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1. INTRODUCTION

The duality theory of locally convex spaces 1s one of the most important and useful theo-
ries in the study of topological vector spaces and therefore while considering the dual pairs
of Riesz spaces or ordered vector spaces, it is natural to investigate the impact of ordering
on topological structure and vice-versa. Such study on normed vector lattices was initiated
during the period between 1937 and 1948 and has now developed considerably through the
pioneering work of several mathematicians, namely Krein, Freudenthal, Namioka, Schaeffer,
_uxemburg, Zaanen etc., cf. [6], [13], [15], [16] and references given therein. This study
nas further been generalized to locally convex spaces and we now have several books dealing
with the literature of ordered topological vector spaces and locally convex solid Riesz spaces,
cf. [1], [13], [16].

In this note, our investigations are based on this interrelationship of ordering with the dual-
ity of locally convex topological vector spaces. Indeed, we condider here the polar topologies
which are named as order polar topologies, for the concepts of ordering as well as duality are
involved in dealing with such topologies. These are the topologies 7.(X,Y),7,.(X,Y) and
T (X", X) which are different from the ones, namely O(X,Y) and 7,(X,Y), 7,(X,Y)"
considered earlier by Peressini [13] and Duhoux [4] respectively. In this paper, whereas the
Section two makes the presentation reasonably self-contained by including basic results, def-
initions etc. which are to be used in this study, Sections three and four are devoted to the
study of these topologies. Several examples from the theory of sequence spaces have also
been constructed in support of definitions and hypotheses assumed in several results.

2. BASIC RESULTS AND TERMINOLOGY

For the convenience of readers, we present in this section the rudiments from the theories of
Riesz spaces, locally convex spaces, locally solid Riesz spaces and sequence spaces. How-
ever, for details of these theories, we refer to the texts [1], [6], [9], [10], [11], [12], [14], [15],
[16] and [17].

We denote throughout by X a real vector space which is a vector lattice or a Riesz space
ordered by a cone K . We write X' for the algebraic dual of X and in case, X is equipped
with a locally convex topology 7, its topological dual is denoted by X*. For z € X, the

= =8

symbols z°,z~ and |z| have their usual meaning, i.e., z* =z V0,27 = (—z)" and |z| =
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7 + 7. An increasing (resp. a decreasing) net {z, : « € A} = {z_} in X is denoted
by z_ (resp. z_) and if supremum (resp. infimum) of {z_} is =, we write z_ T z (resp.
T, | T).

Following [1] and [13], we have

Definition 2.1. /na Riesz space X, (i)anet {z_} is said to order converge to an element z of

_ (0) _ : :
X, writtenas z_ » x in x, Iif there exists anet {y_} suchthat y, | 0 and |z, — z| <

Y., Jor each o and in this case z is said to be order limit of {z_} or z = 0 — limz_;
L8]

(i) a set B is said to be (a) order closed if it contains all its order limits, and (b) solid if
y € Bwhenever |y| < |z| for some x € B, and (iii) an ideal in X is solid subspace of
X, whereas a band of X is an order closed ideal of X . A Riesz space X is said to be (iv)

order complete (resp. o-order complete) if every majorized subset (resp. every countable
majorized set) in X has a supremum in X ; and (v) order separable if every subset A of X

that has a supremum in X contains a countable subset A' such that sup( A) = sup(A').

Definition 2.2. A linear operator T from a Riesz space X to another Riesz space Y is said to

be (i) order bounded if it maps each order bounded set in X to an order bounded subset of Y ;

. X _ (0) ‘ (0) _ ,
(ii) order continuous if T’z » T’z inY whenever t_ » T in X ; and sequentially

: _ (0) _ (0) _
order continuous if T'x_ » Tz in'Y whenever z_ >z in X,

We denote by .~ 'b(X , Y"), the class of all order bounded operators from X to ¥ and
the subspaces of FENX,Y) containing order continuous and sequentially order continuous
linear operators are respectively denoted by . (X ,Y) and ¥°°(X,Y). In particular, for
Y =R wewrite X°= % X,R), X%*° = ¥*(X,R) and X¢ = “°(X,R), which are
respectively known as the order dual, sequential order dual and continuous order dual of X .

