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Abstract. In this paper, we introduce the concept of (λ, µ)-statistical convergence in n-
normed spaces, where λ = (λr) and µ = (µs) be two non-decreasing sequences of positive real
numbers, each tending to ∞ and such that λr+1 ≤ λr + 1, λ1 = 1; µs+1 ≤ µs + 1, µ1 = 1.
Some inclusion relations between the sets of statistically convergent and (λ, µ)-statistically
convergent double sequences are established. We find its relation to statistical convergence,
(C, 1, 1)-summability and strong (V, λ, µ)-summability in n-normed spaces.
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1 Introduction

The concept of statistical convergence plays a vital role not only in pure
mathematics but also in other branches of science involving mathematics, es-
pecially in information theory, computer science, biological science, dynamical
systems, geographic information systems, population modeling and motion plan-
ning in robotics.

The notion of statistical convergence was introduced by Fast [5] and Schoen-
berg [38] independently. Over the years and under different names statistical
convergence has been discussed in the theory of Fourier analysis, ergodic the-
ory and number theory. Later on it was further investigated from the sequence
space point of view. For example, statistical convergence has been investigated
in summability theory by (Fridy [7], Connor [3], S̆alát [25]), topological groups
(Çakalli [1]) and (Çakalli and Savas [30]) topological spaces (Maio and Koc̆inac
[18]), measure theory (Miller [19]), locally convex spaces (Maddox[17]) and many
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others. In the recent years, generalization of statistical convergence have ap-
peared in the study of strong integral summability and the structure of ideals
of bounded continuous functions [2].

The notion of statistical convergence depends on the (natural or asymptotic)
density of subsets of N. A subset E of N is said to have natural density δ (E) if

δ (E) = lim
n→∞

1

n

n∑

k=1

χE (k) exists.

Note that if K ⊂ N is finite set, then δ(K) = 0, and for any set K ⊂
N, δ(KC) = 1− δ(K).

Definition 1. A sequence x = (xk) is said to be statistically convergent to
ℓ if for every ε > 0

δ ({k ∈ N | |xk − ℓ| ≥ ε}) = 0.

In other words we can write the sequence (xk) statistical converges to ℓ if

lim
r→∞

1

r
|{k ≤ r | |xk − ℓ| ≥ ε}| = 0.

In this case, we write S− limx = ℓ or xk → ℓ(S) and S denote the set of all
statistically convergent sequences.

Mursaleen and Osama [22] extended the above idea from single to double se-
quences of scalars and established relations between statistical convergence and
strongly Cesàro summable double sequences. Besides this, Mursaleen [21] pre-
sented a generalization of statistical convergence with the help of λ-summability
methods and called it λ-statistical convergence. Later on, Savaş [37] presented
λ- statistical convergence of fuzzy numbers. Also asymptotically λ -statistical
equivalent sequences of fuzzy numbers and almost λ -statistical convergence
were studied by Savaş [35] and [36] respectively. Furthermore, double λ- statis-
tical convergence was studied and examined by Savaş ([31], [33], [35]) and Savaş
and Patterson ( [32], [34]).

Let λ = (λr) be a non-decreasing sequence of positive numbers tending to
∞ such that

λr+1 ≤ λr + 1, λ1 = 1.

The collection of such sequence λ will be denoted by ∆.
The generalized de la Vallée Poussin mean is defined by

tr(x) =
1

λr

∑

k∈Ir

xk,

where Ir = [r − λr + 1, r].
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Definition 2. [15] A sequence x = (xk) is said to be (V, λ)-summable to a
number ℓ if

tr(x)→ ℓ, as r →∞.

If λr = r, then (V, λ)-summability reduces to (C, 1)-summability. We write

[C, 1] =

{
x = (xk) | ∃ ℓ ∈ R, lim

r→∞

1

r

r∑

k=1

|xk − ℓ| = 0

}

and

[V, λ] =



x = (xk) | ∃ ℓ ∈ R, lim

r→∞

1

λr

∑

k∈Ir

|xk − ℓ| = 0





for the sets of sequences x = (xk) which are strongly Cesàro summable (see
[6]) and strongly (V, λ)-summable to ℓ, i.e. xk → ℓ[C, 1] and xk → ℓ[V, λ],
respectively.

