REMARKS ON SOME BASIC PROPERTIES OF TSIRELSON'S SPACE
JESÚS M.F. CASTILLO, FERNANDO SÁNCHEZ

Abstract. This note presents a new approach to some known, but difficult to prove, results: it is shown how all the basic properties, and some other less well-known, of Tsirelson space and its dual follow from an inequality stated in Tsirelson's original paper [9].

1. BACKGROUND

We base our approach to the properties of Tsirelson's space on the use of weakly-p-summable sequences. Throughout the paper p^* denotes the conjugate number of p; if $p = 1$, l_{∞} plays the role of c_0.

Preliminary Definitions. A sequence (x_n) in a Banach space X is said to be weakly-p-summable ($p \geq 1$) if there is a $C > 0$ such that

$$\sup_n \left\| \sum_{k=1}^{n} \xi_k x_k \right\| \leq C \cdot \left\| (\xi_n) \right\|_{l^p},$$

for any $(\xi_n) \in l^p$.

It is said to be p-Banach-Saks, $1 < p < +\infty$, if

$$\left\| \sum_{k=1}^{n} x_k \right\| \leq C \cdot n^{1/p}$$

for some constant $C > 0$ and all $n \in \mathbb{N}$.

We shall say that the sequence (x_n) is weakly-p-convergent (resp. p-Banach-Saks convergent) to $x \in X$ if the sequence $(x_n - x)$ is weakly-p-summable (resp. p-Banach-Saks).

These sequences allow us now to introduce two special classes of reflexive spaces, W_p and p-Banach-Saks.

Definition. Let $1 \leq p < +\infty$. A subset K of a Banach space X is said to be relatively weakly-p-compact if any sequence in K admits a weakly-p-convergent sub sequence. We say that $X \in W_p$ if its closed unit ball is weakly-p-compact.

Example of spaces in W_p are: $l_p \in W_{p^*}, 1 < p < +\infty$; and $L_p \in W_r$ where $r = \max\{p^*, 2\}, 1 < p < +\infty$. In general, James' characterization of super-reflexivity [4], combined with the Bessaga-Pelczynski selection principle, implies:

Proposition 1 [1]. Let X be an infinite-dimensional super reflexive Banach space. Then there are numbers $p > q > 1$ such that $X \in W_p$ but $X \not\in W_q$.

Definition [5]. Let $1 < p < +\infty$. A Banach space is said to have the p-Banach-Saks property when each bounded sequence (x_m) admits a sub-sequence (x_n) and a point x such that $(x_n - x)$ is a p-Banach-Saks sequence.

One of the main results of [1] may now be stated:

Proposition 2. Let $1 < p < +\infty$. Every $X \in W_p$ has the p^*-Banach-Saks property. Every Banach space X with the p-Banach-Saks property belongs to W_r for all $r > p^*$.

Many arguments in what follows will be simplified by the introduction of another class of Banach spaces, in some sense the dual of W_p: we say that a Banach space $X \in C_p$ if weakly-p-summable sequences are norm null. Two simple examples are: $l_p \in C_r$ for all $r < p^*, 1 \leq p < +\infty$; and $L_p \in C_r$, for $r < \min\{p^*, 2\}, 1 \leq p < +\infty$. Another example results from the application of Orlicz' theorem: that spaces of cotype s belongs to C_r for all $r < s^*$.

It is clear that an infinite-dimensional Banach space cannot simultaneously belong to C_p and W_p. It is also clear that subspaces of spaces in C_p (resp. W_p) themselves belong to C_p (resp. W_p). Quotients of spaces in W_p belong to W_p (obviously false for C_p).

2. PROPERTIES OF T AND T^*

We shall now apply the preceding ideas to obtain most of the basic properties of Tsirelson's space T^*. This is a reflexive Banach sequence space which does not contain a copy of l_p for $1 \leq p < +\infty$, or c_0. The following is Tsirelson's original definition:

Let K be a weakly compact set of c_0 such that

1) K is contained in the unit ball of c_0;

2) for any sequence $x \in K$, if y is another sequence such that $|y(n)| \leq |x(n)|$ for all $n \in \mathbb{N}$, then $y \in K$;

3) given $x_1, \ldots, x_N \in K$ such that if $x_n(i) \neq 0$ then $x_m(j) = 0$ for all $m > n$ and $j \leq i$, then the element y, defined as $y(n) = (x_1(n) + \ldots + x_N(n))/2$ for $n \geq N$ and 0 otherwise, belongs to K;

4) given $x \in K$, then there is a $k \in \mathbb{N}$ such that the element y, defined as $y(n) = 2x(n)$ for $n \geq k$ and 0 otherwise, belongs to K.

Then the space T^* is defined as the span of the absolutely convex closed hull of K in c_0 with the norm having K as the unit ball.

The first result we want to show is the following:
Remarks on some basic properties of Tsirelson's space

Proposition 3. \(T^* \in W_p \) for all \(p > 1 \).

Current method of proof: Reference ([3], p.52) provides a sketch of a proof of this result that is quite difficult. In essence is as follows.

First of all, one needs a profound theorem of Krivine [6] asserting that if \(X \) satisfies a lower-\(p \)-estimate then, for all \(n \), \(X \) contains \(n \) disjointly supported vectors equivalent to the canonical basis of \(l_p^n \). Then one passes to \(T \), and sees that disjointly supported vectors in \(T \) must be equivalent to the unit vector basis of \(l_p^n \) (see[3], Prop.V.8). One next shows that in \(T \) (and therefore in \(T^* \)) the canonical basis dominates, and is dominated by, its blocks (see[3], Chapter II).