Concerning these spaces, we have [1]:

Theorem 2.3. Let X and Y be Riesz spaces with Y as an order complete space. Then
Y b( X,Y') is an order complete Riesz space ordered by the cone K = {T e b( X, Y):
T(z) > 0,V € K}, where for T in YNX,Y) and z € X,|T| in £°(X,Y) is defined
by |\T|(|z|) = sup{|T(y)| : |yl < |x|}. Moreover, ¥ *°(X,Y) and ¥ (X,Y) are bands
in ¥ b(X, Y).

Proposition 2.4. Every sequentially order continuous linear operator T' from an order sepa-

rable Riesz space X into an Archimedean Riesz space Y is order continuous,
ie, YPX,Y)C ¥YUX.Y¥).

For asubset A of X' and z € X . we write

pi(x)=sup|<z.f>]
feA
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Depending on the behaviour of p,, let us recall the following concepts from [3], [4].

Definition 2.5. A4 subset A of X' is said to satisfy condition (i) A| if A C X* and p,(z,)
— 0 for every sequence {x,} in X, which order converges to 6 in X ; (ii) A, if A C X°©
and p,(x,) — 0 for every net {z_ } in X, order converging to 0 in X ; and (iii) A, if

AC X andp,(z, — z,) » 0 for every majorized increasing sequence {xz,} in X.

n,Mm—00

The sets satisfyng conditions A,, A, and A, are also known as the equi-o-continuous,

equicontinuous and equi-1' -continuous sets respectively; cf. [2].

For a locally convex space (X, 7) with dual X*, the notations o( X", X),(X*, X),
B(X™*, X) and M(X*, X) respectively denote the weak topology, Mackey topology, strong
topology and the topology of uniform convergence on all precompact subsets of X .

Relating the topology A(X*, X) with o(X* X), we have the famous «Banach
Dieudonne theorem» contained in [9].

Theorem 2.6. Let X be a metrizable locally convex space with dual X*. Then the finest
locally convex topology on X* which induces on every equicontinuous subset of X* the
same topology as o( X*, X)), is the topology of uniform convergence on precompact subsets
of X,ie, M(X*, X).

For the theory of locally solid Riesz spaces, main references are [ 1], [6], [16]. Let us begin
with

Definition 2.7. (i) A linear topology T on X is said to be a locally solid (I.s.) topology if it
has a neighbourhood basis consisting of solid sets; in addition if T is also a locally convex
topology, it is called a locally convex solid (l.c.s.) topology, (ii) a l.s. space ( X, T) satisfies

T

(a) o-Lebesgue property (or A, )if x_ | 0 in X implies x_ ———— 8, (b) Lebesgue property
(or A, )ifx, | 0 in X implies 20 (c) pre-Lebesque (or A;) if 0 < z, 1< z in X yields
that {z_} is a T-Cauchy sequence in X .

One can easily verify the following characterization of a locally solid topology.

Proposition 2.8. A locally convex topology on X is locally solid if and only if X* is an ideal

in X° and the solid hull of an equicontinuous set in X" is equicontinuous.
Concerning the locally solid character of Mackey topology on X , we have [3]:

Proposition 2.9. For a Riesz space X . (i) the Mackey topology (X, X®) is always locally
solid; and (ii) T( X . X*) (resp. T(X. X)) is locally solid if and onlyv it satisfies A, (resp.
A:! ).

If < X.Y > is a dual pair of Riesz spaces where Y is an ideal in X°, the symbols
O(X.Y) or |o|/(X.Y) denote the topology of uniform convergence on all order intervals
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of Y', or equivalently, it is the topology defined by the seminorms {p 6 : y € Y}, where

p,(z) =< |zl,|y| >.
We need the following from [1].

Proposition 2.10. The dual of X equipped with O(X,Y) is Y.

Theorem 2.11. /n a Hausdorff l.c.s. Riesz space (X,7),0(X,X*) = |o|(X,X") if and
only if every order interval of X* is contained in a finite dimensional vector space.

Concerning the order topology 7, on X, we have [13].

