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Abstract. Let M(c) be a (2n+ s)−dimensional S-space form of constant f−sectional cur-
vature c and M be an n-dimensional C-totally real, minimal submanifold of M(c). We prove
that if M is pseudo parallel and Ln− 1

4
(n(c+ 3s) + c− s) ≥ 0, then M is totally geodesic.
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1 Introduction

Given an isometric immersion F :M →M , let h be the second fundamental
form and ∇ the Van der Weather- Bortolloti connection of M . Then Deprez
defined the immersion to be semi-parallel if

R(X,Y ).h = (∇X∇Y −∇Y∇X −∇[X,Y ])h = 0, (1)

holds for any vectors X,Y tangent to M . Deprez mainly paid attention to the
case of semi-parallel immersion in a real space form [see [9], [10]]. Later, Lumiste
showed that a semi-parallel submanifold is the second order envelop of the family
of parallel submanifolds [14].

In [11], authors obtained some results on hypersurfaces in 4-dimension space
form N4(c) satisfying the curvature condition

R.h = LQ(g, h). (2)
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The submanifolds satisfying (1.2) are called pseudo-parallel [[1], [2]].
In [1], authors have shown that if F is a pseudo-parallel immersion with

H(p) = 0 and L(p)− c ≥ 0, then the point p is a geodesic point of M .
In the present paper, we generalize their results for the case of M , that is a

submanifold of S-space form M(c) of constant f−sectional curvature c.
We prove the following result:

Theorem 1. Let M(c) be a (2n+ s)−dimensional S-space form of constant
f−sectional curvature c and M be an n-dimensional C-totally real, minimal
submanifold of M(c). If M is pseudo-parallel and Ln− 1

4(n(c+3s)+ c− s) ≥ 0,
then M is totally geodesic.

2 Preliminaries

Let (M, g) be an n-dimensional (n ≥ 3) connected semi-Riemannian man-
ifold of class C∞. We denote by ∇, R and S the Levi-Civita connection, Rie-
mannian curvature tensor, and Ricci tensor of (M, g), respectively. The Ricci
operator Q is defined by g(QX,Y ) = S(X,Y ), whereX, Y ∈ χ(M), χ(M) being
the Lie algebra of vector fields on M . Now we define endomorphisms R(X,Y )
and XΛAY of χ(M) by

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z, (3)

(XΛAY )Z = A(Y, Z)X −A(X,Z)Y, (4)

where X, Y , Z ∈ χ(M) and A is a symmetric (0,2)-tensor.
A concircular curvature tensor Z is defined by

Z(X,Y ) = R(X,Y )− κ

n(n− 1)
(XΛAY ),

where κ is scalar curvature of M .
Let F : M → M(c) be an isometric immersion of an n-dimensional Rie-

mannian manifold M into a (2n + 1)−dimensional real space form M(c). We
denote by ∇ and ∇ the Levi-Civita connection of M and M(c), respectively.
Also, we denote by N(M) its normal bundle. Then for vector fields X, Y which
are tangent to M , the second fundamental form h is given by the formula
h(X,Y ) = ∇XY −∇XY . Furthermore, for ξ ∈ N(M), Aξ : TM → TM denotes
the Weingarten operator in the ξ−direction, AξX = ∇⊥

Xξ − ∇Xξ, where ∇⊥

denotes normal connection on M . The second fundamental form h and Aξ are
related by g(h(X,Y ), ξ) = g(AξX,Y ), where g is the induced metric of g for any
vector fields X,Y tangent to M . The mean curvature vector H of M is defined
as

H =
1

n
tr(h).
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The covariant derivative ∇h of h is defined by

(∇Xh)(Y, Z) = ∇⊥
X(h(Y, Z))− h(∇XY, Z)− h(Y,∇XZ), (5)

where ∇h is a normal bundle valued tensor of type (0, 3) and is called the third
fundamental form of M . The equation of Codazzi implies that ∇h is symmetric
and hence

(∇Xh)(Y, Z) = (∇Y h)(X,Z) = (∇Zh)(X,Y ). (6)

Here, ∇ is called the Van der Weather - Bortolloti connection of M . If ∇h = 0,
then F is called parallel [13].

