TOPOLOGICAL VECTOR SPACES WITH SOME BAIRE-TYPE PROPERTIES J. KAKOL, W. ROELCKE

Dedicated to the memory of Professor Gottfried Köthe

0. INTRODUCTION

In 1972 Saxon [10] introduced a class of locally convex spaces (called *Baire-like*) containing strictly the class of Baire spaces and which is strictly included in the class of barrelled spaces. A locally convex space (*lcs*) E is called *Baire-like* if given an increasing sequence of absolutely convex closed subsets of E covering E, there exists one of them which is a neighbourhood of zero in E. By Valdivia [14], Theorem 4, a barrelled space whose completion is Baire is Baire-like. In contrast to Baire spaces, Baire-like spaces enjoy good permanence properties, i.e. products, quotients, countably codimensional subspaces of Baire-like spaces are Baire-like [10]. Much of the importance of Baire-like spaces comes from their connection with the closed graph theorem. In [10], Theorem 2.18, Saxon showed that

(*) if E is Baire-like, F an (LB)-space with a defining sequence $(F_n)_{n\in\mathbb{N}}$ of Banach spaces and $f: E \to F$ a linear map with closed graph, then $f(E) \subset F_n$ for some $n \in \mathbb{N}$ and f induces a continuous map of E into the Banach space F_n .

Since barrelled metrizable spaces are Baire-like, it follows that no (LB)-space is metrizable. It is known however that metrizable (LF)-spaces exist, cf. e.g. [7], [12]. Thus (*) may be false when F is an (LF)-space. It turns out that in order to obtain a closed graph theorem which includes (LF)-spaces in the range class, it is enough to assume that the spaces E in the domain class are suprabarrelled [16] (or (db)-spaces [9]), i.e. given an increasing sequence of subspaces of E covering E, then one of them is both dense and barrelled. By dropping here the word «increasing» one obtains the definition of an $unordered\ Baire-like$ space (shortly UBL space) in the sense of Todd and Saxon [13]. Clearly we have the following implications: Baire \Rightarrow UBL \Rightarrow suprabarrelled \Rightarrow Baire-like \Rightarrow barrelled. This line of works provided new types of strong barrelledness conditions, a classifiction of (LF)-spaces and several forms of the closed graph theorem. We refer the reader to [3] for detailed informations on this subject.

A natural extension of the Baire-like property to the class of arbitrary topological vector spaces (tvs) was introduced in [5], under name of *-Baire-like, containing strictly the class of Baire spaces and strictly included in the class of ultrabarrelled spaces. In [5] it is shown that all ultrabarrelled spaces whose completion is Baire (hence all metrizable ultrabarrelled

This work was done while the first author held the A. von Humboldt-scholarship at the University of Munich.

spaces) are *-Baire-like. Among locally convex spaces every *- Baire-like space is Baire-like. Another generalization of Baire-likeness and suprabarrelledness was pursued by Pérez Carreras [6].

In the present paper we continue the study on strong (ultra) barrelledness conditions in the (non) convex setting. Section 1 deals with *- Baire-like spaces and includes the closed graph theorem and an analogue of the Banach-Steinhaus theorem for such spaces. Moreover, we give a characterization of $(LF)_{tv,i}$ -spaces (in the sense of Narayanaswami and Saxon, but considered in the category of arbitrary tvs). The connections between metrizable $(LF)_{tv}$ -spaces, *- suprabarrelled and *- Baire-like spaces are discussed.

All tvs considered in this paper are assumed to be Hausdorff and infinite dimensional over the field $K \in \{R, C\}$. For a topological space (E, τ) and $a \in E$, $\mathscr{C}_a(E)$ or $\mathscr{C}_a(\tau)$ will denote the filter of all neighbourhoods of a in (E, τ) .

1. RESULTS

Let $E=(E,\tau)$ be a tvs. By a string in E we understand (after Adasch [1]) a sequence $(U_j)_{j\in\mathbb{N}}$ of balanced and absorbing subsets U_j of E such that $U_{j+1}+U_{j+1}\subset U_j$ for all $j\in\mathbb{N}$. A string $(U_j)_{j\in\mathbb{N}}$ is called

- (a) closed, if every U_i is τ -closed;
- (b) topological, if every U_j is a τ -neighbourhood of zero.

A tus E is called *ultrabarrelled* if every closed string in E is topological [1]. The following conditions are equivalent:

- (1) (E, τ) is ultrabarrelled.
- (2) Every linear map from (E, τ) into an F-space with closed graph is continuous.
- (3) Every Hausdorff vector topology ϑ on E which is τ -polar, i.e. $\mathscr{U}_0(\vartheta)$ has a basis of τ -closed sets, is coarser than τ (cf. [1], p. 32, p. 44).

Every metrizable and complete tvs will be called an F-space. A double sequence $(K_j^n)_{n,j\in\mathbb{N}}$ of balanced and closed subsets of E such that

- (c) $K_j^n \subset K_j^{n+1}$, $K_{j+1}^n + K_{j+1}^n \subset K_j^n$, $n, j \in \mathbb{N}$;
- (d) $\bigcup_{n=1}^{\infty} K_j^n$ is absorbing in E for all $j \in \mathbb{N}$, will be called a γ -sequence. A γ -sequence $(K_j^n)_{n,j \in \mathbb{N}}$ is called topological, if for every $j \in \mathbb{N}$ there exists $n \in \mathbb{N}$ such that $K_j^n \in \mathscr{U}_0(E)$.

We shall need repeatedly the following fact about γ - sequences.

Lemma 1.0. Let E be a dense ultrabarrelled subspace of a tvs F. If $(K_j^n)_{n,j\in\mathbb{N}}$ is a γ -sequence in E, then $(\overline{K}_j^n)_{n,j\in\mathbb{N}}$ is a γ -sequence in F.

Proof. Property (c) being clear, it is enough to prove that

$$F = \overline{E} = \bigcup_{n=1}^{\infty} nK_{j+1}^n \subset \bigcup_{n=1}^{\infty} n\overline{K_j^n} \quad \text{for all} \quad j \in \mathbb{N}.$$

If $x \notin \bigcup_{n=1}^{\infty} n\overline{K_i^n}$ for some $i \in \mathbb{N}$, then for every $n \in \mathbb{N}$ there exists a topological string $(U_j^n)_{j \in \mathbb{N}}$ in F such that $x \notin \overline{nK_i^n + U_i^n}$. Set

$$V_k = \bigcap_{n=1}^{\infty} \left(\left(\overline{nK_{i+k}^n + U_{1+k}^n} \right) \cap E \right), \qquad k \in \mathbb{N}.$$

Then $(V_k)_{k\in\mathbb{N}}$ is a closed string in E; hence topological. But $x\notin (\bigcup_{n=1}^\infty nK_{i+1}^n)+\overline{V_1}$; otherwise for some $m\in\mathbb{N}$, $x\in mK_{i+1}^m+\overline{V_1}\subset mK_{i+1}^m+\overline{mK_{i+1}^m}+\overline{U_2^m}\subset \overline{mK_i^m+U_1^m}$, a contradiction. Hence $x\notin\overline{\bigcup_{n=1}^\infty nK_{i+1}^n}$.

