be convenient to write

A(y®, .., u0y%, .0 = Ay, ..., 7).

When s,, s,, ... 18 the sequence of generalized Rademacher functions corresponding to r+ 1,
we have

Yo NAGz, 2D = ) (Al .n )
i=1 i=1

1 m m .

- , ,

=./ Zsf(t)wi A4 Z‘Sil(t)m?,]:uwi S,;r(i)mf:,:ri‘,...,mf' dt .
0 “

Now, if we write X, (t) = Esi,(t)sz' (1 <7< r),weobtain
J J

i;=1

m

1 b b
Y Az, ..z < /ZHAX”“) _____ PITYC VRN
j=1 o

anx 0. (o lle Hn(zl,m. I | d

< K anl,.u, e /nx D1, (D |at

< K|[(zyyeeoyzh, 0,0 )| -2 o 2, 0, )]

This 1s just what we needed to find. Q.E.D.
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Corollaries flow thick and fast, but first we should note that although the proof of theorem
4 has no chance of working when the scalar field is real, the result is still rue and may be
proved by incorporating the same sort of ideas as those contained in the proof of theorem 3
of Defant and Voigt.

To see how their theorem follows from our Theorem 4, first observe that any scalar valued
linear map is, by the very definition, absolutely summing with absolutely summing norm
equal to the operator norm. Thus, if we have an n-linear scalar valued map A, inequality (*)
conspires with (**) to ensure that

14lla, < 1IA][-

ﬂ.!—l

The next corollary concerns Banach spaces with the Orlicz property, that is spaces which
have the property that for every unconditionally summable sequence (z;) we have

}:Hmjn'-’- < 0.

Orlicz himself showed that L [0, 1] has the Orlicz property when 1 < p < 2. Alencar and
Matos [A & M. proposition 3.8] demonstrated that when » > 2 and F,, ..., E_ are Banach
spaces with the Orlicz property, all bounded multilinear mappings E, x ... x K — F into
an arbitrary Banach space F' are absolutely summing. The restriction n» > 2 1S necessary

r——

because of the Dvoretzky-Rogers theorem. Theorem 4 allows us to go a little further.

Corollary 5. If n >

2 and at least 2 of the Banach spaces E,,..., E_ have the Orlicz
property, then every continuous multilinear map E, x ... x E_ — F is absolutely summing,
regardless of the Banach space F'.

Proof. There 1s no loss of generality if we assume that F, and E2 have the Orlicz property.
Now select z, € E,(3 < k< mn) and,for A € L(F,,... ', F'), consider the projection
A B, xE, - F.If (IIJ) and (z, ;) are uncondltmnally convergent sequences in

I] e I‘

E,, E, respectively, then for some absolute constant K > O, we have, thanks to the closed
graph theorem,

o0
D MAL (3153 )]
j=1

<14,

1| ”IZ,J'“

12, 1/2

< Al lzsll--Nall { SNzl | [l

< KAl 23l zall 102y Dl wll (22 11
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1s absolutely summing with

L]

In other words, A
L g yereyd

“A as g K”A” ”IS””IHH

L3,-yLy

The corollary now follows from theorem 4. Q.E.D.

The last corollary we give is a multilinear extension of Grothendieck’s theorem that every
bounded linear map from £, to £, is absolutely summing.

Corollary 6. For any Banach spaces E,, ..., E_, we have
L(¢,,Ey,....E ;4,) =L, (4,E,,...,E_;¢).

Proof. Let A€ L(¢,,E,,...,E_; F) andfor z, € E,(2 < k < n) consider the projection
A : £, — £, . By Grothendieck’s theorem, this is absolutely summing, and

II l'"l‘IH

A

as g KG”A

I3 SR, »

T
] ] n "

< KellAll Nlz2 ][ - - - ||zl

where K is the absolute constant of Grothendieck. By theorem 4, we find that ||A4]|,, <
K-l|All- Q.E.D.

Now let L _("E) denote the subspace of L(™E) consisting of the symmelric n-linear
forms. As we noted before, for each P € P("E) there 1s a unique element A € L (" E)
such that P(z) = A(z") forevery z € E, where A(z™) = A(z,...,z) (ntimes). Clearly,
we have ||P|| < ||A]|. The following polarization formulacan be used torecover A from P:

1
A(z,,...,z,) = T:T,/U 51(8) ...s, (D P(s;(D)zy + ...+ 8,(t)z,)dL,

where s}.(t) are the classical Rademacher functions. From this identity we obtain an upper
bound for the norm of A:

nﬂ
A1l < =PIl
Since the classical Rademacher functions are real valued, this inequality holds for both the
rcal and complex scalar fields. In the case E = £, , the polynomial P(z) = z,z, ...z, has
the property that ||A]| = ﬂ—!||PH , 80 the inequality given above is the best possible.
1.

Harris [H] proved a finer inequality than the above in the case where some of the variables
are repeated, and the scalar field is the complex numbers. This inequality is a consequence of
the following polarization formula.
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Theorem 7. Let the scalar field be C . Let P be the continuous n-homogeneous polynomial
on E generated by the symmetric n-linear form A. Let n,, ..., n, be non-negative integers
withny + ...+ n, = n, and let (s;) be the generalized Rademacher functions corresponding

to n. Then

I Y e
A(m?‘,”.m?)=m - & /0.91 ’(I)...skm(t)P(sl(t):r:l+”.+3k(t):r:k)dt

for every z,,...,z, € E, where A(z7',...x,*) means that A is evaluated at the point
(Zy,...,zy(my times), ..., T, ...,z (m times)).

