REMARKS ON SOME BASIC PROPERTIES OF TSIRELSON'S SPACE JESÚS M.F. CASTILLO, FERNANDO SÁNCHEZ **Abstract.** This note presents a new approach to some known, but difficult to prove, results: it is shown how all the basic properties, and some other less well-known, of Tsirelson space and its dual follow from an inequality stated in Tsirelson's original paper [9]. ## 1. BACKGROUND We base our approach to the properties of Tsirelson's space on the use of weakly-p-summable sequences. Throughout the paper p^* denotes the conjugate number of p; if p=1, l_{∞} plays the role of c_0 . **Preliminary Definitions.** A sequence (x_n) in a Banach space X is said to be weakly-p-summable $(p \ge 1)$ if there is a C > 0 such that $$\sup_{n} \left\| \sum_{k=1}^{n} \xi_k x_k \right\| \leq C \cdot \left\| (\xi_n) \right\|_{l_p}.$$ for any $(\xi_n) \in l_{p^*}$. It is said to be p-Banach-Saks, 1 , if $$\left\|\sum_{k=1}^n x_k\right\| \le C \cdot n^{1/p}$$ for some constant C>0 and all $n\in\mathbb{N}$. We shall say that the sequence (x_n) is weakly-p-convergent (resp. p-Banach-Saks convergent) to $x \in X$ if the sequence $(x_n - x)$ is weakly-p-summable (resp. p-Banach-Saks). These sequences allow us now to introduce two special classes of reflexive spaces, W_p and p-Banach-Saks. **Definition.** Let $1 \le p < +\infty$. A subset K of a Banach space X is said to be relatively weakly-p-compact if any sequence in K admits a weakly -p - convergent sub sequence. We say that $X \in W_p$ if its closed unit ball is weakly-p-compact. Example of spaces in W_p are: $l_p \in W_{p*}$, $1 ; and <math>L_p \in W_r$ where $r = \max\{p^*, 2\}$, 1 . In general, James' characterization of super-reflexivity [4], combined with the Bessaga-Pelczynski selection principle, implies: **Proposition 1 [1].** Let X be an infinite-dimensional super reflexive Banach space. Then there are numbers p > q > 1 such that $X \in W_p$ but $X \notin W_q$. **Definition [5].** Let $1 . A Banach space is said to have the p-Banach-Saks property when each bounded sequence <math>(x_m)$ admits a sub-sequence (x_n) and a point x such that $(x_n - x)$ is a p-Banach-Saks sequence. One of the main results of [1] may now be stated: **Proposition 2.** Let $1 . Every <math>X \in W_p$ has the p^* -Banach-Saks property. Every Banach space X with the p-Banach-Saks property belongs to W_r for all $r > p^*$. Many arguments in what follows will be simplified by the introduction of another class of Banach spaces, in some sense the dual of W_p : we say that a Banach space $X \in C_p$ if weakly-p-summable sequences are norn null. Two simple examples are: $l_p \in C_r$ for all $r < p^*$, $1 \le p < +\infty$; and $L_p \in C_r$, for $r < \min\{p^*, 2\}$, $1 \le p < +\infty$. Another example results from the application of Orlicz' theorem: that spaces of cotype s belongs to C_r for all $r < s^*$. It is clear that an infinite-dimensional Banach space cannot simultaneously belong to C_p and W_p . It is also clear that subspaces of spaces in C_p (resp. W_p) themselves belong to C_p (resp. W_p). Quotients of spaces in W_p belong to W_p (obviously false for C_p). ## 2. PROPERTIES OF T AND T^* We shall now apply the preceding ideas to obtain most of the basic properties of Tsirelson's space T^* . This is a reflexive Banach sequence space which does not contain a copy of l_p for $1 \le p < +\infty$, or c_0 . The following is Tsirelson's original definition: Let K be a weakly compact set of c_0 such that - 1) K is contained in the unit ball of c_0 ; - 2) for any sequence $x \in K$, if y is another sequence such that $|y(n)| \le |x(n)|$ for all $n \in \mathbb{N}$, then $y \in K$; - 3) given $x_1, \ldots, x_N \in K$ such that if $x_n(i) \neq 0$ then $x_m(j) = 0$ for all m > n and $j \leq i$, then the element y, defined as $y(n) = (x_1(n) + \ldots + x_N(n))/2$ for $n \geq N$ and 0 otherwise, belongs to K; - 4) given $x \in K$, then there is a $k \in \mathbb{N}$ such that the element y, defined as y(n) = 2x(n) for $n \ge k$ and 0 otherwise, belongs to K. Then the space T^* is defined as the span of the absolutely convex closed hull of K in c_0 with the norm having K as the unit ball. The first result we want to show is the following: **Proposition 3.