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0. INTRODUCTION

In 1972 Saxon [10] introduced a class of locally convex spaces (called Baire-like) containing
strictly the class of Baire spaces and which is strictly included in the class of barrelled spaces.
A locally convex space (lcs) FE' 1is called Baire-like if given an increasing sequence of ab-
solutely convex closed subsets of E' covering E, there exists one of them which is a neigh-
bourhood of zero in £. By Valdivia [14], Theorem 4, a barrelled space whose completion
is Baire is Baire-like. In contrast to Baire spaces, Baire-like spaces enjoy good permanence
properues, 1.€. products, quoticnts, countably codimensional subspaces of Baire-like spaces
are Baire-like [10]. Much of the importance of Baire-like spaces comes from their connection
with the closed graph theorem. In [10], Theorem 2.18, Saxon showed that

(*) if E 1s Baire-like, F' an ( L B) -space with a defining sequence ( F,),.n of Banach
spaces and f : E — F' alinear map with closed graph, then f(F) C F_ for some n € N
and f induces a continuous map of E' into the Banach space F_ .

Since barrelled metrizable spaces are Baire-like, it follows that no ( L B)-space 1s metriz-
able. It is known however that metrizable ( L F')-spaces exist, cf. e.g. [7], [12]. Thus (*) may
be false when F'1s an ( LF')-space. It turns out that in order to obtain a closed graph theo-
rem which includes ( L F')-spaces in the range class, it is enough to assume that the spaces
F 1n the domain class are suprabarrelled [16] (or (db)-spaces [9]), 1.e. given an increasing
sequence of subspaces of E covering F, then one of them 1s both dense and barrelled. By
dropping here the word «increasing» one obtains the definition of an unordered Baire-like
space (shortly UBL space) in the sense of Todd and Saxon [13]. Clearly we have the follow-
ing implications: Baire = UBL = suprabarrclled = Baire-like = barrelled. This line of
works provided new types of strong barrclledness conditions, a classifiction of ( L ') -spaces
and several forms of the closed graph theorem. We refer the reader to [3] for detailed infor-
mations on this subject.

A natural extension of the Baire-like property to the class of arbitrary topological vector
spaces (tvs) was introduced in [5], under name of *-Baire-like, containing strictly the class
of Baire spaces and strictly included in the class of ultrabarrelled spaces. In 5] it is shown
that all ultrabarrelled spaces whose completion i1s Baire (hence all metrizable ultrabarrelled
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spaces) are *-Baire-like. Among locally convex spaces every x- Baire-like space is Baire-
like. Another generalization of Baire-likeness and suprabarrelledness was pursued by Pérez
Carreras [6].

In the present paper we continue the study on strong (ultra) barrelledness condiuons in
the (non) convex setting. Section 1 deals with x- Baire-like spaces and includes the closcd
graph theorem and an analogue of the Banach-Steinhaus theorem for such spaces. More-
over, we give a characterization of (L F),, ;-spaces (in the sense of Narayanaswami and
Saxon, but considered in the category of arbitrary tvs). The connections between metriz-
able ( LF'), -spaces, *- suprabarrelled and - Baire-like spaces are discussed.

All tvs considered in this paper are assumed to be Hausdorff and infinite dimensional
over the field K € {R, C}. Foratopological space (E,7) and a € E, % _(E) or % (1)
will denote the filter of all neighbourhoods of a In ( £, 7).

1. RESULTS

Let E = (E, 1) be a tvs. By a string in E we understand (after Adasch [1]) a sequence
(U;);en ©f balanced and absorbing subsets U, of E' such that U,,, + U;,; C U, for all
7 € N. A string ([)'j)‘,-k(_:l\lr is called

(a) closed, if every U; is T-closed;

(b) fopological, if every U; is a T-neighbourhood of zero.

A tvs FE 1s called ultrabarrelled if every closed string in E is topological [1]. The fol-
lowing conditions are equivalent:

(1) (E,T) 1s ultrabarrelled.
(2) Every linear map from ( E, T) into an F'-space with closed graph is continuous.

(3) Every Hausdorff vector topology ¥ on E which is T-polar, i.e. % ,(4¥) has a basis
of T-closed sets, is coarser than T (cf. [1], p. 32, p. 44).

Every metrizable and complete tvs will be called an F-space. A double scquence
(K ;")n JEN of balanced and closed subsets of £ such that

() K}C KM, K}\y+ K, C K}, njeN;

(d) Ui K} isabsorbing in E forall j € N,
will be called a ~-sequence. A ~y- sequence (K}‘) njEN 1S called fopological, if for every
7 € IN there exists n € IN such that K}‘ € %,(F).

We shall need repeatedly the following fact about +- sequences.