A tvs E is called *-Baire-like [5] if every γ -sequence in E is topological. Clearly: Baire \Rightarrow *-Baire-like \Rightarrow ultrabarrelled; none of the reverse implications are true [5]. Every locally convex tvs which is *-Baire-like is Baire-like, but Baire-like spaces which are not *-Baire-like do exist [5]. In [5] it was proved that products, quotients and completions of *-Baire-like spaces are *-Baire-like. Also, by [5], every countable-codimensional subspace F of a *-Baire-like space E is *-Baire-like if and only if F is ultrabarrelled. Every metrizable and ultrabarrelled tvs is *-Baire-like. This remark in [5] follows also from the following proposition which is clear from Lemma 1.0.

Proposition 1.1. An ultrabarrelled tvs E which is dense in a *-Baire-like space F is *-Baire-like.

Our first theorem is connected with the closed graph theorem for *-Baire-like spaces. First we recall the following two notions: E is said to be boundedly summing [1], if for every bounded subset B of E there exists a scalar sequence $(\lambda_j)_{j\in\mathbb{N}}$, $\lambda_j>0$, such that

$$\sum_{n=1}^{\infty*} \lambda_n B := \bigcup_{n=1}^{\infty} \sum_{k=1}^n \lambda_k B$$

is bounded. All metrizable tvs are boundedly summing; locally pseudo-convex and almost convex spaces are boundedly summing, [1], p. 76. A sequence $(A_j)_{j\in\mathbb{N}}$ of balanced subsets of E such that $A_{j+1}+A_{j+1}\subset A_j$ for all $j\in\mathbb{N}$ is said to be completing if given any sequence $x_j\in A_j,\ j\in\mathbb{N}$, then the series $\sum_{j=1}^\infty x_j$ converges in E. This implies that the filter basis $(A_j)_{j\in\mathbb{N}}$ is finer than $\mathscr{U}_0(E)$.

We shall need also the following variant of Theorem 9.1.44 of [3].

Lemma 1.2. Let $(E,\tau),(F,\vartheta)$ be two and $f:(E,\tau)\to (F,\vartheta)$ a linear map with closed graph. If there exists a completing sequence $(A_n)_{n\in\mathbb{N}}$ in F such that for every $n\in\mathbb{N}$ the closure of $f^{-1}(A_n)$ is a τ -neighbourhood of zero, then f is continuous.

Proof. We start with the special case that (E,τ) is metrizable. Let $(U_n)_{n\in\mathbb{N}}$ be a basis of τ -neighbourhoods of zero in E such that $U_{n+1}\subset U_n$, $n\in\mathbb{N}$. Let $K_n=f^{-1}(A_n)$, $n\in\mathbb{N}$. We can find an increasing sequence (m_n) in \mathbb{N} such that $U_{m_n}\subset K_n+U_{m_{n+1}}$, $n\in\mathbb{N}$. It is enough to show that $f(U_{m_n})\subset\overline{A_n}$, $n\in\mathbb{N}$. Fix $n\in\mathbb{N}$ and $x_1\in U_{m_n}$. We find two sequences $(x_j)_{j\in\mathbb{N}}$ and $(y_j)_{j\in\mathbb{N}}$ such that $x_j=y_j+x_{j+1}$, $j\in\mathbb{N}$, and $x_j\in U_{m_{n+j-1}}$, $f(y_j)\in A_{n+j-1}$. Therefore $x_1=\sum_{j=1}^\infty y_j$. By assumption there exist $y\in F$ such that $y=\sum_{j=1}^\infty f(y_j)$. Since $\sum_{j=1}^m f(y_j)\in\sum_{j=1}^m A_{n+j}\subset A_n$, $m\in\mathbb{N}$, then $y\in\overline{A_n}$. The graph of f being closed, we have $f(x_1)=y$, which completes the proof. Now we turn to the case of an arbitrary tvs (E,τ) . First we show that $P:=\bigcap_{n=1}^\infty \overline{f^{-1}(A_n)}$ is equal to the closed subspace $f^{-1}(0)$. In fact, $f^{-1}(0)\subset P$ is trivial, and on the other hand $P\subset \bigcap_{v\in\mathscr{U}_0(F)} \overline{f^{-1}(V)}$ since the filter basis $(A_n)_{n\in\mathbb{N}}$ is finer than $\mathscr{U}_0(F)$. Hence

$$P \subset \cap \left\{ U + f^{-1}(V) : U \in \mathcal{U}_0(E), \ V \in \mathcal{U}_0(F) \right\}, \quad \text{so}$$

$$f(P) \subset \cap \left\{ f(U) + V : U \in \mathcal{U}_0(E), \ V \in \mathcal{U}_0(F) \right\} = \left\{ 0 \right\}$$

since graph f is closed. So $P \subset f^{-1}(0)$. Let $q: E \to E/P$ be the quotient map. There is a linear map $g: E/P \to F$ such that $g \circ q = f$. We endow E/P with the topology α whose basis of the neighbourhoods of zero is given by $q(f^{-1}(A_n))$, $n \in \mathbb{N}$, which is metrizable. α is coarser than the quotient topology τ/P . Observe that $g: (E/P, \alpha) \to (F, \vartheta)$ has closed graph in $(E/P, \alpha) \times (F, \vartheta)$. In fact, since graph f is closed, there exists a Hausdorff vector topology $\beta \leq \vartheta$ on F such that $f: (E, \tau) \to (F, \beta)$ is continuous. Let $V \in \mathscr{U}_0(\beta)$ be closed. There exists $k \in \mathbb{N}$ such that $A_k \subset V$. It follows that $f^{-1}(A_k) \subset f^{-1}(V)$. Therefore $q(f^{-1}(A_k)) \subset g^{-1}(V)$, and $g: (E/P, \alpha) \to (F, \beta)$ is continuous. So $g: (E/P, \alpha) \to (F, \vartheta)$ has closed graph. On the other hand $q(F, \vartheta) \to (F, \vartheta)$ is an $q(F, \vartheta)$ -neighbourhood of zero for all $q \in \mathbb{N}$. In fact, $q(f^{-1}(A_n)) \subset q(F, \vartheta)$ is continuous. Hence the assumptions of Lemma 1.2, metrizable case, are satisfied for q. Therefore $q: (E/P, \alpha) \to (F, \vartheta)$ is continuous. Since $q: (E/P, \alpha) \to (F, \vartheta)$ is also continuous, we obtain that f is continuous.

Theorem 1.3. Let (E,τ) be a *-Baire-like space and let (Y,ϑ) be the inductive limit of an increasing sequence $(Y_n,\vartheta_n)_{n\in\mathbb{N}}$ of boundedly summing tvs (Y_n,ϑ_n) such that $\vartheta_{n+1}|Y_n\leq \vartheta_n$ for all $n\in\mathbb{N}$. Assume that every (Y_n,ϑ_n) has a fundamental sequence of bounded

balanced sets which are complete. If $f:(E,\tau)\to (Y,\vartheta)$ is a linear map with closed graph, then there exists $m\in\mathbb{N}$ such that $f(E)\subset Y_m$ and $f:(E,\tau)\to (Y_m,\vartheta_m)$ is continuous.