Definition 2.12. The order topology 7, on a Riesz space X, is the finest locally convex
topology for which every order bounded set is topologically bounded.

Proposition 2.13. (i) The dual of (X, 7,) is X b and (ii) if (X, T) is a complete metrizable
locally solid Riesz space, then T coincides with the order topology 1, on X .

Now, we mention from [5], the following concepts in a l.s. Riesz space.

Definition 2.14. A set A in (X, 1) is said to be quasi-order precompact (resp. order pre-
compact) if for each neighbourhood U of 0, there exists a positive element x in X (resp. in
the ideal generated by A in X ) suchthat A C | —z,z] + U.

Clearly, every order precompact set is quasi-order precompact, but the converse is not nec-
essarily true, e.g. the set {e” : n > 1} [cf. (2.16) for definition] is quasi-order precompact,
but not order precompact in [*°. However, we have [5].

Proposition 2.15. The topology T of al.c.s. Riesz space (X, T) is pre-Lebesgue if and only
if every quasi-order precompact set in ( X, T) is order precompact.

We follow [10] for various notations and results in the theory of sequence spaces. As we
are condidering real vector spaces in this paper, we denote by w the space of all real valued
sequences and ¢, the subspace of w, spanned by {e" : n > 1}, where

(2.16) e"={0,0.....1.0,0....}.

th
n" place

By a sequence space, we mean a subspace A of «w. containing . The symbol
o
M={{3, ew: ) la3, < x. ¥{o,} €N}
|

1S used to denote the Kothe dual ot A. The duality between A and AT 1s given by the bilinear

form.<,> where < @.3>=5Y “a 3 :fora={a,} € Xand 3= {3, } in \. The weak
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topology (A, A*) and the normal topology n( X, A\*) are generated by the family {g5 : B €
A*} and {pz: B € \*} of seminorms where

5@ = | Y _@,B,| and pz(&) = ) _ |a,B,|.
n=1 n=1

A sequence space X is monotone (resp. normal) if {«,z,} € X whenever {z_} € )\, and
a, =0 or 1 (resp. |o,| < 1,Vn>1).

Concerning the order structure of sequence spaces, we know that they have natural co-
ordinatewise ordering induced from the ordering of R . We make this assumption throughout
this paper. We now have [13].

Proposition 2.17. Every sequence space )\ is an order separable ordered vector space.

Proposition 2.18. Let a sequence space )\ be an ideal in w which is a Riesz space with

respect to coordinatewise ordering. Then a linear functional f on )\ is sequentially order
continuous if and only if there is a unique ©w = {u_} € \* such that

forall z={z_} in \.

Note 2.19. [n view of Propositions 2.4 and 2.17, it follows from Proposition 2.18 that \*™ =
A% = \C,

3. POLAR TOPOLOGIES 7(X,Y) AND 7 (X,Y)

Throughout this section, we assume that X is in duality with X° and hence with, X*° and
X°. Then the conditions A, and A, ofsetsin X and X * yield the Hausdorff polar topolo-
gies T.(X,Y) and 7, (X,Y) on X, introduced in

Definition 3.1. Ler < X.Y > be a dual pair of Riesz spaces. [f Y is an ideal in X°.
we write _ for the collection of all solid, convex, o(}", X') relatively compact subsets of ¥’
whichsatisfy A, ; and if Y isanideal in X*°, we set (_, for the collection of all solid, convex,
o(Y, X) relatively compact subsets of Y which satisfy A,. Then the topologies 7.(X,Y")
and 7, ( X.Y') are respectively the topologies of uniform convergence on members of . and

<S(J )

Concerning these topologies, we have
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Propositon3.2. 7.(X,Y) (resp. 7,,(X,Y))on X is thefinest locally convex solid topology
compatible with the dual pair< X,Y > satisfying Lebesgue (resp. o-Lebesque) property.

Proof. We prove the result for 7.( X, Y"); as the result for 7 (X,Y) would follow analo-
gously on replacing X ¢ by X°°, nets by sequences and the condition A, by A, .