Let K ⊆ N be a set of positive integers. Then

δλ(K) = lim
r

1

λr
|{r − λr + 1 ≤ k ≤ r | k ∈ K}|

is said to be λ-density of K provided the limit exists.

Definition 3. [21]. A sequence x = (xk) is said to be λ-statistically conver-
gent or Sλ-convergent to ℓ if for every ε > 0

lim
r→∞

1

λr
|{k ∈ Ir | |xk − ℓ| ≥ ε}| = 0.

In this case we write Sλ − limx = ℓ or xk → ℓ(Sλ) and

Sλ = {x = (xk) | ∃ ℓ ∈ R, Sλ − limx = ℓ}.

It is clear that if λr = r, for all r then Sλ reduces to S and since
Ä
λr

r

ä
≤

1, δ(K) ≤ δλ(K) for every K ⊆ N.

The concept of 2-normed space was initially introduced by Gähler [9], in the
mid 1960’s, while that of n-normed spaces can be found in Misiak [20]. Since
then, many others authors have studied this concept and obtained various results
(see, for instance, Gunawan[11], Gähler [8], Gunawan and Mashadi ([10], [12]),
Lewandowska [16], Dutta [4])and Savas ([26], [27], [28] and [29]).
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2 Definitions and Preliminaries

Let n be a non negative integer and X be a real vector space of dimension
d ≥ n (d may be infinite). A real-valued function ||., . . . , .|| from Xn into R

satisfying the following conditions:
(1) ||x1, x2, . . . , xn|| = 0 if and only if x1, x2, . . . , xn are linearly dependent,
(2) ||x1, x2, . . . , xn|| is invariant under permutation,
(3) ||αx1, x2, . . . , xn|| = |α|||x1, x2, . . . , xn||, for any α ∈ R,
(4) ||x + x, x2, . . . , xn|| ≤ ||x, x2, . . . , xn|| + ||x, x2, . . . , xn|| is called an

n-norm on X and the pair (X, ||., . . . , .||) is called an n-normed space.
A trivial example of an n-normed space is X = Rn, equipped with the

Euclidean n-norm ||x1, x2, . . . , xn||E = the volume of the n-dimensional paral-
lelepiped spanned by the vectors x1, x2, . . . , xn which may be given expicitly by
the formula

||x1, x2, . . . , xn||E = | det(xij)| = |(det(< xi, xj >))|

where xi = (xi1, xi2, . . . , xin) ∈ Rn for each i = 1, 2, 3, . . . , n.
Let (X, ||., . . . , .||) be an n-normed space of dimension d ≥ n ≥ 2 and

{a1, a2, . . . , an} be a linearly independent set inX. Then the function ||., . . . , .||∞
from Xn−1 into R is defined by

||x1, x2, . . . , xn−1||∞ = max
1≤i≤n

{||x1, x2, . . . , xn−1, ai||}

defines as (n− 1)-norm on X with respect to {a1, a2, . . . , an} and this is known
as the derived (n− 1)-norm (for details see [10]).

The standard n-norm on X a real inner product space of dimension d ≥ n
is as follows:

||x1, x2, . . . , xn||S = [det(< xi, xj >)]
1
2 ,

where <,> denote the inner product on X. If we take X = Rn then this n-
norm is exactly the same as the Euclidean n-norm ||x1, x2, . . . , xn||E mentioned
earlier. For n = 1 this n-norm is the usual norm ||x1|| =

√
< x1, x1 >(for further

details see [10]).

By the convergence of a double sequence we mean the convergence in the
Pringsheim’s sense [23]. A double sequence x = (xk,l) has a Pringsheim limit L
(denoted by P − limx = L) provided that given an ε > 0 there exists an N ∈ N

such that |xk,l − L| < ε whenever k, l > N. We shall describe such an x = (xk,l)
more briefly as ”P − convergent”.

Let K ⊂ N×N and let K(m,n) denote the number of (i, j) in K such that
i ≤ m and j ≤ n, (see [22]). Then the lower natural density of K is defined
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by δ2(K) = lim infm,n→∞
K(m,n)

mn . In case, the sequence (K(m,n)
mn ) has a limit in

Pringsheim’s sense, then we say that K has a double natural density and is
defined by P − limm,n→∞

K(m,n)
mn = δ2(K).