** $T^* \in W_p$ for all p > 1. Current method of proof: Reference ([3], p.52) provides a sketch of a proof of this result that is quite difficult. In essence is as follows. First of all, one needs a profound theorem of Krivine [6] asserting that if X satisfies a lower-p-estimate then, for all n, X contains n disjointly supported vectors equivalent to the canonical basis of l_p^n . Then one passes to T, and sees that disjointly supported vectors in T must be equivalent to the unit vector basis of l_1^n (see[3], Prop.V.8). One next shows that in T (and therefore in T^*) the canonical basis dominates, and is dominated by, its blocks (see[3], Chapter II). The proof itself now follows: If, for some p, T does not admit a lower-p-estimate then the number inf $\{q:T \text{ satisfies lower-}q\text{-estimates}\}$ is greater than 1, and thus T admits disjointly supported vectors equivalent to the unit vector basis of l_1^n for all n uniformly, which is a contradiction. So we have that T admits lower-p-estimates for all p. It is a standard duality argument that in that case T^* admits upper-p-estimates for all p. Finally, given a weakly null sequence in T^* , if it is norm null then there is nothing to prove; if not, we apply the Bessaga-Pelczynski selection principle to obtain a basic sub-sequence equivalent to certain blocks of the unit vector basis of T^* . These blocks satisfy an upper-p-estimate for all p since they are dominated by the basis, and thus a sub-sequence of our original sequence is weakly-p-summable. Simpler proof: Now our approach: It is easy to see that T^* has, for all p, the p-Banach-Saks property. This follows from the inequality given by Tsirelson ([9], p.140): $$||\lambda_1 x_{N+1}, \dots, \lambda_N x_{2N}|| \le 2 \cdot \max_{1 \le i \le N} |\lambda_i|$$ which implies that $$||x_1 + \ldots + x_N|| \le K \cdot \log N$$ is valid for normalized blocks (x_i) of the canonical basis. This and the use of the Bessaga-Pelczynski selection principle in the form indicated above prove our assertion. Proposition 2 then implies that T^* is of the class W_p for all p>1. The next result was the motive for the construction of Tsirelson's space: **Proposition 4.** No subspace or quotient of T or T^* is isomorphic to l_p for $1 \le p < +\infty$, or c_0 . *Proof.* Pitt's theorem states that all operators of $\mathcal{L}(l_p, l_q)$ are compact for q > p. Therefore $l_p \in C_r$ for $r < p^*$ (in fact the two statements are equivalent), and thus l_p cannot be a subspace or quotient of a space in W_p for all p > 1. In conclusion, our assertion is true for T^* . A duality argument gives the same result for T. A different approach to proving the assertion for T is to recognize that $X \in W_p$ implies $X^* \in C_r$ for $r < p^*$ (see [2] for details). Since $T^* \in W_p$ for all p > 1, $T \in C_r$ for all r, and thus l_p cannot be a subspace or quotient of such a space. This last paragraph can also be expressed in the following proposition. **Proposition 5.** For any p > 1, $\mathcal{L}(L_p, T) = \mathbf{K}(L_p, T)$. For any p there is an operator $l_p \to T^*$ which is not compact. *Proof.