Lemma 1.0. Let E be a dense ultrabarrelled subspace of a tvs F. If (K;ﬂ)n,jeN is a

~- sequence in F, then (f;) N IS a y- sequence in F.

nJe
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Proof. Property (¢) being clear, it is enough to prove that

UHKH CUnK" forall je€N.

n=1

If x ¢ |J°, nKP for some i € N, then for every n € IN there exists a topological
string (U') ;e in F such that x ¢ nK? + U . Set

o0

Vi= [ ((nKR +ULy) NE), keN.

n=1

Then (V,),en is a closed string in E; hence topological. But z ¢ (|22, nK2,) + Vi ;

otherwise forsome m € N, x € mK [}, + V, C mKD, +mKD, + U CmK™+U", a

contradiction. Hence z ¢ (J2, nK", . ™

A tvs FE 1s called x-Baire-like [5]) if every ~y-sequence in E is topological. Clearly:
Baire = =x-Baire-like = ultrabarrelled; none of the reverse implicauons are true [S5]. Every
locally convex tvs which is x-Baire-like 1s Baire-like, but Baire-like spaces which are not
x-Baire-like do exist [5]. In [5] it was proved that products, quotients and completions of
x-Baire-like spaces are x-Baire-like. Also, by [5], every countable-codimensional subspace
F' of a =-Baire-like space E is x-Baire-like if and only if F' is ultrabarrelled. Every metriz-
able and ultrabarrelled tvs 1s x-Baire-like. This remark in [5] follows also from the following
proposition which 1s clear from Lemma 1.0.

Proposition 1.1. An ultrabarrelled tvs E which is dense in a *-Baire-like space F is

x-Baire-like . =

Our first theorem 1s connected with the closed graph theorem for x-Baire-like spaces.
First we recall the following two notions: E is said to be boundedly summing [1], if for
every bounded subset B of E there exists a scalar sequence (A}.)jEN, /\}- > 0, such that

EAB.#UEJ\B

n=1 k=1

is bounded. All metrizable tvs are boundedly summing; locally pseudo-convex and almost
convex spaces are boundedly summing, (1], p. 76. A sequence (Aj)jehi of balanced subsets
of F such that A}-H + Ay C A; forall ;7 € IN 1s said 1o be completing if given any
sequence z; € A;, J € N, then the series Z _1 Z; converges in E. This implies that the

filter basis (A}-)jg\- s finer than % ,( E) .
We shall need also the following variant of Theorem 9.1.44 of [3].
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Lemma 1.2, Let (E,7),(F,9) betvsand f:(E,7) — (F,9) alinear map with closed
graph. If there exists a completing sequence (A,),cn in F such that for every n € N the

closure of f='(A,) is a T-neighbourhood of zero, then f is continuous.

Proof. We start with the special case that ( F, 7) is metrizable. Let (U,), . be a basis of
T-neighbourhoods of zeroin E suchthatU,,, CU,, ne N.Let K = f7'(A4,), n€ N.

n
We can find an increasing sequence (m,,) in N suchthat U, C K, +U,, ,neN.I

is enough to show that f(U_) C A, n€ N. Fixne N and z; € U, . We find

two sequences (z;);cn and (y;)en such that T;=Y;+ Tj,, ) € N, and z; € U,

nt)—1

f(y;) € A,.,_,. Therefore z, = Zi’l y;. By assumption there exist y € F such that

y = > ;o1 fQy;)- Since Y70, f(y;) € )i Ay C A, m€ N, theny € A_. The
graph of f being closed, we have f(z;) = y, which completes the proof. Now we tumn to

the case of an arbitrary tvs (E, 7). First we show that P := ()2, f~'(A,) is equal to
the closed subspace f~!(0). In fact, f~1(0) C P is trivial, and on the other hand P C

C Ny ,(F) f=1(V) since the filter basis (A,),n is finer than % ( F') . Hence

PCcn{U+f (V) Ue % E), Ve#,(F}, so
f(PYCN{f(N+V:U€e¥y(E), Ve#,(F}={0)

since graph f isclosed. So P C f~'(0). Let g : E — E/P be the quotient map. There is a
linear map g : E/P — F suchthat go g = f. Weendow E/P with the topology a whose

basis of the neighbourhoods of zero is given by q( f~1(A4,)), n € N, which is metrizable.
« 1S coarser than the quouent topology 7/P. Observe that g : (E/P,a) — (F,J) has
closed graph in ( E/P, o) x (F,9) . In fact, since graph f is closed, there exists a Hausdor(f
vector topology 8 < don F suchthat f: (E,7) — (F, ) iscontinuous. Let V € % ,(3)

be closed. There exists k € IN such that A, C V. It follows that f‘l(Ak) C (V).
Therefore g( f~1(A,)) C g~'(V),and g : (E/P,a) — (F,B) is continuous. So g :
(E/P,a) — (F,9) has closed graph. On the other hand g_l(A“)n 1S an «-neighbourhood

of zeroforallmn € N . Infact, g( f~1(A,)) C g~ (An)ﬂ. Hence the assumptions of Lemma
1.2, metrizable case, are satisfied for g. Therefore ¢ : (E/P,a) — (F,4J) is continuous.
Since g : (E,7) — (E/P, ) is also continuous, we obtain that f is continuous.