Proof. For every $n \in \mathbb{N}$ let $(A_m^n)_{m \in \mathbb{N}}$ be a fundamental sequence of balanced ϑ_n -bounded subsets of A_n which are ϑ_n -complete. We may assume that $A_m^n + A_m^n \subset A_{m+1}^n$, $n, m \in \mathbb{N}$. Since (E,τ) is *-Baire-like, there exists $n \in \mathbb{N}$ such that $f^{-1}(Y_p)$ is τ -dense for all $p \geq n$. Without loss of generality we may assume that n=1. Let $\tau_n = \tau | f^{-1}(Y_n)$, $n \in \mathbb{N}$. First we prove that there are $n, m \in \mathbb{N}$ such that $\overline{f^{-1}(A_m^n)}^{\tau_n}$ is a τ_n -neighbourhood of zero in $f^{-1}(Y_n)$. Suppose this is not the case. Hence none of the sets $\overline{f^{-1}(A_m^n)}^{\tau}$ is a τ -neighbourhood of zero. We construct two sequences $(S_n)_{n \in \mathbb{N}}$, $(B_n)_{n \in \mathbb{N}}$ of balanced subsets of E and Y, respectively, and a sequence $(p(n))_{n \in \mathbb{N}}$ in \mathbb{N} such that $S_n + S_n \subset S_{n+1}$, $S_$

- (a) $B_n = \sum_{k=1}^n A_n^k + A_{p(n)}^n + \sum_{j=1}^{\infty*} \lambda_j^n A_{p(n)}^n$, where $(\lambda_j^n)_{j \in \mathbb{N}}$ is such that $0 < \lambda_{j+1}^n < \lambda_j^n$ and $\sum_{j=1}^{\infty*} \lambda_j^n A_{p(n)}^n$ is ϑ_n -bounded.
- (b) $B_n + B_n \subset A_{p(n+1)}^{n+1}, n \in \mathbb{N}$.
- (c) $S_n = \overline{f^{-1}(B_n)}^{\tau}$ and $S_n \notin \mathcal{U}_0(\tau)$, $n \in \mathbb{N}$.

We construct both sequences by induction. Since Y_1 is boundedly summing, there exists a scalar sequence $(\lambda_j^1)_{j\in\mathbb{N}},\ 0<\lambda_{j+1}^1<\lambda_j^1,\ j\in\mathbb{N}$, such that $\sum_{j=1}^{\infty^*}\lambda_j^1A_1^1$ is ϑ_1 -bounded. Set p(1)=1 and $B_1=A_1^1+A_1^1+\sum_{j=1}^{\infty^*}\lambda_j^1A_1^1$ and $S_1=\overline{f^{-1}(B_1)}^{\tau}$. Then $B_1+B_1\subset A_{p(2)}^2$ for some $p(2)\in\mathbb{N}$. Hence S_1 is not a τ -neighbourhood of zero. Suppose, we have already found sets B_1,B_2,\ldots,B_n ; S_1,S_2,\ldots,S_n , with the above conditions. Choose $p(n+1)\in\mathbb{N}$ such that $B_n+B_n\subset A_{p(n+1)}^{n+1}$. There exists a sequence $(\lambda_j^{n+1})_{j\in\mathbb{N}}$, $0<\lambda_j^{n+1}<\lambda_j^{n+1}$, $j\in\mathbb{N}$, such that $\sum_{j=1}^{\infty^*}\lambda_j^{n+1}A_{p(n+1)}^{n+1}$ is ϑ_{n+1} -bounded. Set

$$B_{n+1} = \sum_{k=1}^{n+1} A_{n+1}^k + A_{p(n+1)}^{n+1} + \sum_{j=1}^{\infty*} \lambda_j^{n+1} A_{p(n+1)}^{n+1}, S_{n+1} = \overline{f^{-1}(B_{n+1})}^{\tau}.$$

Then $B_n + B_n \subset B_{n+1}$, $S_n + S_n \subset S_{n+1}$. Since $B_{n+1} + B_{n+1} \subset A_{p(n+2)}^{n+1}$ for some $p(n+2) \in \mathbb{N}$, S_{n+1} is not a τ -neighbourhood of zero. This completes the inductive step. By (a), the sets

$$T_j^n = \sum_{k=1}^{\infty*} \lambda_{2^{j-1}k}^n A_{p(n)}^n, \ n, j \in \mathbb{N},$$

satisfy

$$T_j^n \subset B_n, T_{j+1}^n + T_{j+1}^n \subset T_j^n, n, j \in \mathbb{N},$$

and every T_i^n is balanced and ϑ_n -bounded.

The sets

$$K_j^n = T_j^1 + T_j^2 + \ldots + T_j^n, \ n, j \in \mathbb{N}$$

are balanced in Y. Clearly, $K_j^n \subset K_j^{n+1}$, $K_{j+1}^n + K_{j+1}^n \subset K_j^n$, $n, j \in \mathbb{N}$,

(*)
$$K_j^n \subset B_1 + B_2 + \ldots + B_n \subset B_{n+1}, n, j \in \mathbb{N}$$
.

Moreover, for every $j \in \mathbb{N}$ the set $\bigcup_{n=1}^{\infty} K_j^n$ is absorbing in Y. In fact, if $x \in Y$, then $x \in B_m$ for some $m \in \mathbb{N}$. Hence $x \in A_{p(m+1)}^{m+1}$ by (b). Fix $j \in \mathbb{N}$. Then $\lambda_{2^{j-1}}^{m+1}x \in \mathbb{N}$ is a $\lambda_{2^{j-1}}^{m+1}A_{p(m+1)}^{m+1} = T_j^{m+1} \subset K_j^{m+1}$. This implies that $\overline{(f^{-1}(K_j^n))}_{n,j \in \mathbb{N}}$ is a γ -sequence in E which, because of (*) and (c), is not topological, a contradiction, since (E,τ) is *-Baire-like. We have proved that there are numbers $n,m \in \mathbb{N}$ such that $\overline{f^{-1}(A_m^n)}^{\tau_n}$ is a τ_n -neighbourhood of zero in $f^{-1}(Y_n)$. Using this we find on Y_n a complete vector topology σ_n and a completing sequence $(W_p)_{p \in \mathbb{N}}$ in (Y_n,σ_n) such that $\overline{f^{-1}(W_p)}^{\tau_n}$ is a τ_n -neighbourhood of zero for all $p \in \mathbb{N}$. In fact, since (Y_n,ϑ_n) is boundedly summing, there exists a scalar sequence $(\lambda_i)_{i \in \mathbb{N}}$, $0 < \lambda_{i+1} < \lambda_i$, such that $\sum_{i=1}^{\infty*} \lambda_i A_m^n$ is ϑ_n -bounded. The ϑ_n -bounded sets

$$W_p = \sum_{j=1}^{\infty*} \lambda_{2^{p-1}j} A_m^n, \quad p \in \mathbb{N},$$

satisfy

$$(**) W_{p+1} + W_{p+1} \subset W_p \subset W_1 = \sum_{j=1}^{\infty*} \lambda_j A_m^n.$$

Since

$$\lambda_{2^{p-1}}A_m^n\subset W_p,$$

then $\overline{f^{-1}(W_p)}^{\tau_n}$ is a τ_n -neighbourhood of zero in $f^{-1}(Y_n)$, $p \in \mathbb{N}$. Let σ_n be the finest vector topology on Y_n agreeing with ϑ_n on all sets A_k^n , $k \in \mathbb{N}$. Then $\vartheta_n \leq \sigma_n$ and (Y_n, σ_n) is complete, [1], 16 (13). Moreover, by 16(3) of [1], every ϑ_n -bounded set is σ_n -bounded. Therefore and because of (**) the sequence $(W_p)_{p \in \mathbb{N}}$ is completing in (Y_n, σ_n) . We may apply Lemma 1.2 to deduce that

$$f|f^{-1}(Y_n):f^{-1}(Y_n)\to (Y_n,\sigma_n)$$

is continuous. Since $f^{-1}(Y_n)$ is dense in E and (Y_n, σ_n) is complete, there exists a continuous linear extension g of $f|f^{-1}(Y_n)$ to the whole space E. It is easy to see that f=g. This completes the proof.

