BIBDs THAT ARE BOTH QUASI-DERIVED AND QUASI-RESIDUAL

ALAN RAHILLY

Abstract. A BIBD that is both quasi-derived and quasi-residual is embeddable as a residual design if and only if it is embeddable as a derived design.

We treat BIBDs as incidence structures in the manner of [1]. The set of blocks of a BIBD on a point P is denoted by (P).

We begin with a couple of definitions and some basic facts. A (v,b,r,k,λ) -design is said to be *quasi-derived* if $k=\lambda+1$. Such a design is an $\left(r,\frac{r(r-1)}{\lambda},r-1,\lambda,\lambda-1\right)$ -design, upon replacing k by λ and v by r, and might be a derived design of an $\left(\frac{r(r-1)}{\lambda}+1,r,\lambda\right)$ -design. A (v,b,r,k,λ) -design is said to be *quasi-residual* if $k=r-\lambda$. Such a design is an $\left(\frac{(r-\lambda)(r-1)}{\lambda},\frac{r(r-1)}{\lambda},r,r-\lambda,\lambda\right)$ -design and might be a residual design of an $\left(\frac{r(r-1)}{\lambda}+1,r,\lambda\right)$ -design. It is easy to show that the complement of a quasi-residual design is a quasi-derived design and *vice versa*. A design is both quasi-derived and quasi-residual if and only if it is a (2n,4n-2,2n-1,n,n-1) -design for some integer $n\geq 2$.

In [2] Hall and Connor established the following result concerning quasi-residual designs.

Result 1. Let
$$D = (\mathcal{P}, \mathcal{B}, \mathcal{I})$$
 be an $\left(\frac{(r-\lambda)(r-1)}{\lambda}, \frac{r(r-1)}{\lambda}, r, r - \lambda, \lambda\right)$ -design. D is embeddable as residual design in an $\left(\frac{r(r-1)}{\lambda} + 1, r, \lambda\right)$ -design if and only if there is a system S of sets of blocks of D such that

- (a) $|(P) \cap X| = \lambda$ for every $P \in \mathcal{P}, X \in \mathcal{S}$,
- (b) $|X \cap Y| = \lambda 1$ for every $X, Y \in S$ such that $X \neq Y$, and
- (c) every block of \mathcal{B} is contained in exactly λ sets $X \in \mathcal{S}$.

An analogous result for quasi-derived designs is

Result 2. Let $D = (\mathcal{P}, \mathcal{B}, \mathcal{I})$ be an $\left(r, \frac{r(r-1)}{\lambda}, r-1, \lambda, \lambda-1\right)$ -design. D is embeddable as a derived design in an $\left(\frac{r(r-1)}{\lambda}+1, r, \lambda\right)$ -design if and only there is a system S of sets of blocks of D such that (a) $|(P) \cap X| = \lambda$ for every $P \in \mathcal{P}, X \in S$,

- (b) $|X \cap Y| = \lambda$ for every $X, Y \in S$ such that $X \neq Y$, and
- (c) every block of B is contained in exactly $\tau \lambda$ sets $X \in S$.

Results 1 and 2 can be established in a similar manner. Note that we must have |S| = r and |X| = r - 1, for all $X \in S$, in Result 1. Also, we must have $|S| = \frac{(r - \lambda)(r - 1)}{\lambda}$ and |X| = r, for all $X \in S$, in Result 2.

Results 1 and 2 can be used to establish the following theorem.

Theorem 3. Let D be a BIBD which is both quasi-derived and quasi-residual, say a (2K, 4K - 2, 2K - 1, K, K - 1)-design. D is embeddable as a residual design in a (4K - 1, 2K - 1, K - 1)-design if and only if D is embeddable as a derived design in a (4K - 1, 2K, K)-design.

Proof. Suppose D is embeddable as a derived design in a (4K - 1, 2K, K)-design. By Result 2, there is a system S of sets of blocks of D such that

- (a) $|(P) \cap X| = K$ for all $P \in \mathcal{P}, X \in \mathcal{S}$,
- (b) $|X \cap Y| = K$ for all $X, Y \in S$ such that $X \neq Y$, and
- (c) every block of D is contained in exactly K sets of X of S.

We also have that |S| = 2K - 1 and |X| = 2K for all $X \in S$.

Now

$$|(P) \cup X| = |(P)| + |X| - |(P) \cap X|$$

= $(2K - 1) + 2K - K$
= $3K - 1$.

So $|((P) \cup X)^c| = 4K - 2 - (3K - 1) = K - 1$, hence $|(P)^c \cap X^c| = K - 1$, and so we have

$$|(P) \cap X^c| = |X^c| - |(P)^c \cap X^c|$$

$$= (4K - 2) - 2K - (K - 1)$$

$$= K - 1$$

for all $P \in \mathcal{P}, X \in \mathcal{S}$.

A similar, but simpler, argument shows that $|X^c \cap Y^c| = K - 2$ for all $X, Y \in S$ such that $X \neq Y$. Clearly, every block of B is in |S| - K = (2K - 1) - K = K - 1 sets X^c . Thus we have that $S' = \{X^c : X \in S\}$ satisfies the conditions of Result 1 (with $\lambda = K - 1$). Applying Result 1 we have that D is embeddable as a residual design in a (4K - 1, 2K - 1, K - 1)-design.

The converse can be established in a similar fashion.

Theorem 3 should be contrasted with the following well known result: A quasi-residual design D is embeddable as a residual design if and only if the complement of D is embeddable as a derived design.

Acknowledgement. The author acknowledges the support of an Australian Research Council Research Fellowship.

16 Alan Rahilly

REFERENCES

- [1] P. Dembowski, Finite Geometries, Springer, New York, 1968.
- [2] M. HALL, W. S. CONNOR, An embedding theorem for balanced incomplete block designs, Canad. J. Math. 6 (1954), 35-41.

Received December 11, 1990
A. Rahilly
Department of Mathematics
The University of Queensland
Queensland 4072
Australia