Example 1. Let K = {(i2, j2) | i, j ∈ N}. Then

δ2(K) = P − lim
m,n→∞

K(m,n)

mn
≤ P − lim

m,n→∞

√
m
√
n

mn
= 0,

i.e. the set K has double natural density zero, while the set {(i, 3j) | i, j ∈ N}
has double natural density 1

3 .

Definition 4. A double sequence (xk,l) in an n-normed space (X, ||., . . . , .||)
is said to be statistically-convergent to some ℓ ∈ X with respect to the n-norm
if for each ε > 0 such that the set

{(k, l) ∈ N×N | ||xk,l − ℓ, z1, z2, . . . , zn−1|| ≥ ε}
has double natural density zero, for all z1, z2, . . . , zn−1 ∈ X.

In other words the double sequence (xk,l) statistical converges to ℓ in n-
normed space X if

P − lim
r,s→∞

1

rs
|{k ≤ r, l ≤ s | ||xk,l − ℓ, z1, z2, . . . , zn−1|| ≥ ε}| = 0,

for all z1, z2, . . . , zn−1 ∈ X.
Let SnN

2 (X) denote the set of all statistically convergent sequences in n-
normed space X.

Recently Gürdal and Pehlivan [13] studied statistical convergence in 2-
normed spaces. And also B.S. Reddy [24] extended this idea to n-normed spaces
and studied some properties. In [14], Hazarika and Savaş studied λ-statistical
convergence in n-normed spaces.

In the present paper we study (λ, µ)-statistical convergence of double se-
quences in n-normed spaces. We show that some properties of (λ, µ)-statistical
convergence of real numbers also hold for sequences in n-normed spaces. We find
some relations related to statistically convergent, (λ, µ)-statistically convergent
double sequences, (C,1,1)-summability and strong (V , λ, µ)-summability in n-
normed spaces.

3 (λ, µ)-statistical convergence in n-normed space X

In this section we define (λ, µ)-statistically convergent double sequence in
n-normed linear space X. Also we obtained some basic properties of this notion
in n-normed spaces.
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Let λ = (λr) and µ = (µs) be two non-decreasing sequences of positive real
numbers, each tending to ∞ and such that λr+1 ≤ λr + 1, λ1 = 1; µs+1 ≤
µs + 1, µ1 = 1. Let Ir = [r − λr + 1, r], Is = [s− µs + 1, s] and Ir,s = Ir × Is.

For any set K ⊆ N×N, the number,

δ(λ,µ)(K) = P − lim
r,s→∞,∞

1

λrµs
|{(i, j) ∈ Ir × Is : (i, j) ∈ k}|;

is called (λ, µ)-density of the set K, provided the limit exists, (see, Savas [34].

Throughout we shall denote λr,s = λrµs and the collection of such sequences
λ will be denoted by ∆2.

Definition 5. A double sequence x = (xk,l) in an n-normed space (X, ||.,
. . . , .||) is said to be (λ, µ)-statistically convergent or Sλ,µ-convergent to ℓ ∈ X
with respect to the n-norm if for every ε > 0

P − lim
r,s→∞

1

λr,s
|{(k, l) ∈ Ir,s | ||xk,l − ℓ, z1, z2, . . . , zn−1|| ≥ ε}| = 0,

for all z1, z2, . . . , zn−1 ∈ X.
i.e., the set K(ε) = {(k, l) ∈ Ir × Is | ||xk,l − ℓ, z1, z2, ..., zn−1|| ≥ ε} has

(λ, µ)-density zero.

In this case we write SnN
λ,µ − limx = ℓ or xk,l → ℓ(SnN

λ,µ ) and

SnN
λ,µ (X) = {x = (xk,l) | ∃ ℓ ∈ R, SnN

λ,µ − limx = ℓ}.

Let SnN
λ,µ (X) denote the set of all (λ, µ)-statistically convergent of double

sequences in n-normed space X.

If λr = r and µs = s for all r, s then the space SnN
λ,µ (X) is reduced to the

space SnN
2 (X) and since δ2(K) ≤ δλ,µ(K), we have SnN

λ,µ (X) ⊂ SnN
2 (X).

We define the generalized double de la Vallée Poussin mean by

tr,s(x) =
1

λrµs

∑

k∈Ir

∑

l∈Is

xk,l.