We shall say that a tvs (E,τ) is an $(LF)_{tv}$ -space (resp. $(LB)_{tv}$ -space) if (E,τ) is the inductive limit of a strictly increasing sequence $(E_n,\tau_n)_{n\in\mathbb{N}}$ of F-spaces (resp. locally bounded F-spaces) such that $\tau_{n+1}|E_n\leq \tau_n$ for all $n\in\mathbb{N}$. We call $(E_n,\tau_n)_{n\in\mathbb{N}}$ a defining sequence for (E,τ) .

Corollary 1.4. Let E be a *-Baire-like space and Y an $(LB)_{tv}$ -space. Then every linear map $f: E \to Y$ with closed graph is continuous.

Remark 1.5. If Y is not an $(LB)_{tv}$ -space, then the conclusion can fail, even under the hypothesis that Y be a metrizable $(LF)_{tv}$ -space and E is metrizable and ultrabarrelled. Indeed, it is enough to show that every metrizable $(LF)_{tv}$ -space (E,τ) admits a strictly weaker metrizable and ultrabarrelled topology. Since (E,τ) is ultrabarrelled [1], 6 (4), but non-complete, (E,τ) is not an infra-s-space (in the sense of Adasch, [1], p. 44; cf. also 10 (10)). Hence E admits a strictly weaker Hausdorff vector topology ϑ such that the associated ultrabarrelled topology ϑ^t is strictly weaker than $\tau^t = \tau$. Let φ be the vector topology on E which has $\{\overline{U}^{\vartheta^t}: U \in \mathscr{U}_0(\tau)\}$ as a basis of $\mathscr{U}_0(\varphi)$. Then $\vartheta^t \leq \varphi$, φ is ϑ^t -polar and φ is metrizable. Hence $\vartheta^t = \varphi$. Recall that metrizable (even non-locally convex) $(LF)_{tv}$ -spaces do exist, [7], [12].

Corollary 1.6. Let (E, τ) be the inductive limit of a strictly increasing sequence of complete boundedly summing ultrabarrelled tvs (E_n, τ_n) such that every (E_n, τ_n) has a fundamental sequence of bounded sets. Then (E, τ) is not metrizable. In particular, no $(LB)_{tv}$ -space is metrizable.

This extends Corollary 3 of [7].

For ultrabarrelled tvs, which are the inductive limits of an increasing sequence of metrizable tvs, we have the following characterization of *-Baire-likeness.

Theorem 1.7. Let (E, τ) be an ultrabarrelled tvs which is the inductive limit of an increasing sequence $(E_n, \tau_n)_{n \in \mathbb{N}}$ of tvs.

A. If every (E_n, τ_n) is metrizable, then the following properties are equivalent:

A1. (E, τ) is *-Baire-like.

A2. (E, τ) is metrizable.

B. Let $Bd(\tau_n)$ be the set of all τ_n -bounded sets $n \in \mathbb{N}$. Suppose that $\mathscr{U}_0(\tau_n) \cap Bd(\tau_{n+1}) \neq \emptyset$ for all $n \in \mathbb{N}$. Then the following properties are equivalent:

- B1. (E, τ) is *-Baire-like.
- B2. There is $n \in \mathbb{N}$ and $U \in \mathcal{U}_0(\tau_n) \cap Bd(\tau_{n+1})$ such that the τ -closure \overline{U} of U is a τ -neighbourhood of zero.
 - B3. (E, τ) is locally bounded.
 - B4. The sequential closure of any subset of (E, τ) is sequentially closed.
- B5. For any sequence $(x_n)_{n\in\mathbb{N}}$ in E there exists a scalar sequence $(\varrho_n)_{n\in\mathbb{N}}$, $\varrho_n>0$, such that 0 belongs to the τ -closure of $\{\varrho_n x_n: n\in\mathbb{N}\}$.

The hypothesis of B. is clearly satisfied when each (E_n, τ_n) is locally bounded or when the inclusion map of (E_n, τ_n) into (E_{n+1}, τ_{n+1}) is compact (or precompact) for each $n \in \mathbb{N}$. To prove B. we shall need the following two lemmas.

Lemma 1.8 (H. Pfister). Let (E,τ) be a tvs and $(x_n)_{n\in\mathbb{N}}$ a sequence in E. Assume the following condition: B3'. The sequential closure of any countable subset of (E,τ) is sequentially closed. Then there exists a scalar sequence $(\varrho_n)_{n\in\mathbb{N}}$, $\varrho_n>0$, such that a subsequence of $(\varrho_n x_n)_{n\in\mathbb{N}}$ converges to 0; in particular, B4 holds.

Proof. Let $(x_n)_{n\in\mathbb{N}}$ be a sequence in E. We shall construct the sequence $(\varrho_n)_{n\in\mathbb{N}}$ so that 0 is even in the sequential closure of $\{\varrho_n x_n : n \in \mathbb{N}\}$. Choose $a \in E \setminus (\{nk^{-1}x_n : n, k \in \mathbb{N}\} \cup \{0\})$ and put $H = \{n^{-1}a - k^{-1}x_n : n, k \in \mathbb{N}\}$. Then $n^{-1}a$ belongs to the sequential closure \widehat{H} of H, and 0 is in the sequential closure of \widehat{H} . Hence $0 \in \widehat{H}$ by B3', i.e. there are sequences (n_l) and (k_l) in \mathbb{N} such that

(*)
$$n_l^{-1}a - k_l^{-1}x_{n_l} \to 0 \quad \text{for} \quad l \to \infty.$$

Then (n_l) tends to infinity. For otherwise (n_l) would have a constant subsequence and this would violate (*). Without loss of generality we may assume that $n_l < n_{l+1}$, $l \in \mathbb{N}$. So (*) implies that $(k_l^{-1}x_{n_l})$ is a nullsequence. Defining now $\varrho_{n_l} = k_l^{-1}$ for $l \in \mathbb{N}$ and $\varrho_n = 1$ for $n \in \mathbb{N} \setminus \{n_l : l \in \mathbb{N}\}$ (recall $n_l < n_{l+1}$), the sequence $(\varrho_n)_{n \in \mathbb{N}}$ is as claimed.

Remark 1.9. (1) It is easy to see that, conversely, $0 \in \widehat{H}$ if there is a scalar sequence $(\varrho_n)_{n\in\mathbb{N}}$, $\varrho_n > 0$, such that 0 is in the sequential closure of $\{\varrho_n x_n : n \in \mathbb{N}\}$. (2) Since only locally convergent sequences appear in the proof, the hypothesis B3' could be «localized».

Lemma 1.10. Let $(K_j^n)_{n,j\in\mathbb{N}}$ be a γ -sequence in an ultrabarrelled space (E,τ) . If (E,τ) has property B5, then for every $j\in\mathbb{N}$ there exists $n\in\mathbb{N}$ such that K_j^n is absorbing in E.