* L_p spaces belong to some W_r , and $T \in C_p$ for all p. On the other hand, T^* does not belong to C_r for any r > 1. One can easily see that a Banach space $X \in C_p$ if and only if all operators of $\mathcal{L}(l_{p^*}, X)$ are compact. **Remark.** Straeuli [8] has proved that any Banach-Saks operator with values in T is compact. This proves the first assertion of Proposition 5. **Proposition 6.** T and T^* admit no non-trivial type infinite-dimensional subspaces or quotients, and in particular, no super-reflexive subspaces or quotients. *Proof.* Consider first T^* . Recall that spaces of cotype s belong to C_r for all $r < s^*$. This shows that no finite cotype subspaces or quotients of T^* are allowed. The assertion for non-trivial type and super-reflexive spaces follows from this (but is also a consequence of the fact that super-reflexive spaces do not belong to some of the classes W_a). The assertions for T are established by duality. **Remark.** The special feature of T^* , that it belongs to W_p for all p>1, determines all of its properties (and those of its dual), in particular that of not containing l_p . The latter not determine the former, however. Let us recall here the existence of a 2-convexfied Tsirelson space T_2 (see [3]): this space is uniformly convex (and thus super-reflexive) and does not contain any copy of l_p for $1 \le p < +\infty$, or c_0 . Since T_2 and T_2^* are super-reflexive, neither of them can belong to every W_p . Neverthless, it is possible to clarify somewhat the structure of T_2 in terms of C_p and W_p . Since T_2 is of type 2 and cotype q>2, it must belong to W_2 and to C_r for all r<2. This is the best that can be archieved for r. Since T_2^* is of type p<2 for all p and of cotype 2, it must belong to C_r for all r<2 and to W_r for all r>2. The question is whether T_2^* belongs to W_2 or to C_2 . Assume that it does not belong to C_2 . Then the criterion, developed in [2], for detecting copies of l_p comes into play: If $$X \notin C_p$$, and $X^* \in W_p$ then X contains a copy of l_p . Thus T_2^* should contain l_2 , a contradiction. If we recall that its dual space T_2 has, with respect to C_p and W_p , exactly the same behaviour as l_2 , that is, $T_2 \in C_p$ for p < 2 and $T_2 \in W_2$, then the behaviour of T_2^* may be somewhat surprising: $T_2^* \in C_2$ and $T_2^* \in W_p$ for p > 2. The reason however is precisely that T_2 cannot contain l_2 . **Acknowledgement.** The authors are extremely grateful for the anonymous referee's profound help and reasoned criticism. ## REFERENCES - [1] J.M.F. CASTILLO, F. SÁNCHEZ, Weakly p-compact p-Banach-Saks and super-reflexive Banach spaces, J. Math. Anal. and Appl., to appear. - [2] J.M.F. CASTILLO, On Banach spaces X such that $\mathcal{L}(L_p, X) = \mathbf{K}(L_p, X)$, unpublished. - [3] P.G. CASAZZA, T.J. SHURA, Tsirelson's space, Lecture Notes in Mathematics, 1363, Springer 1989. - [4] R.C. JAMES, Super-reflexive spaces with bases, Pacific Journal of Math, 41, n. 2, (1972) 409-419. - [5] W.B. JOHNSON, On quotients of L_p which are quotients of l_p , Compo. Math. vol. 34, 1 (1977) 69-89. - [6] J.L. KRIVINE, Sous-espaces de dimension finie des espaces de Banach réticulés, Ann. of Math., 104, (1976) 1-29. - [7] F. SANCHEZ, Sucesiones débilmente p-sumables en espacios de Banach, Tesis Doctoral, Universidad de Extremadura, Publ. Dept. Mat. Univ. Ext., n. 28 (1991). - [8] E. STRAEULI, On Hahn-Banach extensions for certain operator ideals, Arch. Math., vol. 47, (1986) 49-54. - [9] B.S. TSIRELSON, Not every Banach space contains an imbedding of l_p or c_0 , Functional Anal. Appl., 8 (1974) 138-141. Received January 5, 1991 and in revised form October 31, 1991 Jesús M.F. Castillo, Fernando Sánchez Departemento de Matemáticas Universidad de Extremadura Avda. de Elvas s/n. 06071 Badajoz Spain