Observe that the topology 7.(X,Y) is clearly a l.c.s. topology as the members of (_
are solid, convex and o(Y, X) bounded subsets of Y. Further, the inclusions O(X,Y) C
T.(X,Y) C 7(X,Y) yield the compatibtlity of 7.(X,Y) with < XY >; ct. Proposition
2.10 and [9], p. 205.

In order to show that it is the finest locally convex solid topology having all the properties
announced above, consider a locally convex solid topology 7 on X which is compatible with
the dual pair < X,Y > satisfying Lebesque property. In view of Proposition 2.8 and l.c.s.
nature of 7, we may assume that the collection {_ generating the topology 7 1s comprised of

T-equicontinuous, convex, solid sets. The proof would follow if we show that each A in ¢,

: . : . (0)
satisfies A, . Soconsideraset A in (. andanet {z_ : « € A} in X such that z_ » 0

in X . Then, from the equicontinuity of A, we can find a 7-neighbourhood U of 6 such

(0)
that A C U°; and z » 0 yieldsanet {y, : « € A} with y_ | 6 in X, such that

z,.| < y,,Yo € A. As 7 is Lebesque, for any ¢ > 0, we can find o, € A such that
Yo € €U,V > a,. Consequently, p,(z,) < €,Va > «, since A issolid. Thus ¢, C ¢_
and the result follows.

In spaces where o( X, X) (resp. o(X?®°, X)) bounded sets are also order bounded,
one can easily verify that the topologies 7.(X,X°),0(X,X°) and B(X,X°) (resp. T,
(X, X*),0(X,X*) and B( X, X*%)) coincide.

In the following examples we respectively illustrate the space X, where o(X°¢ X)
bounded sets in X° are order bounded, the indispensability of this condition for the equal-

ity B(X,X°) = r.(X,X°) to hold good and the condition is not a necessary one for the
topologies to coincide.

Example 3.3. Consider the space X = ¢. Then X¢ = w by Note 2.19. Hence a o(w, ©)
bounded set, being pointwise bounded. is order bounded: cf. [10]. p. 104.

Example 3.4. Let X = [*. Using once again the Note 2.19, ([™)¢ = (™) = ([™)* =['.
Since B3([*.1") is the norm topology of [* and (1. 3(1>.1'))*#!', cf. [10]. p. 129, it
follows from Proposition 3.2 that 7.([>.1') # 3(1>=.l') bounded. but it is not order bounded.

Example 3.5. Take the space X as {- . for which (/7)< = (I7)* = (I-)* = [-. cf. Note
b

l 2 -
2.19. Observe thattheset 4 = { —=¢" :n > 1 JL is o({-.l")-bounded, but it is not order
Lv 1

bounded in [-. However. 3({~.[°) = 7, on I and so (/°)® = [ by Proposition 2.13.
Consequently. by Propositions 2.9 and 3.2. 7,(=.7) = 7(I=.17) = 3(I".[7).
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For proving rest of the results in this section, we need restrict the Riesz space X as intro-
duced In

Definition 3.6. A Riesz space X is said to be (i) an O-space if for any sequence {z_, : n > 1}

(0)
in X, x_ » 0 in X if f(x,) — 0 foreach f in X°, and (ii) a -0 space if for any

(0)
sequence {x_} C X,z »J in X Iif f(x,) — 0, for every f in X*°.

Clearly, every O-space is a 0-O space and these two concepts coincide when X°° = X°,
It would be interesting to know examples of o -O-spaces which are not O-spaces. However,
illustrating O-space we have

Example 3.7. Consider the Riesz space w for which w® = ¢ = w?®® by Note 2.19. Observe

that any o(w, ¢)-null sequence {z" : n > 1} in w, is o(w, ) bounded and so we can find
a sequence {y. : ¢ > 1} € w such that

[IFI g y;‘sv'”*_;ﬁ ]:

(0)
cf. [10], p. 104. Hence =" » @, cf. [13] (see also [8] for the vector valued sequence

spaces). Thus w 1sa o — O as well as an O-space.

The spaces considered in the following three examples are not o-O-spaces and hence they
are not O-spaces.

Example 3.8. Consider the Riesz space X = C[0, 1] with usual pointwise ordering. It is
well known that X ®° = X< = {8} for this space, cf. [17], p. 153. Hence, obviously it cannot
be an O-space.