Proof. Assume there exists $i \in \mathbb{N}$ such that none of the sets K_i^n , $n \in \mathbb{N}$, is absorbing in E. Hence for every $n \in \mathbb{N}$ there exists $x_n \in E$ which is not absorbed by K_i^n . Choose

a sequence $(\varrho_n)_{n\in\mathbb{N}}$ according to B5. Then $\varrho_n x_n \notin K_i^n$, $n \in \mathbb{N}$. Let $(U_n)_{n\in\mathbb{N}}$ be a topological string in (E,τ) such that

$$\varrho_n x_n \notin \overline{K_i^n + U_n}, n \in \mathbb{N}$$
.

Set

$$W_{j} = \bigcap_{m=1}^{\infty} \overline{\left(K_{i+j-1}^{m} + U_{m+j-1}\right)}.$$

Then $(W_j)_{j\in\mathbb{N}}$ is a closed string in (E,τ) ; hence topological. But $\varrho_n x_n \notin W_1$, $n\in\mathbb{N}$, a contradiction to B4.

Proof of Theorem 1.7. A1 \Rightarrow A2: For every $n \in \mathbb{N}$ let $(U_j^n)_{j \in \mathbb{N}}$ be a basis of balanced τ_n -neighbourhoods of zero in E_n such that $U_{j+1}^n + U_{j+1}^n \subset U_j^n$ for all $j \in \mathbb{N}$. Let $F = \{\overline{\sum_{(l,j) \in \Delta} U_j^l} : \Delta \subset \mathbb{N} \times \mathbb{N}, \Delta \text{ finite } \}$, where the closure is taken in τ . Clearly card $F = \aleph_0$. We prove that every closed τ -neighbourhood U of zero contains an element from F which is a τ -neighbourhood of zero. Choose in (E, τ) a topological string $(U^n)_{n \in \mathbb{N}}$ such that $U^1 + U^1 \subset U$. Then for every $n \in \mathbb{N}$ there exists $j_n \in \mathbb{N}$ such that $U^n \cap E_n \supset U_{j_n}^n$. Hence

$$U \supset \sum_{l=1}^{\infty^*} U^l \cap E_l \supset \sum_{l=1}^{\infty^*} U^l_{j_l},$$

and

$$U = \overline{U} \supset \overline{U_{j_1}^1 + U_{j_2}^2 + \dots U_{j_n}^n}, n \in \mathbb{N}$$
.

Set

$$K_j^n = \overline{U_{j_1+j}^1 + U_{j_2+j}^2 + \ldots + U_{j_n+j}^n}, n, j \in \mathbb{N}$$
.

Clearly $K_j^n \subset K_j^{n+1}$, $K_{j+1}^n + K_{j+1}^n \subset K_j^n$, $n \in \mathbb{N}$. Moreover $\bigcup_{n=1}^{\infty} K_j^n$ is absorbing in E for all $j \in \mathbb{N}$. Since (E, τ) is *-Baire-like, then for j = 1 there is $m \in \mathbb{N}$ such that $K_1^m \in \mathcal{U}_0(\tau)$. Clearly $K_1^m \subset U$. This completes the proof. A2 \Rightarrow A1: This follows from Proposition 1.1.

Now we prove part B. The implications B2 \Rightarrow B3 \Rightarrow B4 are obvious. B4 \Rightarrow B5: This follows from Lemma 1.8. B5 \Rightarrow B2: Choose a sequence $(U_n)_{n \in \mathbb{N}}$ such that

$$U_n \in \mathcal{U}_0 (\tau_n) \cap Bd(\tau_{n+1})$$
 and $U_n + U_n \subset U_{n+1}$, $n \in \mathbb{N}$.

B2 is proved when we show that $\overline{U}_n\in \mathscr{U}_0(\tau)$ for some $n\in \mathbb{N}$. For every $n\in \mathbb{N}$ choose a sequence $(U_j^n)_{j\in \mathbb{N}}$ of balanced sets such that $U_j^n\in \mathscr{U}_0(\tau_n)$ and $U_{j+1}^n+U_{j+1}^n\subset U_j^n\subset U_n,\ j\in \mathbb{N}$. Clearly the sets

$$K_i^n = \overline{U_i^1 + U_i^2 + \ldots + U_i^n}, n, j \in \mathbb{N}$$

form a γ -sequence, and $K_j^n \subset \overline{U}_{n+1}$ for $n,j \in \mathbb{N}$. Moreover, one has $K_1^n \subset \overline{U_1 + U_2 + \ldots + U_n}$, where U_1, U_2, \ldots, U_n are τ_{n+1} -bounded. Therefore, for all $n,j \in \mathbb{N}$, there is $\alpha > 0$ such that $U_1 + \ldots + U_n \subset \alpha U_j^{n+1}$, whence $K_1^n \subset \alpha K_j^{n+1}$. Now using Lemma 1.10 one obtains that there is $m \in \mathbb{N}$ such that $(K_j^m)_{j \in \mathbb{N}}$ is a τ -closed string in E; hence $(K_j^m)_{j \in \mathbb{N}}$ is topological. This implies that $\overline{U}_{m+1} \in \mathscr{U}_0(\tau)$. B1 \Rightarrow B2: Replace in the last proof the role of Lemma 1.10 by the assumption B1. B3 \Rightarrow B1: Apply Proposition 1.1.

In Theorem 1.7, the equivalence B1 \iff B3 remains true under the weaker assumption $\mathscr{U}_0(\tau_n) \cap Bd(\tau) \neq \emptyset$ for all $n \in \mathbb{N}$ instead of $\mathscr{U}_0(\tau_{n+1}) \neq \emptyset$: Obviously B3 \Rightarrow B1 holds, and B1 \Rightarrow B3 follows by an obvious change in the proof of B5 \Rightarrow B2.

Corollary 1.11. Let (E, τ) be the inductive limit of an increasing sequence of tvs (E_n, τ_n) such that for every $n \in \mathbb{N}$ the inclusion map of (E_n, τ_n) into (E_{n+1}, τ_{n+1}) is compact. Then E contains a subset whose sequential closure is not sequentially closed.

Proof. By [1], 18 (iv), p. 108, (E, τ) is ultrabarrelled. Since (E, τ) is not metrizable (cf. [1], 18 (i) and 16 (10) and recall our convention to consider only infinite dimensional tvs) it is enough to apply Theorem 1.7 part B.

Remark 1.12. Note that there exist *-Baire-like (even Baire) spaces for which condition B5 from Theorem 7.1 is not satisfied: Consider the space $E = \mathbb{R}^R$ endowed with the product topology τ . Then (E,τ) is a Baire space. There exists a sequence $(x_k)_{k\in\mathbb{N}}$ in E, $x_k = (x_{k,\alpha})_{\alpha\in\mathbb{R}}$, such that $\{(x_{k,\alpha})_{k\in\mathbb{N}}: \alpha\in\mathbb{R}\} = \mathbb{R}^N$. Let $(\alpha_n)_{n\in\mathbb{N}}$ be a sequence in \mathbb{R} , $\alpha_n > 0$, $n\in\mathbb{N}$. Then there exists $\gamma\in\mathbb{R}$ such that $(x_{k,\gamma})_{k\in\mathbb{N}} = (\alpha_k^{-1})_{k\in\mathbb{N}}$. Then $0\notin\overline{\{\alpha_kx_k:k\in\mathbb{N}\}}^{\tau}$.