The proof itself now follows: If, for some \(p \), \(T \) does not admit a lower-\(p \)-estimate then the number \(\inf \{ q : T \text{ satisfies lower-}q\text{-estimates} \} \) is greater than 1, and thus \(T \) admits disjointly supported vectors equivalent to the unit vector basis of \(l_p^n \) for all \(n \) uniformly, which is a contradiction. So we have that \(T \) admits lower-\(p \)-estimates for all \(p \). It is a standard duality argument that in that case \(T^* \) admits upper-\(p \)-estimates for all \(p \). Finally, given a weakly null sequence in \(T^* \), if it is norm null then there is nothing to prove; if not, we apply the Bessaga-Pelczynski selection principle to obtain a basic sub-sequence equivalent to certain blocks of the unit vector basis of \(T^* \). These blocks satisfy an upper-\(p \)-estimate for all \(p \) since they are dominated by the basis, and thus a sub-sequence of our original sequence is weakly-\(p \)-summable.

Simpler proof: Now our approach: It is easy to see that \(T^* \) has, for all \(p \), the \(p \)-Banach-Saks property. This follows from the inequality given by Tsirelson ([9], p.140):

\[
||\lambda_1 x_{N+1}, \ldots, \lambda_N x_{2N}|| \leq 2 \cdot \max_{1 \leq i \leq N} |\lambda_i|
\]

which implies that

\[
||x_1 + \ldots + x_N|| \leq K \cdot \log N
\]

is valid for normalized blocks \(\{ x_i \} \) of the canonical basis. This and the use of the Bessaga-Pelczynski selection principle in the form indicated above prove our assertion.

Proposition 2 then implies that \(T^* \) is of the class \(W_p \) for all \(p > 1 \).

The next result was the motive for the construction of Tsirelson's space:

Proposition 4. No subspace or quotient of \(T \) or \(T^* \) is isomorphic to \(l_p \) for \(1 \leq p < +\infty \), or \(c_0 \).

Proof: Pitt's theorem states that all operators of \(\mathcal{L}(l_p, l_q) \) are compact for \(q > p \). Therefore \(l_p \in C_r \) for \(r < p^* \) (in fact the two statements are equivalent), and thus \(l_p \) cannot be a
subspace or quotient of a space in W_p for all $p > 1$. In conclusion, our assertion is true for T^*. A duality argument gives the same result for T.

A different approach to proving the assertion for T is to recognize that $X \in W_p$ implies $X^* \in C_r$ for $r < p^*$ (see [2] for details). Since $T^* \in W_p$ for all $p > 1, T \in C_r$ for all r, and thus l_p cannot be a subspace or quotient of such a space.

This last paragraph can also be expressed in the following proposition.

Proposition 5. For any $p > 1$, $\mathcal{L}(L_p, T) = \mathcal{K}(L_p, T)$. For any p there is an operator $l_p \to T^*$ which is not compact.

Proof. L_p spaces belong to some W_r, and $T \in C_p$ for all p. On the other hand, T^* does not belong to C_r for any $r > 1$. One can easily see that a Banach space $X \in C_p$ if and only if all operators of $\mathcal{L}(l_p, X)$ are compact.

Remark. Straueuli [8] has proved that any Banach-Saks operator with values in T is compact. This proves the first assertion of Proposition 5.

Proposition 6. T and T^* admit no non-trivial type infinite-dimensional subspaces or quotients, and in particular, no super-reflexive subspaces or quotients.

Proof. Consider first T^*. Recall that spaces of cotype s belong to C_r for all $r < s^*$. This shows that no finite cotype subspaces or quotients of T^* are allowed. The assertion for non-trivial type and super-reflexive spaces follows from this (but is also a consequence of the fact that super-reflexive spaces do not belong to some of the classes W_q).

The assertions for T are established by duality.

Remark. The special feature of T^*, that it belongs to W_p for all $p > 1$, determines all of its properties (and those of its dual), in particular that of not containing l_p. The latter not determine the former, however. Let us recall here the existence of a 2-convexified Tsirelson space T_2 (see [3]): this space is uniformly convex (and thus super-reflexive) and does not contain any copy of l_p for $1 \leq p < +\infty$, or c_0. Since T_2 and T_2^* are super-reflexive, neither of them can belong to every W_p.

Nevertheless, it is possible to clarify somewhat the structure of T_2, in terms of C_p and W_p. Since T_2 is of type 2 and cotype $q > 2$, it must belong to W_2 and to C_r for all $r < 2$. This is the best that can be achieved for r. Since T_2^* is of type $p < 2$ for all p and of cotype 2, it must belong to C_r for all $r < 2$ and to W_r for all $r > 2$. The question is whether T_2^* belongs to W_2 or to C_2.

Assume that it does not belong to C_2. Then the criterion, developed in [2], for detecting copies of l_p comes into play:
If $X \not\in C_p$, and $X^* \in W_p$ then X contains a copy of l_{p^*}.

Thus T_2^* should contain l_2, a contradiction.

If we recall that its dual space T_2 has, with respect to C_p and W_p, exactly the same behaviour as l_2, that is, $T_2 \in C_p$ for $p < 2$ and $T_2 \in W_2$, then the behaviour of T_2^* may be somewhat surprising: $T_2^* \in C_2$ and $T_2^* \in W_p$ for $p > 2$.

The reason however is precisely that T_2 cannot contain l_2.

Acknowledgement. The authors are extremely grateful for the anonymous referee's profound help and reasoned criticism.
REFERENCES

Received January 5, 1991 and in revised form October 31, 1991

Jesús M.F. Castillo, Fernando Sánchez
Departamento de Matemáticas
Universidad de Extremadura
Avda. de Elvas s/n
06071 Badajoz
Spain