The basic equations of Gauss and Ricci are

g(R(X,Y )Z,W ) = cg(XΛY (Z)) + g(h(X,W ), h(Y, Z))− g(h(X,Z), h(Y,W )),
(7)

g(R⊥(X,Y )ξ, η) = g([Aξ, Aη]X,Y ), ξ, η ∈ N(M), (8)

respectively. Here R⊥ is the curvature operator of the normal connection defined
by

R⊥(X,Y ) = ∇⊥
X∇⊥

Y Z −∇⊥
Y∇⊥

XZ −∇⊥
[X,Y ]Z.

An isometric immersion F is said to have flat normal connection if R⊥ = 0. If
M has flat normal connection, then it called normally flat.

The second covariant derivative ∇2
h of h is defined by

(∇2
h)(Z,W,X, Y ) = (∇X∇Y h)(Z,W )

= ∇⊥
X(∇Xh)(Z,W )− (∇Y h)(∇XZ,W )− (∇Xh)(Z,∇YW )− (∇∇XY h)(Z,W ).

(9)
Then we have

(∇X∇Y h)(Z,W )− (∇Y∇Xh)(Z,W ) = (R(X,Y ).h)(Z,W ),

= R⊥(X,Y )h(Z,W )− h(R(X,Y )Z,W )− h(Z,R(X,Y )W ), (10)

where R is curvature tensor belonging to the connection ∇.

3 S-space forms

Let M be a (2m + s)−dimensional framed metric manifold [18] (or almost
r-contact metric manifolds [17]) with a framed metric structure (f , ξα, η

α, g),
α ∈ {1, 2, . . . , s}, where f is a (1, 1) tensor field defining an f−structure of
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rank 2m, ξ1, ξ2, . . . , ξs are vector fields, η1, η2, . . ., ηs are 1-forms and g is a
Riemannian metric on M such that for all X, Y ∈ TM and α, β ∈ {1, 2, . . . , s},

f2 = −I + ηα ⊗ ξα, ηα(ξα) = δαβ , f(ξα) = 0, ηαof = 0, (11)

g(fX, fY ) = g(X,Y )−
∑

α

ηα(X)ηα(Y ), (12)

Ω(X,Y ) ≡ g(X, fY ) = −Ω(Y,X), g(X, ξα) = ηα(X). (13)

A framed metric structure is an S-structure [3] if [f, f ] + 2dηα ⊗ ξα = 0 and
Ω = dηα for all α ∈ {1, 2, . . . , s}. When s = 1, a framed metric structure is an
almost contact metric structure, while an S-structure is a Sasakian-structure.
When s = 0, a framed metric structure is an almost Hermitian structure, while
an S-structure is Käehler structure. If a framed metric structure on M is an
S-structure, then it is known [3] that

(∇Xf)Y =
∑

α

(g(fX, fY )ξα + ηα(Y )f2X), (14)

∇ξα = −f, α ∈ {1, 2, . . . , s}. (15)

The converse may also be proved. In case of Sasakian structure (i.e. s = 1) (3.4)
implies (3.5). In Käehler case (i.e. s = 0), we get ∇f = 0. For s > 1, examples
of S-structure are given in [3] [4] [5].

A plane section in TpM is called a f−section if there exists a vectorX ∈ TpM
orthogonal to ξ1, ξ2, . . . , ξs such that {X, fX} span the section. The sectional
curvature of a f−section is called a f−sectional curvature. It is known that [14]
in an S-manifold of constant f−sectional curvature c

R(X,Y )Z =
∑

α,β

{ηα(X)ηβ(Z)f2Y − ηα(Y )ηβ(Z)f2X

− g(fX, fY )ηα(Y )ξβ + g(fY, fZ)ηα(X)ξβ}

+
(c+ 3s)

4
{−g(fY, fZ)f2X + g(fX, fZ)f2Y }

+
(c− s)

4
{g(X, fZ)fY − g(Y, fZ)fX + 2g(X, fY )fZ},

(16)

for all X,Y, Z ∈ TM , where R is curvature tensor of M . An S-manifold of
constant f−sectional curvature c is called an S-space form M(c).