Theorem 1.3. Let ( E,7) be a x-Baire-like space and let (Y, ) be the inductive limit of an
increasing sequence (Y, , 9, )N of boundedly summing tvs (Y,,9,) suchthat 9 ,,|Y, <
< Y, forall n € N. Assume that every (Y_,9_) has a fundamental sequence of bounded
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balanced sets which are complete. If f : (E,7) — (Y, V) isalinear map with closed graph,
then there exists m € N suchthat f(E) CY_and f:(E,7) — (Y _,9_) is continuous.

Proof. Forevery ne€ N let (A]),.en be a fundamental sequence of balanced ¢, -bounded

subsets of A which are J_-complete. We may assume that AT + AT C A" n,m €

m+ 1

€ IN. Since (F, 1) is *-Baire-like, there exists n € N such that f~ (YP) 1S 7-dense
for all p > n. Without loss of generality we may assume that n= 1. Let 7, = 7|f~!(Y}),

n € N . First we prove that there are n,m € N such that f-!( A®) * is a 7_-neighbourhood

of zero in f~! (Y,). Suppose this 1s not the case. Hence none of the sets f_l(A;"n)T 1S
a 7-neighbourhood of zero. We construct two sequences (S,),.n, (B,).n ©f balanced
subsets of £ and Y, respectively, and a sequence (p(n)), . in N suchthat S, + S, C
CS,,.,,B,+ B, C B,,,, n€ N, and such that:

(@ B, = S i, AF + Al t Zj"il AT ALy Where (A7), s such that 0 < A%, <
< AYand ) 77 ATAZ s U -bounded.

(b) B,+ B, C A%y, n€ N.

© S, =fYB) and S, ¢ % (1), ne N.
We construct both sequences by induction. Since Y, 1s boundedly summing, there exists
a scalar sequence (X);cn, 0 < Aj,; < Xj, j € N, such that PRt \;Aj is ¥, -bounded.

Setp(1) =1and By = A} + Al + Y21 M Al and ) = f-1(B,) . Then B, + B, C A2,
for some p(2) € N . Hence S, 1s nota 7-neighbourhood of zero. Suppose, we have already
found sets B,,B,,...,B_; 5;,5,,...,5,, with the above conditions. Choose p(n+ 1) €

€ N such that B + B, C A% ., . There exists a sequence (A} ).y, 0 < AT < AT,

J € N, such that ) 221 A¥*H AR,y is ¥, -bounded. Set

n+ 1

I ntl gntl
Bp = EA 1 AN +E>‘ YA a1y Sper = 7 I(Bml)

Then B, + B, C B,,,, S, + S, C S,,. Since B,,, + B,,; C A¥.,, for some
p(n+ 2) € N, S, is nota 7-neighbourhood of zero. This completes the inductive step.
By (a), the sets

= E}\ 2i- lkAp(n): n,] €N,
k=1

satisty
T C B, Tj+ T, CT), nj €EN,
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and every 77" 1s balanced and ¥, -bounded.
The sets
— 7l 2 n :
K;‘—Tj +T;+...+T;, nj€EN

are balanced in Y'. Clearly, K} C KI*', K}, + K}, C K}, n,j € N,

J )

(*) K}‘CBI+BZ+‘..+BHCBM],n,jEN.

Moreover, for every j € N the set [ J;2, K7 is absorbing in Y. In fact, if z € Y,
then z € B, for some m € N . Hence z € A%, |, by (b). Fix j € N. Then M\J}%z €
€ MHATL Yy C S ABH AT, = T/ Kpt!. This implies that
(f“i(K}"))nJEN 1S a y-sequence 1n E which, because of (*) and (c¢), 1s not topological,

a contradiction, since ( F, 7) is =-Baire-like. We have proved that there are numbers n, m €

€ N suchthat f-1(Az?) " isa T, -neighbourhood of zeroin f~!(Y,) . Using this we find on
Y acomplete vector topology o, and a completing sequence (Wp)pEN in (Y_, o ) such that

f~Y(W,) " is a ,-neighbourhood of zero for all p € N . In fact, since (Y,,4,) is bound-

edly summing, there exists a scalar sequence (X ),cn, 0 < A ,; < A, suchthat Y707 A AN
1s ¥_-bounded. The J_-bounded sets

_ n
Wy = E Ap1;Am, PEN,
=1

satisfy
() Wi + Wy CW, CW, = ) X AL
j=1
Since

A Ay, C W,

then f—l(WP) " isa 7. -neighbourhood of zero in f~'(Y,), p € N . Let o, be the finest

vector topology on Y, agreeing with J_ onallsets A}, k € N.Thend_ < o, and (Y, 0,)
1s complete, [1], 16 (13). Moreover, by 16(3) of [1], every ¥_-bounded set is o, -bounded.
Therefore and because of (**) the sequence (W) . 1s completing in (Y, 0,). We may
apply Lemma 1.2 to deduce that

fIf7 (%) f7 (V) = (Ya,04)