Proof. Since P(s5;(t)z,+...+5.(1)x,) = A((5, (D) z; +...+ 5.(t)z,)"), we may expand
by the multinomial theorem, and integrate term by term. The result then follows from an
applicauon of Lemma 1, part (3).

Corollary 8 [Harris]. /f x,,...,x, are unit vectors, then

-

n ...n.!n
D YE I | g MM SLCHNTY |

n' ...n:"n!
, nx T, .
Proof. Applying the theorem to the vectors —= ... X% gjves
f n
™ oy
n ...y 7y T, \™ M T, \ ™
- Az ,...,n*)| = |A e
n n n

1
n, ! ..'.nk! -/ (L) S (1) P (nl.sl(t)ml . nksk(t):ck>dt‘
n. 0

n n
m!...n!
. { t
since ™ 1 (1), o+ WEAQLT <1.
n n

Once again, our proof depends on the fact that the scalar field i1s @€ . This inequality does
not hold for the case K = R [S, p. 26].

Now let us recall a couple of definitons from [P]. Let £ denote a Banach space and lect
s be areal number with 0 < s < 1. A sequence (z,,) 1S F 18 said to be 7, -convergent (o
O (or 7,-null) if there is a constant C > 0 such that for any positive integer k, for arbitrary
indices m,,...,m,, and for every sequence (¢g;) of scalars with |e,| = 1, the following
inequality 1s satisfied:

€12, + .-+ £42, || < C°.
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The sequence (z,,) 1s said to be 7, -convergent to z if the sequence (z_ — ) is 7, -null. It
i1s plain that every 7, -convergent sequence is weakly convergent so that if the 7, -limit exists,
then it is unique. A Banach space is said to have rank r (to have loose rank ) if the norm 1s
7,-continuous forevery 0 < s<r(0 <s<r).

It 1s easy to see that 1n ¢, , every weakly null sequence admits a 7, -null subsequence. It
was also observed 1n [P] that 1t follows from a theorem of Banach that for 1 < p < o0, I:'F

has loose rank 1 /p.
Pelczynski’s result can now be stated as follows.

Theorem 9 (Pelczynski). Let n be an integer > 1, let E and F' be two complex Banach
spaces, and suppose that F has (loose) rank r. If ns < r(ns < r), then any bounded
n-linearmap A : E x ... x E — F is 1,-to-norm continous.

The beauty of this theorem, from our personal point of view, lies in its powerful conse-
quences. Before proceeding with the proof, let us mention some of the corollarnies that can be

drawn from it (see [P]).

Corollary 10 (Pelczynski). Every multilinear form on c, is weakly continuous. Conse-
quently, every polynomial on c, is weakly continuous.

Corollary 11 (Pelczynski). Let 1 < p,q < oo and assume p > ng. Then any bounded n
linear map A . EP X ov. X EP — £, is weak-to-norm continuous.

Notice that the classical Pitt-Rosenthal Theorem 1is a particular case of the above corollary
for n= 1. Also, it follows that for n < p, every polynomial of degree < n on £, 1s weakly
continuous. An alternative proof of the last remark can be found in [B & FJ.

Corollary 12 (Pelczynski). If there is a 7, -null sequence in E that is not norm-null (e.g.,
if E = C(K), K aninfinite compact Hausdorff) then the norm is not a uniform limit of a
sequence of polynomials on the unit ball of E.

Proof of Theorem 9. We just show continuity at the origin; continuity at other points can be
easily derived from here by induction on n, in the same fashion as in [P].
1 - - -
Let (z{) ..., (z{™) _ be ,-null sequences in E, i.e., there is a constant C > 0 such
that, for j = 1,...,n, the inequality

ez + ...+ g,3,) || < CK°

m,

holds for arbitrary indices m,,...,m,, and for every sequence (g;) of complex numbers
with |g;| = 1.
Fix a positive integer k, indices m,,..., m, and signs |g,| = ... = |g,| = 1. For every

i=1,...,k,let , be an ™ root of ¢,.
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Consider for 1 < 7 < n the vector-valued function f; : [0, 1] — X defined by

£;(1) = En,,s (t)z$).

Also, consider the function g : [0, 1] — Y defined by g(t) = A(f,(%),..., f,(1)). Since
g 18 piecewise constant, it 1S Bochner integrable. We have by assumption, for every j =

11"':”’!

sup [|f;(D]] < Ck?,

0 <t

SO that

sup |lg(2) ]| < |[A]|C™E™.
0<t<1

Finally, Lemma 1 in combination with A’s multilinearity gives

| 1
Agmdwﬁ ACF(D), o £ (D) dE

k
= f Enilsh(t)ﬂ: ...,Eniﬂsi‘(t)mfr:‘i dt

1]—1 1H=l

1
Z m - (f s; (1) ...s, (t)dt)A(z(” e, ™)
in 0 1 a in

b =1

Es A(m“} . 'i“})

This identity leads to

k

< : lg(2)]|dt
< sup. [lg(t)|| < ||A]|ICmE™.
0<t<1

Since Y has (loose) rank r and (ns < r)ns < r we conclude that

lim ||A(z), ... zt™)||=0.

T —+00)
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