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DOUBLE FOURIER COSINE-JACOBI SERIES FOR FOX’S H-FUNCTION
S.D. BAJPAI

Abstract. In this paper, we present a new class of double Fourier Cosine-Jacobi series for
Fox’s H-function.

1. INTRODUCTION

The object of this paper is to introduce a new class of double Fourier Cosine-Jacobi series
for Fox’s H-function {5] and present one double Fourier senes of this class. We also obtain
a double Fourier Cosine-Jacobi series for Meijer’s G-function [4,p. 207, (1)] as a particular
case.

In what follows for sake of brevity:
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The following formulae are required in the proof:
The integral {2, p. 704, (2.2)]:
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where h > 0,A < 0,B > 0,[argz| < 1/2Bn,Re[l — 2w, + 2h(1 —a;)/e;] > 0

(j=1,2,...,n).
The integral [1, p. 699, (2.3)]:
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where k > 0,A < 0,B > 0,largz| < 1/2Bm, Reb > —1,[Rew, + kb;/f;] > —1
(;=1,....m).
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The orthogonally property of the Jacobi polynomials [6, p. 285, (5) and (9)]:
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where Rea > —1, Reb > —1.

2. DOUBLE FOURIER COSINE-JACOBI SERIES

The double Fourier Cosine-Jacobi series to be established is
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where h > 0,k > 0, |argz| < 1/2Bw,Rea > —1,Reb > —1,Re[l — 2w, + 2h(1] —

a;)/e;1 >0 =1,...,n), Re[w, + kb;/f;] > —-1(j=1,...,m).
Proof. To establish (2.1), let
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Equation (2.2) is valid, since f(z,y) isdefined intheregion 0 <z < m, -1 <y

< 1.

The problems concerning the possibility of expressing a function f( z, y) as double Fourier
series expansion are many and cumbersome. However, convergece of almost all double
Fourier series expansions is covered by two-variables analogues of well known Dirichlet’s
conditions and the Jordan’s theorem. In this respect, a brief discussion given by Casslaw and

Jaeger [3, pp. 180-183] together with the references indicated in [3] provide a good
of the subject.
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Multiplyng both sides of (2.2) by (1 — y)2( 1 + y)°P(*®)(y), integrating with respect to
y from —1 to 1, and using (1.2) and (1.3), we obtain
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Multiplyng both sides of (2.3) by cos(uzx), integrating with respect to = from 0 to =, and
using (1.1) and the orthogonality property of cosine functions; we get
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except that A, , is one-half of the above value. From (2.2) and (2.4), the formula (2.1) is
obtained.

Note. On applyng the same procedure as above, we can establish three other forms of two-
dimensional expansions of this class with the help of alternative forms of (1.1) and (1.2).

3. PARTICULAR CASES

Since on specializing the parameters Fox’s H-function yields almost all special functions ap-
pearing in applied mathematics and physical sciences. Therefore, the result presented in this
paper is of a general character and hence may encompass several cases of interest. However,
we present below one particular case of our Cosine-Jacobi series.

In (2.1), assuming h and k as positive integers, putting e; = f; = 1(j = 1,...,p;1 =
l,...,q), using the formula [7, p. 18, (2.6.1)], then simplifying with the help of [7, p.10,
(2.1.1)],[4, p. 4, (11)] and [4, p. 207, (1)], we obtain
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where the conditions are analogous to (2.1) and the symbol A(h, ) represents the set of
parameters

uoptl u+h—1

h' h T h

The author wishes to express his sincere thanks to the referee for someuseful suggestions
for the improvement of this paper.
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