Topological vector spaces with some Baire-type properties 83

1S continuous. Since f“(Yn) 1Is densc in E and (Y, 0, ) is complete, there exists a contin-
uous linear extension g of f|f‘1(Yn) to the whole space E. It1s easy to see that f = g.
This completes the proof. =

We shall say that a tvs (E, 1) is an (LF),,-space (resp. (LB),,-space) if (E,T) 1S
the inductive limit of a strictly increasing sequence (E,, 7, ),.n Of F-spaces (resp. locally
bounded F-spaces) suchthat 7, |E, <7, forallne N. Wecall (E_, 7,), .~ adefining

n' n

sequence for (E, 1) .

Corollary 1.4. Let E be a x-Baire-like space and Y an (L B),,-space. Then every linear
map f: E —Y with closed graph is continuous. =

Remark 1.5. If Y is not an ( L B), -space, then the conclusion can fail, even under the hy-
pothesis that Y~ be a metrizable ( L F), -space and E' 1s metrizable and ultrabarrelled. Indeed,
it 1S enough to show that every metrizable (L F'), -space (FE,T) admits a strictly weaker
metrizable and ultrabarrelled topology. Since ( E, 7) is ultrabarrelled [1], 6 (4), but non-
complete, ( £, 7) 1s not an infra-s-space (in the sense of Adasch, [1], p. 44; cf. also 10 (10)).
Hence K admits a strictly weaker Hausdorff vector topology ¥ such that the associated ul-
trabarrelled topology ' is strictly weaker than 7 = 7. Let p be the vector topology on E

which has {T° : U € % ,(7)} asabasis of % ,(p). Then 9 < , ¢ is §t-polar and g is
metrizable. Hence ¢* = . Recall that metrizable (even non-locally convex) ( L F), -spaces
do exist, [7], [12].

Corollary 1.6. Let ( E, 1) be the inductive limit of a strictly increasing sequence of complete
boundedly summing ultrabarrelled tvs (E_,7,) suchthatevery (E, , 1,) hasafundamental
sequence of bounded sets. Then ( E, 1) is not metrizable. In particular, no ( LB), -space s

metrizable. =

This extends Corollary 3 of [7].
For ultrabarrelled tvs, which are the inductive limits of an increasing sequence of metriz-

able tvs, we have the following characterization of -Baire-likeness.

Theorem 1.7. Let ( E, ) be an ultrabarrelled tvs which is the inductive limit of an increas-
ing sequence (E_, 7. ) N Of tus.

A. Ifevery (E_,.) is metrizable, then the following properties are equivalent:

Al. (E 1) 1s x-Baire-like.

A2. (E 1) is metrizable.

B. Let Bd(t,) be the set of all T_-bounded sets n € IN . Suppose that % ,(1,)N
N Bd(7,,)#Q forall ne€ IN. Then the following properties are equivalent:
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Bl. (F, 1) is x-Baire-like.

B2. Thereismne€ N and U € % (v,) N Bd(r,,,) such that the T-closure U of U is
a T-neighbourhood of zero.

B3. (E, 1) 1s locally bounded.

B4. The sequential closure of any subset of ( E, T) 1s sequentially closed.

BS. For any sequence (z,),. In E there exists a scalar sequence (g,),cn, €, > 0,
such that 0 belongs to the T-closure of {p,z, : n€ N }.

The hypothesis of B. is clearly satisfied when each ( E ) is locally bounded or when

T
n'n

the inclusionmapof (E_, 7. ) into (E_,,,7,,,) iscompact (or precompact) foreachn € IN .
To prove B. we shall need the following two lemmas.

Lemma 1.8 (H. Pfister). Let (E,T) be a tvs and (x,) N a sequence in E. Assume
the following condition: B3'. The sequential closure of any countable subset of (E,T) Is
sequentially closed. Then there exists a scalar sequence (0,), ., 0, > 0, such that a
subsequence of (p,x,).cn converges to 0, in particular, B4 holds.

Proof. Let (z,), . beasequencein E. We shall construct the sequence (g, ), SO that O
is even in the sequential closure of {g z, : n€ N }. Choose a € B\ ({nk~'z_  : nk €
€ N}U{0}) andput H = {n"'a—k~'z_  : m,k € N}. Then n~'a belongs to the

sequential closure H of H, and 0O is in the sequential closure of H.Hence 0 € H by B3’,
1.e. there are sequences (n;) and (k;) in IN such that

(*) ﬂr}ﬂ.—kflmn‘—rﬁ for [ — oo.