Definition 6. A double sequence x = (xk,l) in an n-normed space (X, ||., . . . , .||)
is said to be (V, λ, µ)-summable to ℓ ∈ X with respect to the n-norm if

P − lim
r,s

tr,s(||x− ℓ, z1, z2, . . . , zn−1||) = 0,
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for all z1, z2, . . . , zn−1 ∈ X. If λr,s = rs, then (V, λ, µ)-summability reduces to
(C, 1, 1)-summability with respect to the n-norm. We write

[C, 1, 1]nN (X) =

{
x = (xk,l) | ∃ ℓ ∈ R, P − lim

r,s→∞

1

rs

r,s∑

k,l=1,1

||xk,l − ℓ, z1, z2, . . . , zn−1|| = 0
}

and

[V, λ, µ]nN (X) =
{
x = (xk,l) | ∃ ℓ ∈ R, P − lim

r,s→∞

1

λr,s

∑

(k,l)∈Ir,s

||xk,l − ℓ, z1, z2, . . . , zn−1|| = 0
}

for the sets of X-valued double sequences x = (xk,l) which are strongly Cesàro
summable and strongly (V, λ, µ)-summable to ℓ with respect to the n-norm , i.e.
xk,l → ℓ([C, 1, 1]nN (X)) and xk,l → ℓ([V, λ, µ]nN (X)), respectively.

Theorem 1. Let X be an n-normed space and (λr,s) ∈ ∆2. If (xk,l) is a
sequence in X such that SnN

λ,µ − limxk,l = ℓ exists, then it is unique.

Proof. Suppose that there exist elements ℓ1, ℓ2 (ℓ1 6= ℓ2) in X such that

SnN
λ,µ − lim

k,l→∞
xk,l = ℓ1;S

nN
λ,µ − lim

k,l→∞
xk,l = ℓ2.

Since ℓ1 6= ℓ2, then ℓ1 − ℓ2 6= 0, so there exist z1, z2, . . . , zn−1 ∈ X such that
ℓ1 − ℓ2 and z1, z2, . . . , zn−1 are linearly independent. Therefore

||ℓ1 − ℓ2, z1, z2, . . . , zn−1|| = 2ε > 0.

Since SnN
λ,µ − limk,l→∞ xk,l = ℓ1 and SnN

λ,µ − limk,l→∞ xk,l = ℓ2 it follows that

P − lim
r,s→∞

1

λr,s
|{(k, l) ∈ Ir,s | ||xk,l − ℓ1, z1, z2, . . . , zn−1|| ≥ ε}| = 0

and

P − lim
r,s→∞

1

λr,s
|{(k, l) ∈ Ir,s | ||xk,l − ℓ2, z1, z2, . . . , zn−1|| ≥ ε}| = 0.

There are k, l ∈ Ir,s such that

||xk,l − ℓ1, z1, z2, . . . , zn−1|| < ε and ||xk,l − ℓ2, z1, z2, . . . , zn−1|| < ε.
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Further, for these k, l we have

||ℓ1 − ℓ2, z1, z2, . . . , zn−1||
≤ ||xk,l − ℓ1, z1, z2, . . . , zn−1||+ ||xk,l − ℓ2, z1, z2, . . . , zn−1|| < 2ε

which is a contradiction. This completes the proof.

The next theorem gives the algebraic characterization of (λ, µ)-statistical
convergence on n-normed spaces.

Theorem 2. Let X be an n-normed space, (λr,s) ∈ ∆2, x = (xk,l) and
y = (yk,l) be two sequences in X.

(a) If SnN
λ,µ−limk,l→∞ xk,l = ℓ and c( 6= 0) ∈ R, then SnN

λ,µ−limk,l→∞ cxk,l =

cℓ. (b) If SnN
λ,µ − limk,l→∞ xk,l = ℓ1 and SnN

λ,µ − limk,l→∞ yk,l = ℓ2, then S
nN
λ,µ −

limk,l→∞(xk,l + yk,l) = ℓ1 + ℓ2.

Proof of the theorem is straightforward, thus omitted.

Theorem 3. SnN
λ,µ (X) ∩ ℓ2∞(X) is a closed subset of ℓ2∞(X), if X an n-

Banach space.