A submanifold M of an S-space form M(c) is called a C-totally real sub-
manifold if and only if f(TxM) ⊂ T⊥

x M , for all x ∈ M(TxM and T⊥
x M are

respectively the tangent space and normal space of M at x). When ξα is tan-
gent to M , M is a C-totally real submanifold if and only if ∇Xξα = 0, for all
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X ∈ M , α ∈ {1, 2, . . . , s}, where ∇ is the connection on M induced from Levi-
Civita connection ∇ on M . It is to see that the C-totally real submanifolds M
of M are submanifolds with ξα ∈ T⊥M .

We already know that [1] ifM is an n-dimensional C-totally real submanifold
of a (2m + s)−dimensional S-space form M(c), then following statements are
equivalent:

(i) M is totally geodesic.

(ii) M is of constant curvature K = 1
4(c+ 3s).

(iii) The Ricci tensor S = 1
4(n− 1)(c+ 3s)g.

(iv) The scalar curvature κ = 1
4n(n− 1)(c+ 3s).

Following the argument as in [11], we can prove

Theorem 2. Let M be a minimal, C-totally real submanifold of an S-space
form M(c), then

κ >
n2(n− 2)

2(2n− 1)
(c+ 3s),

implies that M is totally geodesic.

Following the argument as in [10], we can prove:

Proposition 1. If M is an n-dimensional C-totally real submanifold of an
S-space form M(c). Then the following conditions are equivalent:

(i) M is minimal.

(ii) The mean curvature vector H of M is parallel.

4 Main Results

Theorem 3. Let M(c) be a (2n+ s)−dimensional S-space form of constant
f -sectional curvature c and M be an n-dimensional C-totally real, minimal sub-
manifold of M(c). If M is pseudo parallel and Ln − 1

4(n(c + 3s) + c − s) ≥ 0,
then M is totally geodesic.

Proof. Let M be an n-dimensional C-totally real submanifold of a (2n +
s)−dimensional S-space form M(c) of constant f−sectional curvature c. We
choose an orthonormal basis {e1, e2, . . ., en, fe1 = e∗1, . . ., fen = e∗n, e

∗
n+1 = ξ1,...,

e∗n+s = ξs}. Then for 1 ≤ i, j ≤ n, n + 1 ≤ α ≤ 2n + s, the components of
second fundamental form h are given by

hαij = g(h(ei, ej), eα). (17)



78 Sanjay Kumar Tiwari, S. S. Shukla and S. P. Pandey

Similarly, the components of first and second covariant derivative of h are given
by

hαijk = g((∇ekh)(ei, ej), eα) = ∇ekh
α
ij (18)

and

hαijkl = g((∇el∇ekh)(ei, ej), eα) = ∇elh
α
ijk = ∇el∇ekh

α
ij (19)

respectively. It is well known that

hk
∗

ij = hi
∗

kj = hj
∗

ik , h
(n+1)∗

ij = 0.

If F is pseudo-parallel, then by definition, the condition

R(el, ek).h = L[(elΛgek)]h (20)

is fulfilled where

[(elΛgek)h](ei, ej) = −h((elΛgek)ei, ej)− h(ei, (elΛgek)ej), (21)

for 1 ≤ i, j, k, l ≤ n.
Now using (2.2) in (4.5), we get

(ei, ej) =− g(ek, ei)h(el, ej) + g(el, ei)h(ek, ej)

− g(ek, ej)h(el, ei) + g(el, ej)h(ek, ei).
(22)

By (2.9) we have

(R(el, ek).h)(ei, ej) = (∇el∇ekh)(ei, ej)− (∇ek∇elh)(ei, ej). (23)

Making use of (4.1), (4.3), (4.6) and (4.7), the pseudo-parallelity condition (4.4)
gives us

hαijkl = hαijlk − L{δkihαlj − δlihαkj + δkjh
α
il − δljhαki}, (24)

where g(ei, ej) = δij and 1 ≤ i, j, k, l ≤ n, n+ 1 ≤ α ≤ 2n+ s.