Then (n;) tends to infinity. For otherwise (n;) would have a constant subscquence and
this would violate (*). Without loss of generality we may assume that n, < n,,,, L € N . So

(*) implies that (kflﬂim) is a nullsequence. Defining now o, = kfl for e IN and g, = 1

forne N \ {n,: l € N} (recall n; < m, ), the sequence (g,),pn I as claimed. m

Remark 1.9. (1) It is easy to see that, conversely, 0 € H if there is a scalar sequence
(Op)nen s 0, > 0, suchthatOis in the sequential closure of {p,z, : n € IN }. (2) Sinceonly
locally convergent sequences appear 1n the proof, the hypothesis B3’ could be «localized».

Lemma 1.10. Let (K}l)wew
has property B5, then for every j € N there exists n € IN suchthat K} is absorbing in E.

be a y-sequence in an ultrabarrelled space (E,T). If (E,T)

Proof. Assume there exists 1 € IN such that none of the sets K, n € IN, is absorbing in
E. Hence for every n € N there exists z. € E which is not absorbed by K. Choose
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a sequence (g,),n according to B5S. Then g, z, ¢ K} n € N. Let (U,),.n bea
topological string in ( £, 7) such that

0,2, ¢ K +U,,ne N.

Set

W ﬂ( :; p 1 m+j—l)'

=]

Then (Wj)jEN 1S aclosed string in ( E/, 7) ; hence topological. But g z_. ¢ W,, n€ N,
a contradiction to B4. e

Proof of Theorem 1.7. Al = A2: Forevery n € N let (U});.n be a basis of balanced
T,-neighbourhoods of zero in £ such that U7, + U7, C U forall j € N. Let F' =

= {>uneaUj : A C N x N,A finite }, where the closure is taken in 7. Clearly card

F' = R, . We prove that every closed 7-neighbourhood U of zero contains an element from
F' which is a 7-neighbourhood of zero. Choose in ( E, ) atopological string (U™), .y such

that U' + U' C U. Then forevery n € N there exists j, € N suchthat U"N E, D U?.

Hence
{ {
U>) UNEDY U,
=1 =1
and
U=UDU} +UZ+...UrneN.
Set
1 2 n '
K =U; ;;+Uj.i+...+ Ul ;,n ) €N,
Clearly K} C K*', K}, + K},, C K}, n€ N. Moreover | J72, K} is absorbing in

E forall j € N. Since (F, T) 1S *- Balrc like, then for ; = 1 there i1s m € IN such that
K™ e % ,(71). Clearly K" C U. This completes the proof. A2 = Al: This follows from
Proposition 1.1.

Now we prove part B. The implications B2 = B3 = B4 are obvious. B4 = B5: This
follows from Lemma 1.8. BS = B2: Choose¢ a sequence (U,), - such that

UHE%D( )an(n+1) and Un+UnCUn+1!neN'

B2 is proved when we show that U_ € % (1) forsome n € N . For every n € N
choose a sequence (U') . of balanced sets such that U € %,(r,) and U7y + U7, C
c U} CU,, j € N. Clearly the sets

n o_ I 2 n :
K'=Ul'+U?+...+Ulnj€N,
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form a ~4-sequence, and K' C U for n,j € IN. Moreover, one has K C

n+ 1

cU+Uy+...+U,, where U,,U,,...,U_ are 7, ,-bounded. Therefore, forall n,; €

€ N, thereis o > 0 suchthat U, + ...+ U, C aU™', whence K} C aK}*' . Now using
Lemma 1.10 one obtains that there is m € IN such that (K}“);'EN 1S a 7-closed string in F;

hence (K[");cp is topological. This implies that U, € % (7). Bl = B2: Replace in
the last proof the role of Lemma 1.10 by the assumption B1. B3 = B1: Apply Proposition
1.1. a

In Theorem 1.7, the equivalence Bl <= B3 remains true under the weaker assumption
?%,(t.) N Bd(m)#@ forall n € N instead of % ,(,,,)# @ : Obviously B3 = Bl
holds, and B1 = B3 follows by an obvious change in the proof of BS = B2.

Corollary 1.11. Let ( E, 1) be the inductive limit of an increasing sequence of tvs (E_, T,)

such that for every n € IN the inclusion map of (E_, 7,) into (E_,,,7, ) is compact.

Then E contains a subset whose sequential closure is not sequentially closed.

Proof. By [1], 18 (iv), p. 108, ( E, 1) is ultrabarrelled. Since ( K, 7) is not metrizable (cf.
[1], 18 (i) and 16 (10) and recall our convention to consider only infinite dimensional tvs) it
is enough to apply Theorem 1.7 part B.

Remark 1.12. Note that there exist x-Baire-like (even Baire) spaces for which condition BS
from Theorem 7.1 is not satisfied: Consider the space £ = R® endowed with the product
topology 7. Then (FE,7) is a Baire space. There exists a sequence ()i N E, z, =

= (T o)aer» SUCh that {(z; Jenw @ @ € R} = RN, Let (o,),en be a sequence in

R,a, > 0, n € N. Then there exists 4 € R such that (z, )en = (5 )gen - Then
0 & {oz,: kE N}T.