Proof. Suppose that (xi)i∈N = (xik,l)k,l∈N is a convergent sequence in

SnN
λ,µ (X)∩ℓ2∞(X) converging to x ∈ ℓ2∞(X).We need to prove that x ∈ SnN

λ,µ (X)∩
ℓ2∞(X). Assume that xi → ℓi(S

nN
λ,µ (X)), for each i ∈ N. Take a positive decreas-

ing convergent sequence (εi)i∈N, where εi =
ε
2i
, for a given ε > 0. Clearly (εi)i∈N

converges to 0. Choose a positive integer i such that ||x−xi, z1, z2, . . . , zn−1||∞ <
εi
4 , for all z1, z2, . . . , zn−1 ∈ X. Then we have

P − 1

λr,s
|{(k, l) ∈ Ir,s | ||xik,l − ℓi, z1, z2, . . . , zn−1|| ≥

εi
4
}| = 0

and

P − 1

λr,s
|{(k, l) ∈ Ir,s | ||xi+1

k,l − ℓi+1, z1, z2, . . . , zn−1|| ≥
εi+1

4
}| = 0.

Now

1

λr,s
|{(k, l) ∈ Ir,s | ||xik,l − ℓi, z1, z2, . . . , zn−1|| ≥

εi
4
∨ ||xi+1

k,l − ℓi+1, z1, z2, . . . , zn−1|| ≥
εi+1

4
}| < 1

and for all k, l ∈ N

{(k, l) ∈ Ir,s | ||xik,l − ℓi, z1, z2, ..., zn−1|| ≥
εi
4
} ∩ {(k, l) ∈ Ir,s | ||xi+1

k,l − ℓi+1, z1, z2, . . . , zn−1|| ≥
εi+1

4
}
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is infinite. Hence there must exist k, l ∈ Ir,s for which we have simultanously,

||xik,l − ℓi, z1, z2, . . . , zn−1|| <
εi
4

and ||xi+1
k,l − ℓi+1, z1, z2, . . . , zn−1|| <

εi+1

4
.

Then it follows that

||ℓi − ℓi+1, z1, z2, . . . , zn−1||

≤ ||ℓi − xik,l, z1, z2, . . . , zn−1||+ ||xik,l − xi+1
k , z1, z2, . . . , zn−1||

+||xi+1
k,l − ℓi+1, z1, z2, . . . , zn−1||

≤ ||xik,l − ℓi, z1, z2, . . . , zn−1||+ ||xi+1
k,l − ℓi+1, z1, z2, . . . , zn−1||

+||x− xi, z1, z2, . . . , zn−1||∞ + ||x− xi+1, z1, z2, . . . , zn−1||∞
≤ εi

4
+
εi+1

4
+
εi
4
+
εi+1

4
≤ εi.

This implies that (ℓi) is a Cauchy sequence in X and thus there is number ℓ ∈ X
such that ℓi → ℓ as i→∞. We need to prove that x→ ℓ(SnN

λ,µ (X)).
For any ε > 0, choose i ∈ N such that εi <

ε
4 ,

||x− xi, z1, z2, . . . , zn−1||∞ <
ε

4
and ||ℓi − ℓ, z1, z2, . . . , zn−1|| <

ε

4
.

Then
1

λr,s
|{(k, l) ∈ Ir,s | ||xk,l − ℓ, z1, z2, . . . , zn−1|| ≥ ε}|

≤ 1

λr,s
|{(k, l) ∈ Ir,s | ||xik,l − ℓi, z1, z2, . . . , zn−1||

+||xk,l − xik,l, z1, z2, . . . , zn−1||∞ + ||ℓi − ℓ, z1, z2, . . . , zn−1|| ≥ ε}|

≤ 1

λr,s
|{(k, l) ∈ Ir,s | ||xik,l − ℓi, z1, z2, . . . , zn−1||+

ε

4
+
ε

4
≥ ε}|

≤ 1

λr,s
|{(k, l) ∈ Ir,s | ||xik,l − ℓi, z1, z2, . . . , zn−1|| ≥

ε

2
}| → 0 as r, s→∞

in Pringsheim sense. This gives that x→ ℓ(SnN
λ,µ (X)), which completes the proof.