Following Pérez Carreras [6] we call a tvs E a *-suprabarrelled space if given any increasing sequence of subspaces of E covering E, one of them is both dense and ultrabarrelled. Further we shall say that E is *-quasi-Baire if E is ultrabarrelled and if E is covered by an increasing sequence of subspaces of E, then one of them is dense.

Clearly

* - Baire - like
$$\Rightarrow$$
 * - quasi - Baire \Rightarrow ultrabarrelled

↑

* - suprabarrelled.

Using Proposition 1.1 one obtains that within metrizable tvs*-suprabarrelled $\Rightarrow *$ -Bairelike \iff *-quasi-Baire \iff ultrabarrelled. Using Lemma 1.0 one obtains easily the following analog of Proposition 1.1. If E is an ultrabarrelled dense subspace of a *-quasi-Baire

space then E is *-quasi-Baire. The analog for *-suprabarrelled spaces fails, since there exist metrizable $(LF)_{tv}$ -spaces and these spaces are not *-suprabarrelled (see below).

It is known that all $(LF)_{tv}$ -spaces are ultrabarrelled. On the other hand, Adasch's closed graph theorem [1], 8 (6), applies to show that no $(LF)_{tv}$ -space is *-suprabarrelled. Our Corollary 1.6 and Theorem 1.7 show that no $(LB)_{tv}$ -space is *-Baire-like. A very similar argument to that which was used in the proof of Theorem 4 and Corollary 6 of [12] enables one to show that all F-spaces with an unconditional basis contain proper dense subspaces which are $(LF)_{tv}$ -spaces. Following Narayanaswami and Saxon [7] we partition all $(LF)_{tv}$ -spaces into three mutually disjoint non-empty classes as follows:

An $(LF)_{tv}$ -space (E,τ) is an $(LF)_{tv,i}$ -space if it satisfies the condition (i) below, i=1,2,3.

- (1) (E, τ) has a defining sequence none of whose members is dense in (E, τ) .
- (2) (E, τ) is non-metrizable and has a defining sequence each of whose members is dense in (E, τ) .
 - (3) (E, τ) is metrizable.

Examples of $(LF)_{tv,i}$ -spaces can be found in [3], [7]. Using Theorem 1.7 we obtain the following characterization of $(LF)_{tv,i}$ -spaces in terms of Baire-type properties defined above.

Proposition 1.13. Let (E, τ) be an $(LF)_{tv}$ -space. Then:

- (a) (E, τ) is an $(LF)_{tv,3}$ -space iff (E, τ) is *-Baire-like.
- (b) (E, τ) is an $(LF)_{tv,2}$ -space iff (E, τ) is *-quasi-Baire but not *-Baire-like.
- (c) (E, τ) is an $(LF)_{tv,1}$ -space iff (E, τ) is not *-quasi-Baire.

Proof. (a) Follows from Theorem 1.7. (b) If (E,τ) is *-quasi-Baire but not *-Baire-like, then by Theorem 1.7, part A, (E,τ) is an $(LF)_{tv,2}$ -space. Now assume that (E,τ) is an $(LF)_{tv,2}$ -space. Let $(F_n)_{n\in\mathbb{N}}$ be an increasing sequence of τ -closed subspaces of E covering E. By assumption, (E,τ) has a defining sequence $(E_n,\tau_n)_{n\in\mathbb{N}}$ of τ -dense F-spaces. If $G_n=E_n\cap F_n$, $n\in\mathbb{N}$, then $(G_n,\tau_n|G_n)_{n\in\mathbb{N}}$ is an increasing sequence of F-spaces covering E. Let (E,ϑ) be the inductive limit of $(G_n,\tau_n|G_n)_{n\in\mathbb{N}}$. Then $\tau\leq\vartheta$. By Adasch's closed graph theorem [1], 10 (11), and a remark after it, $\tau=\vartheta$ and for every $n\in\mathbb{N}$ there exists $m\in\mathbb{N}$ such that $E_n\subset G_m$. Consequently G_m is τ -dense and so is F_m . Therefore (E,τ) is *-quasi-Baire. On the other hand, by Theorem 1.7, (E,τ) is not *-Baire-like. (c) Assume (E,τ) is not *-quasi-Baire and not an $(LF)_{tv,1}$ -space, i.e. given a defining sequence $(E_n,\tau_n)_{n\in\mathbb{N}}$ of F-spaces, some E_n is τ -dense. Then there exists a strictly increasing sequence $(F_n)_{n\in\mathbb{N}}$ of τ -closed subspaces of E covering E. If $G_n=E_n\cap F_n$, $n\in\mathbb{N}$, then (E,τ) is the inductive limit of the sequence $(G_n,\tau_n|G_n)_{n\in\mathbb{N}}$, cf. the proof of (b). Taking $n\in\mathbb{N}$ such that E_n is τ -dense, then $E_n\subset G_m$ for some $m\in\mathbb{N}$, cf. the proof of case (b). Hence F_m is τ -dense, a contradiction. The reverse implication in (c) is obvious.

As we have observed every metrizable $(LF)_{tv}$ -space is *-Baire-like but need not be *-supra- barrelled. Now we discuss the occurrence of proper dense non-*-suprabarrelled subspaces of F-spaces, extending Theorem 1 of [18] and [11]. First, if an F-space (E,τ) contains a proper dense ultrabarrelled subspace G, which is an $(LF)_{tv}$ -space for a topology finer than $\tau|G$, then $(G,\tau|G)$ is not *-suprabarrelled. This follows from the closed graph theorem of [1], 8 (6). In the converse direction we have the following more interesting proposition.

Proposition 1.14. Let (E, τ) be an F-space and F a dense subspace which is ultrabarrelled (equivalently *-Baire-like) but not *-suprabarrelled. Then (E, τ) contains a proper dense ultrabarrelled subspace G such that $F \subset G$ and G is an $(LF)_{tv}$ -space for a topology finer than $\tau|G$.

Proof. By assumption there exists an increasing sequence $(F_n)_{n\in\mathbb{N}}$ of subspaces of F covering F such that no F_n is both dense and ultrabarrelled. Using Proposition 1.1 we may assume that all F_n are dense in F. Let $(V_j)_{j\in\mathbb{N}}$ be a basis of balanced τ -closed neighbourhoods of zero in (E,τ) such that $V_{i+1}+V_{i+1}\subset V_j,\ j\in\mathbb{N}$. By assumption on F for every $n\in\mathbb{N}$ there exists in F_n a closed string $(W_j^n)_{j\in\mathbb{N}}$ such that $W_j^n\notin \mathscr{U}_0(F_n),\ j\in\mathbb{N}$. Set

$$V_j^n = \overline{W}_j^n \cap V_j, \quad Q_j^{n,p} = V_j^p \cap V_j^{p+1} \cap \ldots \cap V_j^n,$$

 $j \in \mathbb{N}$, $n \ge p$, $n, p \in \mathbb{N}$, where the closure is taken in τ . Let

$$G_j^{n,p} = \left\{ \lambda Q_j^{n,p} : \lambda \in \mathbb{K} \right\}, \ G_p = \bigcap_{j=1}^{\infty} \bigcap_{n \geq p} G_j^{n,p}.$$