Following Pérez Carreras [6] we call a tvs E a x-suprabarrelled space if given any
increasing sequence of subspaces of E covering E, one of them 1s both dense and ultrabar-
relled. Further we shall say that E is x-quasi-Baire if E is ultrabarrelled and if F' is covered
by an increasing sequence of subspaces of E, then one of them 1s dense.

Clearly

x — Baire — like = * — quasi — Baire = ultrabarrelled

:

* — suprabarrelled .

Using Proposition 1.1 one obtains that within metrizable tvs*-suprabarrelled = x-Baire-
like <= *-quasi-Baire <= ultrabarrelled. Using Lemma 1.0 one obtains easily the follow-
ing analog of Proposition 1.1. If E is an ultrabarrelled dense subspace of a x-quasi-Baire
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space then FE 1s x-quasi-Baire. The analog for x-suprabarrelled spaces fails, since there
exist metrizable ( L F'), -spaces and these spaces are not x-suprabarrelled (see below).

It 1s known that all ( L F),-spaces are ultrabarrelled. On the other hand, Adasch’s closed
graph theorem [1], 8 (6), applies to show that no ( LF'), -space 1s x-suprabarrelled. Our
Corollary 1.6 and Theorem 1.7 show that no (L B), -space 1s x-Baire-like. A very similar
argument to that which was uscd in the proof of Theorem 4 and Corollary 6 of [12] enables one
to show that all F'-spaces with an unconditional basis contain proper dense subspaces which
are (L F), -spaces. Following Narayanaswami and Saxon [7] we partition all ( L F), -spaces
into three mutually disjoint non-empty classes as follows:

An (LF), -space (E,7) is an (LF),, ;-space if 1t satisfies the condition (1) below,
1=12,3.

(1) (FE,T) has a defining sequence none of whose members is dense in ( E, 1) .

(2) (E, T) 1s non-metrizable and has a defining sequence each of whose members 1s dense
mn(E 7).

(3) (E, 1) is metrizable.

Examples of (LF)m_i-spaccs can be found in [3], [7]. Using Theorem 1.7 we obtain
the following characterization of (L F'),, ;-spaces in terms of Baire-type properties defined
above.

Proposition 1.13. Let (E,T) be an (LF), -space. Then:
(@) (E,7) isan (LF),, ,-space ifl (E, ) 1s =-Baire-like.
(b) (E,7) 1san (LF),, ,-space I ( B, T) IS *-quasi-Baire but not x-Bairc-like.
() (E,7) isan (LFY),,,-space iff (E, ) isnot x-quasi-Baire.

Proof. (a) Follows from Theorem 1.7. (b) If ( E, 1) 1S *-quasi-Baire but not x-Baire-like,
then by Theorem 1.7, part A, ( E,7) 1s an (LF),,,-spacc. Now assume that ( £, 7) 1S an
(LF),,-space. Let (F), . bean increasing sequence of 7-closed subspaces of E cover-
ing E. By assumption, (F, 7) has a defining sequence (E_, 7).y ©Of 7-dense F'-spaces.
IfG,=ENF, n€ N, then (G,,7,|G,).n 1S anincreasing sequence of F'-spaces cov-
ering . Let (E,¥) be the inductive limitof (G, 7,|G,),en - Then 7 < J. By Adasch’s
closed graph theorem [1], 10 (11), and a remark after it, 7 = ¢ and for every n € N there
exists m € N suchthat £ C G_ . Consequently G, 1s T-dense and so is F_ . Therefore
(E, 1) 1s %-quasi-Baire. On the other hand, by Theorem 1.7, (£, 7) 1S not *-Baire-like.
(¢c) Assume (E,7) is not x-quasi-Baire and not an (L F),,-space, 1.e. given a defining
sequence (E,, 7).y Of F-spaces, some E_ is 7-dense. Then there exists a strictly in-
creasing sequence ( F,) . ©Of 7-closed subspaces of E covenng F. If & = E N F,
n€ N, then ( E, 7) is the inductive limit of the sequence (G, 7,,|G,)en » Cf. the proof of
(b). Taking n € N suchthat E_ is 7-dense, then £ C G, forsome m € IN, cf. the proof

of case (b). Hence F, is r-dense, a contradiction. The reverse implication in (C) is obvious.
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As we have observed every metrizable (LF'), -space is x-Baire-like but need not be
*-supra- barrelled. Now we discuss the occurence of proper dense non-*-suprabarrelled sub-
spaces of F'-spaces, extending Theorem 1 of [18] and [11]. First, if an F-space (E,7)
contains a proper dense ultrabarrelled subspace G, which is an ( L F), -space for a topol-
ogy finer than 7|G, then (G, 7|G) is not x-suprabarrelled. This follows from the closed
graph theorem of [1], 8 (6). In the converse direction we have the following more interesting

proposition.

Proposition 1.14. Let ( E, 1) bean F-space and F' adense subspace which is ulirabarrelled
(equivalently x-Baire-like ) but not x-suprabarrelled. Then ( E, T) contains a proper dense
ultrabarrelled subspace G such that F C G and G is an (LF'), -space for a topology finer
than 7|G .