Theorem 4. Let X be an n-normed space and let (λr,s) ∈ ∆2. Then
(i) xk,l → ℓ([V, λ, µ]nN (X))⇒ xk,l → ℓ(SnN

λ,µ (X)),

(ii) [V, λ, µ]nN (X) is a proper subset of SnN
λ,µ (X),

(iii) x ∈ ℓ2∞(X) and xk,l → ℓ(SnN
λ,µ (X)) then xk,l → ℓ([V, λ, µ]nN (X)) and

hence xk,l → ℓ([C, 1, 1]nN (X)), provided x = (xk,l) is not eventually constant,
(iv)SnN

λ,µ (X) ∩ ℓ2∞(X) = [V, λ, µ]nN (X) ∩ ℓ2∞(X).
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Proof. (i) If ε > 0 and xk → ℓ([V, λ, µ]nN (X)), we can write
∑

(k,l)∈Ir,s

||xk,l − ℓ, z1, z2, . . . , zn−1||

≥
∑

(k,l)∈Ir,s,||xk,l−ℓ,z1,z2,...,zn−1||≥ε

||xk,l − ℓ, z1, z2, . . . , zn−1||

≥ ε|{(k, l) ∈ Ir,s | ||xk,l − ℓ, z1, z2, . . . , zn−1|| ≥ ε}|
and so

1

ελr,s

∑

(k,l)∈Ir,s

||xk,l − ℓ, z1, z2, . . . , zn−1|| ≥

1

λr,s
|{(k, l) ∈ Ir,s | ||xk,l − ℓ, z1, z2, . . . , zn−1|| ≥ ε}|.

This proves the result.

(ii) In order to establish that the inclusion [V, λ, µ]nN (X) ⊂ SnN
λ,µ (X) is

proper. We define a sequence x = (xk,l) by

xk,l =

®
kl, if r − [

√
λr] + 1 ≤ k ≤ r and s− [

√
µs] + 1 ≤ l ≤ s;

0, otherwise.

Then x /∈ ℓ2∞(X) and for every ε ∈]0, 1[,

1

λr,s

∑

(k,l)∈Ir,s

||xk,l − 0, z1, z2, . . . , zn−1|| ≤
[
√
λr] [
√
µs]

λr µs
→ 0, as r, s→∞,

i.e. xk,l → 0(SnN
λ,µ (X)). On the other hand,

1

λr,s
| {(k, l) ∈ Ir,s : ||xk,l − 0, z1, z2, . . . , zn−1|| ≥ ε} | → ∞, as r, s→∞,

in Pringsheim sense, i.e. xk,l does not converge to 0 in [V, λ, µ]nN (X).

(iii) Suppose that xk,l → ℓ(SnN
λ,µ (X)) and x ∈ ℓ2∞(X). Then there exists a

M > 0 such that ||xk,l − ℓ, z1, z2, ...zn−1|| ≤M for all k, l ∈ N. Given ε > 0, we
have

1

λr,s

∑

(k,l)∈Ir,s

||xk,l − ℓ, z1, z2, . . . , zn−1|| =

1

λr,s

∑

(k,l)∈Ir,s,||xk,l−ℓ,z1,z2,...,zn−1||≥
ε
2

||xk,l − ℓ, z1, z2, . . . , zn−1||
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+
1

λr,s

∑

(k,l)∈Ir,s,||xk,l−ℓ,z1,z2,...,zn−1||<
ε
2

||xk,l − ℓ, z1, z2, . . . , zn−1||

≤ M

λr,s
|{(k, l) ∈ Ir,s | ||xk,l − ℓ, z1, z2, . . . , zn−1|| ≥

ε

2
}|+ ε

2
,

This shows that xk,l → ℓ([V, λ, µ]nN (X)).
Again , we have

1

rs

r,s∑

k,l=1

||xk,l − ℓ, z1, z2, . . . , zn−1||

≤ 1

rs

r−λr,s−µs∑

k,l=1,1

||xk,l − ℓ, z1, z2, . . . , zn−1||+
1

rs

∑

(k,l)∈Ir,s

||xk,l − ℓ, z1, z2, . . . , zn−1||

≤ 1

λr,s

r−λr,s−µs∑

k,l=1,1

||xk,l−ℓ, z1, z2, . . . , zn−1||+
1

λr,s

∑

(k,l)∈Ir,s

||xk,l−ℓ, z1, z2, . . . , zn−1||

≤ 2

λr,s

∑

(k,l)∈Ir,s

||xk,l − ℓ, z1, z2, . . . , zn−1||.