Then G_p is a subspace of E, $F_p \subset G_p$, $G_p \subset G_{p+1}$, $p \in \mathbb{N}$. Let $\tau_{n,p}$ be the metrizable vector topology on G_p defined by the string $(G_p \cap Q_j^{n,p})_{j \in \mathbb{N}}$. Then $\tau | G_p \leq \tau_{n,p}$. Set $\tau_p = \sup\{\tau_{n,p} : n \geq p\}$. Then (G_p, τ_p) is an F-space. In fact, since τ_p is $\tau | G_p$ -polar, it is enough to show that every Cauchy sequence $(x_k)_{k \in \mathbb{N}}$ in (G_p, τ_p) converges in $\tau | G_p$. Fix $j \in \mathbb{N}$, $n \geq p$. There exists $\lambda \in \mathbb{K}$ such that $x_k \in \lambda Q_j^{n,p}$ for all $k \in \mathbb{N}$. Since $(x_k)_{k \in \mathbb{N}}$ is τ -Cauchy, $x_k \to x$ in τ for some $x \in E$. Hence $x \in \lambda Q_j^{n,p}$, which implies that $x \in G_j^{n,p}$. Therefore $x \in G_p$. Moreover, $\tau_{p+1} | G_p \leq \tau_p$, $\tau | G_p \leq \tau_p$, $p \in \mathbb{N}$. Let (G, \emptyset) be the inductive limit of the sequence $(G_p, \tau_p)_{p \in \mathbb{N}}$, where $G = \bigcup_{p=1}^{\infty} G_p$. Then $\tau | G \leq \emptyset$. Suppose that G = E. Then using Adasch's closed graph theorem [1], 10 (11) and a remark after it, one obtains that $\tau = \emptyset$, $G_l = E$ and $\tau_l = \tau$ for some $l \in \mathbb{N}$. Therefore $(\overline{W}_j^l \cap V_j)_{j \in \mathbb{N}}$ is a topological string in (E, τ) . Hence $W_j^l = \overline{W}_j^l \cap F_l \in \mathscr{W}_0(F_l)$, a contradiction.

Corollary 1.15. An F-space (E, τ) contains a dense non-ultrabarrelled subspace iff (E, τ) contains a dense subspace which is not *-suprabarrelled.

Proof. If (E,τ) contains a dense non-ultrabarrelled subspace F, then F is not *-supra-barrelled. Now suppose that (E,τ) contains a dense subspace F which is not *-suprabarrelled. If F is ultrabarrelled (otherwise there is nothing to show), then by Proposition 1.14 there exists in E a dense ultrabarrelled subspace $G \supset F$ such that G is an $(LF)_{tv}$ -space for a topology $\vartheta \geq \tau | G$. Let $(G_n)_{n \in \mathbb{N}}$ be a defining sequence of F-spaces for (G,ϑ) . Since $(G,\tau|G)$ is metrizable and ultrabarrelled, it is *-Baire-like. So there is $m \in \mathbb{N}$ such that G_m is τ -dense. Then $(G_m,\tau|G_m)$ is not ultrabarrelled by the closed graph theorem [1], 8 (6).

Now we come to results related to the Banach-Steinhaus theorem which involve *-Baire-like (Baire-like) spaces. In [4],§ 3, ex. 1.1, Bourbaki proved that every separately equicontinuous set $\mathcal F$ of bilinear maps $f: E \times T \to F$ is equicontinuous, provided E is metrizable and barrelled, T is a metrizable locally convex space and F is a locally convex space. In [17] Valdivia extended this result to Baire-like spaces E. The following proposition extends both results.

Proposition 1.16. Let E be a *-Baire-like space, F a tvs, and T a topological space whose points have countable bases of neighbourhoods. Let F be a set of maps $f: E \times T \to F$ with the following properties:

- (I_1) For each $t \in T$, $\{f(\cdot,t): f \in \mathcal{F}\}$ is an equicontinuous set of linear maps from E into F.
 - (I_2) For each $x \in E$, $\{f(x, \cdot) : f \in \mathcal{F}\}$ is equicontinuous.

Then the set \mathcal{F} is equicontinuous. The same conclusion holds when E is Baire-like and F is a locally convex space.

Proof. Because of f(x,t)-f(a,c)=f(x-a,t)+(f(a,t)-f(a,c)) for $x,a\in E,t,c\in T$ and (I_2) it suffices to show the equicontinuity at points $(0,c)\in E\times T$. Let $(W_n)_{n\in\mathbb{N}}$ be a decreasing base of $\mathscr{U}_c(T)$ and let $V\in \mathscr{U}_0(F)$. We show that there are $U\in \mathscr{U}_0(E)$ and $m\in\mathbb{N}$ such that $f(U\times W_m)\subset V$ for all $f\in \mathcal{F}$. Let $(V_j)_{j\in\mathbb{N}}$ be a closed topological string in F such that $V_1+V_1\subset V$. The sets $K_j^n=\{x\in E: f(x,t)\in V_j, f\in \mathcal{F}, t\in W_n\}$ with $n,j\in\mathbb{N}$ are closed (by (I_1)) and balanced and satisfy $K_j^n\subset K_j^{n+1}, K_{j+1}^n+K_{j+1}^n\subset K_j^n, n,j\in\mathbb{N}$. We show that $E=\bigcup_{n=1}^\infty nK_j^n,\ j\in\mathbb{N}$. Fix $j\in\mathbb{N}$ and choose $x\in E$. Because of (I_1) there exists $l\in\mathbb{N}$ such that $f(x,t)-f(x,c)\in V_{j+1},\ t\in W_l,\ f\in \mathcal{F}$. Hence $f(x,t)\in K_j^n$ for some K_j^n for some

 $s \in \mathbb{N}$. We have proved that $(K_j^n)_{j,n \in \mathbb{N}}$ is a γ -sequence in E. Hence there is $n \in \mathbb{N}$ such that $U = K_1^n \in \mathcal{U}_0(E)$. The second part of Proposition 1.16 is obtained similarly.

Proposition 1.17. Let E be a barrelled space. Then E is Baire-like iff, for every topological space T whose points have countable bases of neighbourhoods and every locally convex space F, any set \mathscr{F} of maps $f: E \times T \to F$ with the properties (I_1) and (I_2) of Proposition 1.16 is equicontinuous.

Proof. If E is Baire-like, the conclusion holds by Proposition 1.16. Now assume that E is not Baire-like. Since E is barrelled, there exists an increasing sequence $(K_n)_{n\in\mathbb{N}}$ of closed absolutely convex subsets of E covering E such that none of the sets K_n is absorbing in E. Set T=E' equipped with the topology ϑ of the uniform convergence on the sets $nK_n, n\in\mathbb{N}$, where E' denotes the topological dual of E. Then (T,ϑ) is a metrizable topological vector group (in the sense of Raikov [8]) and $\sigma(E',E)\leq \vartheta$. Let $f:E\times T\to \mathbb{K}$ be the evaluation map $(x,t)\mapsto t(x), x\in E, t\in T$, and put $\mathscr{F}=\{f\}$. Then the conditions (I_1) and (I_2) of Proposition 1.16 are satisfied. However f is discontinuous at (0,0). For if f were continuous at (0,0), there would be $V\in \mathscr{U}_0(E)$ and $m\in\mathbb{N}$ such that $|t(x)|\leq 1$, $x\in V$ and $t\in m^{-1}K_m^0$. This means that $V\subset (m^{-1}K_m^0)^0=mK_m$, and K_m would be a neighbourhood of zero in E, a contradiction.