Proof. By assumption there exists an increasing sequence ( £ ) - Of subspaces of /' cover-
ing F' suchthatno F_ is both dense and ultrabarrelled. Using Proposition 1.1 we may assume
that all F, are densein F'. Let (V) be a basis of balanced 7-closed neighbourhoods of
zero in (E,7) suchthat Vi, + V;,, CV,, 7 € N. Byassumption on ¥ forevery n € N

there exists in F, aclosed string (W}).  suchthat Wi ¢ % ,(F,), j € IN. Set

n_ 1a/" np _ /P pt | n
Vr=Wonv, Q¥=vPnvFin..nv:

j €N,n>p,npe N, where the closure is taken in 7. Let

G ={MQIP:xeK}, G, =[G}

j=1n>p

Then G, is asubspace of E, F, C G, G, C G,,,
vector topology on G'P defined by the string (G, N QF'p);‘en- Then T!GP < Tp- St

T, = sup{7,, : n> p}. Then (G,, 7)) is an F-space. In fact, since 7, is 7|G -polar, it is

pe N.Letr,  be the metrizable

enough to show that every Cauchy sequence (z.), . 1IN (Gp, T,) CONVerges in Tle. Fix
J €N, n>p. Thereexists A € K suchthat z, € }\Q;“P forall k € IN. Since (z )i 1S
r-Cauchy, z, — z in 7 for some z € E. Hence z € AQ;", which implies that z € G}*.
Therefore z € G,. Moreover, 7,,,|G, < 7, 7|G, < 7,, p € N. Let (G,9) be the
inductive limit of the sequence (G, 7,)cn, Where G = U;Zl G, . Then 7|G < 9. Suppose
that G = E. Then using Adasch’s closed graph theorem [1], 10 (11) and a remark after it,

one obtains that 7= ¢, GG, = K and 7, = 7 for some [ € IN . Therefore (Wj- N Vj)jeﬂ 1S a

topological string in ( E, 7). Hence Wj = Wj N F, € % ,(F,), acontradiction. @
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Corollary 1.15. An F-space ( E, 1) contains a dense non-ultrabarrelled subspaceiff (E, 1)
contains a dense subspace which is not x-suprabarrelled.

Proof. If ( E, T) contains a dense non-ultrabarrelled subspace F, then F' is not x-supra- bar-
relled. Now suppose that ( £/, 7) contains a dense subspace F' which is not x-suprabarrelled.
If I 1s ultrabarrelled (otherwise there is nothing to show), then by Proposition 1.14 there ex-
ists in E a dense ultrabarrelled subspace G O F such that G is an (L F'),,-space for a
topology ¥ > 7|G. Let (G,),.n be a defining sequence of F-spaces for (G, d). Since
(G, 7|G) 1s metrizable and ultrabarrelled, it is x-Baire-like. So there is m € IN such that
G,, 1s T-dense. Then (G, 7|G,,) is not ultrabarrelled by the closed graph theorem [1], 8

m

(6). -

Now we come to results related to the Banach-Steinhaus theorem which involve x-Baire-
like (Baire-like) spaces. In [4],§ 3, ex. 1.1, Bourbaki proved that every separately equicon-
tinuous set % of bilincar maps f : £ x T — F' is equicontinuous, provided E is metrizable
and barrelled, T' 1s a metrizable locally convex space and F' is a locally convex space. In
[17] Valdivia extended this result to Baire-like spces £. The following proposition extends
both results.

Proposition 1.16. Let E be a x-Baire-like space, F' a tvs, and T a topological space whose
points have countable bases of neighbourhoods. Let F be asetofmaps f : ExT — F
with the following properties:

(I,) Foreachte T, {f(-,t): f € F} isanequicontinuous set of linear maps from E
mnto F.

(I,) Foreachz € E, {f(z,-): f € F} isequicontinuous.

Then the set F is equicontinuous. The same conclusion holds when E is Baire-like and
F' 1s a locally convex space.

Proof. Becauseof f(x,t1)— f(a,c) = f(z—a,t)+(f(a,t)—f(a,c)) torxz,a € E,t,c€T
and (I, ) itsuffices to show the equicontinuity at points (0,c) € ExT. Let (W, ), . bea
decreasing base of % _(T') and let V € % ,( F') . We show that there are U € % (( E) and
m € N suchthat f(UxW, ) C V forall f € F.Let (V). beaclosed topological string

in F suchthat V; + V| C V. The sets K} = {z e E: f(z,t) € Vo.feF,te W, } with
n,J € IN are closed (by (I,)) and balanced and satisfy H}’f‘ C K}"” , K}T‘H + K;‘H C K72,
n,j € N. Weshow that E = [J22, nK?, j € N. Fix j € N and choose z € E.
Because of (I,) there exists { € IN such that f(z,t) — f(z,c) € th te W, fexF.
Moreover, by (I,) there exists 7 > 1 such that f(z,c) € ﬂf}ﬂ, f € F. Hence f(z,t) €

€ flz,0)+V;,, CrV,,, + V., CrV,, t € W, f€F. Therefore z € sK; for some
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s € N . We have proved that (K1), nen 18 @ 7y-sequence in . Hence there is n € N such
that U = K € % ( E) . The second part of Proposition 1.16 is obtained similarly. B

Proposition 1.17. Let E be a barrelled space. Then F is Baire-like iff, for every topologica!
space T' whose points have countable bases of neighbourhoods and every locally convex
space F, any set % of maps f : ExT — F withthe properties (1,) and (1,) of Proposition
1.16 is equicontinuous.