Hence xk,l → ℓ([C, 1, 1]nN (X)), because xk,l → ℓ([V, λ, µ]nN (X)).

(iv) This is an immediate consequence of (i), (ii) and (iii).

If we let λr,s = rs in Theorem 4, then we have the following corollary.

Corollary 1. Let X be an n-normed space. Then
(i) xk,l → ℓ([C, 1, 1]nN (X))⇒ xk,l → ℓ(SnN

2 (X)),
(ii) [C, 1, 1]nN (X) is a proper subset of SnN

2 (X),
(iii) x ∈ ℓ2∞(X) and xk,l → ℓ(SnN

2 (X)) then xk,l → ℓ([C, 1, 1]nN (X)),
(iv)SnN

2 (X) ∩ ℓ2∞(X) = [C, 1, 1]nN (X) ∩ ℓ2∞(X).

Theorem 5. Let X be an n-normed space and let (λr,s) ∈ ∆2. Then S
nN
2 (X) ⊂

SnN
λ,µ (X) if and only if lim infr,s

λr,s

rs > 0.

Proof. Suppose first that lim infr,s
λr,s

rs > 0. Then for given ε > 0, we have

1

rs
|{k ≤ r, l ≤ s | ||xk,l − ℓ, z1, z2, . . . , zn−1|| ≥ ε}|

≥ 1

rs
|{(k, l) ∈ Ir,s | ||xk,l − ℓ, z1, z2, . . . , zn−1|| ≥ ε}|

≥ λr,s
rs

.
1

λr,s
|{(k, l) ∈ Ir,s | ||xk,l − ℓ, z1, z2, . . . , zn−1|| ≥ ε}|.
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It follows that xk,l → ℓ(SnN
2 (X)) ⇒ xk,l → ℓ(SnN

λ,µ (X)). Hence SnN
2 (X) ⊂

SnN
λ,µ (X).

Conversely, suppose that lim infr,s
λr,s

rs = 0. Then we can select a subsequence
(r(i), s(j))∞,∞

i,j=1,1 such that
λr(i),s(j)
r(i)s(j)

<
1

ij
.

We define a sequence x = (xk,l) as follows:

xk,l =

®
1, if k, l ∈ Ir(i),s(j), i, j = 1, 2, 3, . . . ;

0, otherwise.

Then x is statistically convergent, so x ∈ SnN
2 (X). But x /∈ [V, λ, µ]nN (X).

Theorem 4(iii) implies that x /∈ SnN
λ,µ (X). This completes the proof.

Theorem 6. Let X be an n-normed space and if (λr,s) ∈ ∆2 such that

limr,s
λr,s

r,s = 1, then SnN
λ,µ (X) = SnN

2 (X).

Proof. Since limr,s
λr,s

r,s = 1, then for ε > 0, we observe that

1

rs
|{k ≤ r, l ≤ s | ||xk,l − ℓ, z1, z2, . . . , zn−1|| ≥ ε}|

≤ 1

rs
|{k ≤ r − λr, l ≤ s− µs | ||xk,l − ℓ, z1, z2, . . . , zn−1|| ≥ ε}|

+
1

rs
|{(k, l) ∈ Ir,s | ||xk,l − ℓ, z1, z2, . . . , zn−1|| ≥ ε}|

≤ (r − λr)(s− µs)
rs

+
1

rs
|{(k, l) ∈ Ir,s | ||xk,l − ℓ, z1, z2, . . . , zn−1|| ≥ ε}|

=
(r − λr)(s− µs)

rs
+
λrs
rs

1

λrs
|{(k, l) ∈ Ir,s | ||xk,l − ℓ, z1, z2, . . . , zn−1|| ≥ ε}|.

This implies that (xk,l) statistically convergent, if (xk,l) is (λ, µ)-statistically
convergent. Thus SnN

λ,µ (X) ⊂ SnN
2 (X).

Since limr,s
λr,s

r,s = 1, implies that lim infr,s
λr,s

rs > 0, then from Theorem 5,

we have SnN
2 (X) ⊂ SnN

λ,µ (X). Hence SnN
λ,µ (X) = SnN

2 (X).

Remark: We do not know whether the condition limr,s
λr,s

r,s = 1 in the
Theorem 6 is necessary and leave it as an open problem.
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