Example 3.9. The Riesz space X = [' for which (!')¢ = (1')% = ({)* = [, is not
|

0-0 space; for the sequence " = {—e” n > | } , does not O-converge to zero, but f(F")
n

— 0, for each f in [*°.

Example 3.10. Here we consider the space X = L'[0,1] formed by the equivalence
classes of Lebesque integrable almost everywhere equal functions. It is a well known fact that
L'[0.1] isan order complete Riesz space for the ordering defined as, [ f] < [g] in L'[0, 1]
ifand only if f(z) < g(x) almost everywhere. Since the space L'[0, 1], equipped with the
normed topology is a Banach lattice which is an abstract L-space, it is a Lebesgue and hence
a o-Lebesgue space. Consequently,

(%) L>=(L'[0,1])" C(L'[0, 1D C(L'[0, 1]
C(L'0 1) =(L'[0.1])" = L™,
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where L is the space of equivalence classes of essentially bounded functions on [0,1], cf.
[1]p. 71 and 112.

For constructing the required non-o-convergent sequence {[ f,]} in L'[0, 1], let us recall
the sets E_’s used in the construction of a Cantor set, namely

E, = |0

'l_-.
!3‘

5

I

=
O | =
1
O N
O | W
| I——
C
 ——
O | A
O |
.
-
1
O |
—

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

------------------------------------------

If P is the Cantor set, write

A =P;A =Ef and A, =(A,_ |UE )" ,n>2.

Then we have

211‘]
(1) [0,11=JA; () u(A,) =0 and u(A,) = T n2 land
i>0
(212) Al-i"‘lflj=w,i#j,
Now define the sequence {f, : n > 0} as follows:
fo=Xa5 and f, = :ZnXAn'HEI

Then from (*), we have for [¢] € L™

|
!{[fﬂ]-[w]biﬂf f (2)0(z)da]

M
< — —» 0 as n — oo,

where M is an essential bound of §. But the sequence {[ f.] : » > 0} is not order bounded
in L'[0,1].

It is obvious from the construction of 7.( X, X “) thatevery closed setin (X, 7.(X. X))
Is order closed; however for O-spaces we have
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Proposition 3.11. Let X be an O-space. Then a sequentially order closed set in X is
T.(X, X°) sequentially closed.

Proof. Immediate from Proposition 3.2 and the definition of O-space.
In case of -0 spaces, we have

Proposition 3.12. Fora o-Ospace X, the 7,,( X, X°°) sequentially closed and sequentially
order closed sets are the same.

Proof. Straightforward.

A characterization of sequentially continuous linear operatorson ( X, 7.( X, X)) interms
of its order-continuity is contained in

Proposition 3.13. Let X be an O-space. A linear operator T from (X,7.(X,X°)) into
itself is sequentially continuous if and only if it is sequentially order continuous.

Proof. The result follows from Proposition 3.2 and the definition of O-space.

Remark. Replacing O-spaces by o-O spaces in the above Proposition, we have analogous
result for the topology 7, (X, X*%).

The restriction of O-spaces in the above Proposition is indispensable. Before we pass on
to the precise example, let us recall from [10] a few concepts contained in

Definition 3.14. Let A and u be two sequence spaces and T' = [t,;] be an infinite matrix.

Then T is a matrix transformation from X into pu if (a) for each T = (z;) € A, the series

E t;;x; converges absolutely for each i; and (b) for each * = (z;) € X, the sequence
j=1

o0
y = (y,) defined by y. = E t,, T, is an element of .
j=1

Definition 3.15. A sequence space )\ equipped with a locally convex topology T is known as
a Fréchét AK-space if (), 7) is a complete metrizable space such that for each T = {z,} €

n

AT = E r.€' — I in T and T is finer than the co-ordinatewise convergence topology.

i=1
We now prove a general result for real sequence spaces.

Proposition 3.16. Ler an ideal » in w, equipped with a locally convex solid topology T,
be u Frechet AK-space. Then, every matrix transformation on ) is T,(AA) = T.(A,A9)
CONliNUOUS.