Remark 1.18. From Proposition 1.17 and its proof we have the following: Let (E, τ) be a barrelled space, E' its topological dual and f the evaluation map $(x,t) \mapsto t(x), x \in E, t \in E'$. Then E is Baire-like iff for every metrizable vector group topology ϑ on E' the map $f: (E,\tau) \times (E,\vartheta) \to K$ is continuous at zero. With the same technique one proves: let (E,τ) be a quasi-barelled space with a fundamental sequence of bounded sets. Then (E,τ) is normed iff the evaluation map $(x,t) \mapsto t(x), x \in E, t \in E'$ is continuous at zero as a map from $(E,\tau) \times (E',\beta(E',E))$ into K.

From Proposition 1.16 we derive an analogue of the Banach-Steinhaus theorem:

Proposition 1.19. Let E, F and T be spaces as in Proposition 1.16. Let $(f_n)_{n \in \mathbb{N}}$ be a sequence of maps $f_n : E \times T \to F$ with the following properties:

- (1) For each $n \in \mathbb{N}$ and $t \in T$, $f_n(\cdot,t)$ is a linear and continuous map from E into F.
- (2) $(f_n)_{n \in \mathbb{N}}$ converges pointwise to a map $g: E \times T \to F$.
- (3) For each $x \in E$, $\{f_n(x, \cdot) : n \in \mathbb{N}\}$ is equicontinuous.

Then $g: E \times T \rightarrow F$ is continuous.

Proof. Since every pointwise bounded set of continuous linear maps from an ultrabarrelled space into a tvs is equicontinuous, [1], 7 (3), the set $\mathscr{F} = \{f_n : n \in \mathbb{N}\}$ satisfies the conditions of Proposition 1.16. Hence the sequence of maps $f_n : E \times T \to F$ is equicontinuous. Therefore for $a \in E$, $c \in T$, and closed $V \in \mathscr{U}_0(E)$ there exist $U \in \mathscr{U}_0(E)$,

 $W \in \mathcal{U}_c(T)$ such that $f_n(U \times W) - f_n(a,c) \subset V, n \in \mathbb{N}$. Hence $g(U \times W) - g(a,c) \subset V$, which completes the proof.

It is known that the product of two metrizable Baire tvs may be not Baire, cf. e.g. [15]. Hence the property of being a Baire tvs is not a three-space property, i.e. there exists a tvs E containing a closed subspace F such that E/F and F are Baire spaces but E is not a Baire space. We conclude this section by showing that *-Baire-likeness is a three-space property. A similar result for Baire-likeness was obtained in [2].

Proposition 1.20. Let F be a closed subspace of a tvs E such that E/F and F are *-Baire-like. Then E is *-Baire-like.

Proof. Let $(K_j^n)_{n\in\mathbb{N}}$ be a γ -sequence in E. Fix $i\in\mathbb{N}$. Then there exists $m\in\mathbb{N}$ such that $K_{i+1}^m\cap F\in\mathscr{U}_0(F)$. Choose $U\in\mathscr{U}_0(E)$ such that $(U-U-U)\cap F\subset K_{i+1}^m$. Let $(U_j)_{j\in\mathbb{N}}$ be a topological string in E such that $U_1+U_1\subset U$, and let $q:E\to E/F$ be the quotient map. Then $\overline{(q(U_j\cap K_j^n))}_{n,j\in\mathbb{N}}$ is a γ -sequence in E/F. Since E/F is *-Baire-like, there exists $n\in\mathbb{N}$ such that $\overline{q(U_{i+1}\cap K_{i+1}^n)}\in\mathscr{U}_0(E/F)$. There exists $V\in\mathscr{U}_0(E)$ such that $V\subset U$ and $V\subset U_{i+1}\cap K_{i+1}^n+W\cap U+F$ for all $W\in\mathscr{U}_0(E)$. Hence $V\subset U_{i+1}\cap K_{i+1}^n+W\cap U+F\cap (U-U-U)$. Therefore $V\subset \overline{K_{i+1}^n+K_{i+1}^m}\subset K_i^p$ for $p=\max(n,m)$. We proved that $(K_j^n)_{n,j\in\mathbb{N}}$ is topological; hence E is *-Baire-like. \blacksquare

REFERENCES

- [1] N. ADASCH, B. ERNST, D. KEIM, Topological vector spaces, Lecture Notes in Math., 639.
- [2] J. Bonet, P. Perez Carreras, On the three-space problem for certain classes of Baire spaces, Bull. Soc. Roy. Sci. Liège, 51 (1982), pp. 381-385.
- [3] J. Bonet, P. Perez Carreras, Barrelled locally convex spaces, North-Holland Math. Studies, Amsterdam, 1987.
- [4] N. BOURBAKI, Espaces vectoriels topologiques, chap. 3, Hermann, Paris, 1981.
- [5] J. KAKOL, Topological linear spaces with some Baire-like properties, Functiones et Approx., 13 (1982), pp. 109-116.
- [6] P. Perez Carreras, Sobre ciertas classes de espacios vectoriales topologicos, Rev. Real. Acad. Ci. Madrid, 76 (1982), pp. 585-594.
- [7] P.P. NARAYANASWAMI, S.A. SAXON, (LF)-spaces, quasi-Baire spaces and the strongest locally convex topology, Math. Ann., 274 (1986), pp. 627-641.
- [8] D.A. RAIKOV, On B-complete topological vector groups, (Russian), Studia Math., 31 (1968), pp. 295-305.
- [9] W.J. ROBERTSON, I. TWEDDLE, F.E. YEOMANS, On the stability of barrelled topologies III, Bull. Austr. Math. Soc., 22 (1980), pp. 99-112.
- [10] S.A. SAXON, Nuclear and product spaces, Baire-like spaces and the strongest locally convex topology, Math. Ann., 197 (1972), pp. 87-106.
- [11] S.A. SAXON, P.P. NARAYANASWAMI, Metrizable (LF)-spaces, db-spaces, and the separable quotient problem, Bull. Austr. Math. Soc., 23 (1981), pp. 65-80.
- [12] S.A. SAXON, P.P. NARAYANASWAMI, Metrizable (normable) (LF)-spaces and two classical problems in Fréchet (Banach) spaces, Studia Math. (to appear).
- [13] A. TODD, S.A. SAXON, A property of locally convex Baire spaces, Math. Ann., 206 (1973), pp. 23-34.
- [14] M. VALDIVIA, Absolutely convex sets in barrelled spaces, Ann. Inst. Fourier, Grenoble, 21 (1971), pp. 3-13.
- [15] M. VALDIVIA, Products of Baire topological vector spaces, Fundamenta Math., 125 (1985), pp. 71-80.
- [16] M. VALDIVIA, On suprabarrelled spaces, Proc. Funct. Anal. holomorphy and approx. theory, Lecture Notes in Math., 843, Rio de Janeiro, 1978.
- [17] M. VALDIVIA, A class of locally convex spaces without α-webs, Ann. Inst. Fourier, Grenoble, 32 (1982), pp. 261-269.
- [18] M. VALDIVIA, P. PEREZ CARRERAS, On totally barrelled spaces, Math. Z., 178 (1981), pp. 263-269.

Received March 5, 1991
J. Kakol
Institute of Mathematics
A. Mickiewicz University
Matejki 48/49
60-769 Poznan
Poland

W. Roelcke
Mathematisches Institut
der Universität
Theresienstraße 39
8000 München 2
Germany