Recall that the Laplacian △hαlj of hαlj is defined by

△hαlj =
n∑

i,j,k=1

hαijkk. (25)

Then we obtain

1

2
△(||h||2) =

n∑

i,j,k,l=1

2n+s)∑

α=n+1

hαljh
α
ljkl + ||∇h||2, (26)
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where

||h||2 =
n∑

i,j,k,=1

2n+s∑

α=n+1

(hαlj)
2, (27)

||∇h||2 =
n∑

i,j,k,l=1

2n+s∑

α=n+1

(hαljkl)
2, (28)

are the square of the length of second and third fundamental forms of M ,
respectively. In view of (4.1) and (4.3), we obtain

hαljh
α
ijkk = g(h(ei, ej), eα)g((∇ek∇ekh)(ei, ej), eα)

= g((∇ek∇ekh)(ei, ej), g(h(ei, ej), eα), eα)

= g((∇ek∇ekh)(ei, ej), h(ei, ej)).

(29)

Therefore, due to (4.13), equation (4.10) becomes

1

2
△(||h||2) =

n∑

i,j,k,=1

g((∇ek∇ekh)(ei, ej), h(ei, ej)) + ||∇h||2. (30)

Further, by the use of (4.4), (4.6) and (4.7), we get

g((∇ek∇ekh)(ei, ej), h(ei, ej)) = g((∇ek∇eih)(ek, ej), h(ei, ej))

=g((∇ei∇ekh)(ej , ek))− L{g(ei, ej)g(h(ek, ek), h(ei, ej))
− g(ek, ej)g(h(ek, ei), h(ei, ej)) + g(ek, ei)g(h(ej , ek), h(ei, ej))

− g(ek, ek)g(h(ei, ej), h(ei, ej))}.
(31)

From equations (4.14) and (4.15), we have

1

2
△(||h||2) =

n∑

i,j,k=1

î
g((∇ei∇ejh)(ek, ek), h(ei, ej))

− L {g(ei, ej)g(h(ek, ek), h(ei, ej))− g(ek, ej)g(h(ek, ei), h(ei, ej))
+g(ek, ei)g(h(ej , ek), h(ei, ej))− g(ek, ek)g(h(ei, ej), h(ei, ej))}]
+ ||∇h||2.

(32)

Further by definitions

||h||2 =
n∑

i,j=1

g(h(ei, ej), h(ei, ej)),

Hα =
n∑

k=1

hαkk,

||H||2 = 1

n2

2n+s∑

α=n+1

(Hα)2,
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and after some calculations, we get

1

2
△(||h||2) =

n∑

i,j=1

2n+s∑

α=n+1

hαij(∇ei∇ejH
α)−L{n2||H||2−n||h||2}+ ||∇h||2. (33)

Using minimality condition, equation (4.17) reduces to

1

2
△(||h||2) = Ln||h||2 + ||∇h||2. (34)

Now,using the arguments as Blair has shown in [9], we have

1

2
△(||h||2) = ||∇h||2−

2n+s∑

α,β=n+1

¶
[Tr(AαoAβ)]

2 + ||[Aα, Aβ ]||2
©

+
1

4
(n(c+ 3s) + c− s)||h||2.

(35)

From (4.18) and (4.19), we have

0 = (Ln− 1

4
(n(c+ 3s) + c− s))||h||2 +

2n+s∑

α,β=n+1

¶
[Tr(AαoAβ)]

2 + ||[Aα, Aβ ]||2
©
,

if Ln− 1
4(n(c+ 3s) + c− s) ≥ 0, then Tr(AαoAβ) = 0.

In particular, ||Aα||2 = Tr(AαoAβ) = 0, then h = 0 and hence M is totally
geodesic.

Corollary 1. Let M(c) be a (2n+s)−dimensional S-space form of constant
f−sectional curvature c and M be an n-dimensional C-totally real, minimal
submanifold of M(c). If M is semi-parallel (i.e. R.h = 0) and n(c+3s)+c−s ≤
0, then it is totally geodesic.
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