96 Manjul Gupta, Kalika Kaushal

Proof. In view of Proposition 2.13, Note 2.19 and [10], p. 52, 60, we have
AT =20 =\ = )\

Hence 7,(X,A°) = (X, A°) by Proposition 2.9 and 3.2. Consequently, any matrix transfor-
mation on A is 7,( A, A°) — 7,(A, X“) continuous, cf. [10], p. 205 and [9] p. 257.

Example 3.17. Consider the space [* and the operator 7" : I* — [, given by the matrix
{upq] , where

1 .
| = ifp#gq
Gy =y P9

0 ifp=g

Then by Proposition 3.16, 7" is Tq{ 212 TQ{F _1*) continuous, but it is not order contin-
uous; cf. [13], p. 170.

4. TOPOLOGY OF UNIFORM CONVERGENCE ON QUASI ORDER PRECOM-
PACT SETS

In this section, we consider an order polar topology on the dual of a locally convex solid Riesz
space, defined with the help of quasi-order precompact sets in X . Indeed, let us introduce

Definition 4.1. For a l.c.s. Riesz space (X,T), let (, denote the collection of all convex,
solid and quasi-order precompact subsets of (X, 7). Then T (X", X) is defined as the

topology of uniform convergence on meembers of .

Since the solid, convex hull of a quasi-order precompact set is quasi-order precompact,
we may replace { by {, which is the collection of convex solid hulls of all quasi-order
precompact subsets of ( X, 7).

Theorem 4.1. On T-equicontinuous subsets of X*, T (X", X) coincides with the absolute

weak topology |o|(X*, X).

Proof. Since |o|(X*, X) = 0(X*, X) and intervals are members of ¢ , it suffices to prove
T (X", X))y Clo|l(X*, X)|y . for any equicontinuous subset M of X*. Therefore, con-

sideranet {f, : a € A} in M suchthat f, — & in |o|/(X", X) here we may assume
that 8 € M. Choose a T-neighbourhood U of 6 in X such that M C U°. Then for any
given € > 0 and for a quasi-order precompact set A in X, there exists x > ¢ such that
A C[—zx,z] + eU. Hence, for y € A, the inequality

<y, f,>| <<z f, >+e
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along with the fact that < z,[f,| >— 0, yields that f, — 6 in T (X", X)|,,. This
completes the proof.

[t is known [5] that a precompact subset of a locally solid Riesz space 1s always quasi-order
precompact, but the converse 1s not necessarily true; tor we have

Example 4.2. Consider X = [, equipped with its norm topology. Then the order interval
[—e,e],where e = {1,1,1,...} in [* is quasi-order precompact but not precompact.

However, converse holds in the form of

Proposition 4.3. Let (X,7) be a l.c.s. Riesz space such that o(X*,X) = |oc[( X", X).
Then any quasi-order precompact subset of X is precompact.

Proof. In view of Theorem 2.11, let us first note that any order interval in X is contained in
a finite dimensional subspace of X .

Now consider a quasi-order precompact subset A of (X, 1) and U, a solid 7-neighbour-
hood of 8. Then we can find a solid neighbourhood V of @ suchthat V + V C U and a
positive element x in X suchthat A C[—x,z]+ V. As [ —x, z] i1s a bounded set in a finite
dimensional subspace of X , it is precompact. Consequently, A is precompact.

[llustrating the Riesz space for which o( X*, X) = |o|(X*, X), we have

Example 4.4. Consider the Riesz space w equipped with the absolute weak topology

lo|(w, ), then (w, |o|(w,))* = ¢ and o(w, ) = N(w, p) = |o|(w, p) . (cf. [10]).
The final result of this note, which makes use of Dieudonné theorem, is contained in

Theorem 4.5. Let (X,7) be a metrizable l.c.s. Riesz space satisfying the condition
o(X*, X) = |o|(X*,X). Then the topology T, (X", X) is the finest locally convex topol-

ogy on X*, which induces on every equicontinuous subset of X*, the same topology as
lo](X*, X).

Proof. By Proposition 4.3, T (X*, X) = A(X*, X). Now apply Theorem 2.6, in order to
get the result.
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