Proof. If E 1s Baire-like, the conclusion holds by Proposition 1.16. Now assume that £ 1s
not Baire-like. Since E' is barrelled, there exists an increasing sequence ( K ), . of closed
absolutely convex subsets of E covering E such that none of the sets K _ is absorbing in E.
Set T = E' equipped with the topology ¥ of the uniform convergence on the sets nK_,n €

€ N, where E' denotes the topological dual of E. Then (T, 4¥) is a metrizable topological
vector group (in the sense of Raikov [8)) and o( E',E) < ¥d. Let f : Ex T — K be the
evaluation map (z,t) — t(z), z € E,t € T, and put ¥ = {f}. Then the conditions (/,)
and (I,) of Proposition 1.16 are satisfied. However f is discontinuous at (0,0). For if f
were continuous at (0, 0), there wouldbe V € % ,(E) and m € IN such that [{(z)| < 1,

zeVandt € m‘IKEl. This means that V C (m‘lffﬂl)ﬂ = mK_,and K_ would be a
neighbourhood of zero in £, a contradiction. /

Remark 1.18. From Proposition 1.17 and its proof we have the following: Let ( F, 1) be a
barrelled space, E’ its topological dual and f the evaluation map (z,t) — i(z),z € F,t €
€ E’'. Then E is Baire-like iff for every metrizable vector group topology ¥ on E’ the map
f:(E, 7 x(FE,¥) — K iscontinuous at zero. With the same technique one proves: let
( E, 1) be a quasi-barelled space with a fundamental sequence of bounded sets. Then ( E, 1)
is normed iff the evaluation map (z,t) — t(z), z € E, t € E’ is continuous at zero as a
map from (E,7) x (E',B(E',E)) into K .

From Proposition 1.16 we derive an analogue of the Banach-Steinhaus theorem:

Proposition 1.19. Let E | F and T be spaces as in Proposition 1.16. Let ( f ), .n be a
sequence of maps f, : E x T — F with the following properties:
(1) Foreachne N andt €T, f (-,t) isalinear and continuous map from E into F'.
(2) (fo)enw converges pointwisctoamapg: ExT — F.
(3) Foreachz € E,{f (z,-) : n€ N} is equicontinuous.
Then g : E xT — F 1s continuous.

Proof. Since every pointwise bounded set of continuous linear maps from an ultrabarrelled
space into a tvs is equicontinuous, [1], 7 (3), the set ¥ = {f, : n € IN} satsfics the
conditions of Proposition 1.16. Hence the sequence of maps f, : E x T — F' 1s equicon-
tinuous. Therefore for a € E, c € T, and closed V € % ,( E) thereexist U € % ,( E),
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W e % (T) suchthat f (UxW)—f (a,c) C V,ne N. Hence g(UxW)—g(a,c) CV,
which completes the proof. e

It 1s known that the product of two metrizable Baire tvs may be not Baire, cf. e.g. [15].
Hence the property of being a Baire tvs 1s not a three-space property, i.e. there exists a tvs F
containing a closed subspace F' such that £/ F and F are Baire spaces but £ is not a Baire
space. We conclude this section by showing that x-Baire-likeness 1s a three-space property.
A similar result for Baire-likencess was obtained in [2].

Proposition 1.20. Let F' be a closed subspace of a tvs E such that E/F and F are
x-Baire-like. Then E is x-Baire-like .

Proof. Let (K}),n bea v-sequence in E. Fix 1 € IN . Then there exists m € IN such
that K} NF € %,(F). Choose U € %,(E) suchthat (U-U —-U)NF C KTy.

1+ 1

Let (U_;');En: be a topological string in E suchthat U, + U, C U, andlet q : E — E/F

be the quotient map. Then (¢(U, N KT7)) 1S a y-sequence in F/F. Since F/F is

njeIN

x-Baire-like, there exists n € N such that g(U,,, N K%,) € % ,(E/F). There exists

Ve#,(E)ysuchthatr VCUand V CU, NKL,+WNU+ F forall W e %,(E).

1+ |

Hence VC U, ,NKL, + WNU+ FN(U-U —-U). Therefore V C K%, + K7}y C K}
for p = max(n, m). We proved that (K}“)HJEN 1s topological; hence E is x-Baire-like. =
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