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Abstract. Let M(c) be a (2n + s)—dimensional S-space form of constant f—sectional cur-
vature ¢ and M be an n-dimensional C-totally real, minimal submanifold of M (c). We prove
that if M is pseudo parallel and Ln — 1(n(c+ 3s) + ¢ — s) > 0, then M is totally geodesic.
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1 Introduction

Given an isometric immersion F': M — M, let h be the second fundamental
form and V the Van der Weather- Bortolloti connection of M. Then Deprez
defined the immersion to be semi-parallel if

R(X,Y).h = (VxVy — VyVyx — Vixy)) h =0, (1)

holds for any vectors X,Y tangent to M. Deprez mainly paid attention to the
case of semi-parallel immersion in a real space form [see [9], [10]]. Later, Lumiste
showed that a semi-parallel submanifold is the second order envelop of the family
of parallel submanifolds [14].

In [11], authors obtained some results on hypersurfaces in 4-dimension space
form N*(c) satisfying the curvature condition

R.h=LQ(g, h). 2)
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The submanifolds satisfying (1.2) are called pseudo-parallel [[1], [2]].

In [1], authors have shown that if F is a pseudo-parallel immersion with
H(p) =0 and L(p) — ¢ > 0, then the point p is a geodesic point of M.

In the present paper, we generalize their results for the case of M, that is a
submanifold of S-space form M (c) of constant f—sectional curvature c.

We prove the following result:

Theorem 1. Let M(c) be a (2n+ s)—dimensional S-space form of constant
f—sectional curvature ¢ and M be an n-dimensional C-totally real, minimal
submanifold of M (c). If M is pseudo-parallel and Ln — 3 (n(c+3s)+c—s) >0,
then M 1is totally geodesic.

2 Preliminaries

Let (M,g) be an n-dimensional (n > 3) connected semi-Riemannian man-
ifold of class C'*°. We denote by V, R and S the Levi-Civita connection, Rie-
mannian curvature tensor, and Ricci tensor of (M, g), respectively. The Ricci
operator @ is defined by g(QX,Y) = S(X,Y), where X, Y € x(M), x(M) being
the Lie algebra of vector fields on M. Now we define endomorphisms R(X,Y)
and XA4Y of x(M) by

R(X,Y)Z =VxVyZ —-VyVxZ -V xy|Z, (3)
(XAAY)Z = A(Y, 2)X — A(X, 2)Y, (4)
where X, Y, Z € x(M) and A is a symmetric (0,2)-tensor.
A concircular curvature tensor Z is defined by
K

Z(X,Y) = R(X,Y) — =T

(XA4Y),
where & is scalar curvature of M.

Let F : M — M(c) be an isometric immersion of an n-dimensional Rie-
mannian manifold M into a (2n + 1)—dimensional real space form M (c). We
denote by V and V the Levi-Civita connection of M and M/(c), respectively.
Also, we denote by N (M) its normal bundle. Then for vector fields X, Y which
are tangent to M, the second fundamental form h is given by the formula
h(X,Y) =VxY —VxY. Furthermore, for £ € N(M), A¢ : TM — TM denotes
the Weingarten operator in the {—direction, A:X = V€ — Vx€, where V*
denotes normal connection on M. The second fundamental form h and A¢ are
related by g(h(X,Y), &) = g(A¢X,Y), where g is the induced metric of g for any
vector fields X, Y tangent to M. The mean curvature vector H of M is defined
as

H = Etr(h).
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The covariant derivative Vh of h is defined by
(Vxh)(Y, Z) = Vx(h(Y, Z)) — h(VxY, Z) = h(Y,Vx Z), (5)

where Vh is a normal bundle valued tensor of type (0, 3) and is called the third
fundamental form of M. The equation of Codazzi implies that Vh is symmetric
and hence

(Vxh)(Y,Z) = (Vyh)(X, Z) = (Vzh)(X,Y). (6)

Here, V is called the Van der Weather - Bortolloti connection of M. If Vh = 0,
then F' is called parallel [13].
The basic equations of Gauss and Ricci are

I(R(X,Y)Z,W) = cg(XAY(Z)) + g(h(X, W), h(Y, Z)) — g(h(X, Z), h(Y, Wg)a)
7
?(RL(XJ/)&??) :g([Ag,An]X,Y), 5777€N(M)’ (8)

respectively. Here R is the curvature operator of the normal connection defined
by
RH(X,Y) = VyVyZ — VyVxZ — Vix y 2.

An isometric immersion F is said to have flat normal connection if R+ = 0. If
M has flat normal connection, then it called normally flat.

The second covariant derivative V-h of h is defined by
(V°h)(Z. W, X,Y) = (VxVyh)(Z,W)

= Vx(Vxh)(Z,W) = (Vyh)(VxZ,W) = (Vxh)(Z,Vy W) = (Vy yh)(Z,W).

9)
Then we have
(vaYh)(Zv W) - (vaXh)(Z7 W) = (R(Xa Y)h‘)(Z7 W)>
= RL(X,Y)h(Z, W) —h(R(X,Y)Z,W)—h(Z R(X,Y)W), (10)

where R is curvature tensor belonging to the connection V.

3 S-space forms

Let M be a (2m + s)—dimensional framed metric manifold [18] (or almost
r-contact metric manifolds [17]) with a framed metric structure (f, &, 7%, §),
a € {1,2,...,s}, where f is a (1, 1) tensor field defining an f—structure of
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rank 2m, &,&, ..., & are vector fields, n', n?, ..., n° are 1-forms and g is a
Riemannian metric on M such that for all X, Y € TM and «, 8 € {1,2,...,s},

f2 =—I14+n*"®&, n*&)= 5?% f(€a) =0, n%f =0, (11)

gUfX, fY) =g(X,Y) = Y _n*(X)n™(Y), (12)

QX Y) =9(X, fY) = -, X),  g(X,&) =n"(X). (13)

A framed metric structure is an S-structure [3] if [f, f] + 2dn® ® £, = 0 and
Q =dn® for all a € {1,2,...,s}. When s = 1, a framed metric structure is an

almost contact metric structure, while an S-structure is a Sasakian-structure.
When s = 0, a framed metric structure is an almost Hermitian structure, while
an S-structure is Kiehler structure. If a framed metric structure on M is an
S-structure, then it is known [3] that

(VxHY =Y @G X, fY)ea +1°(YV) 2 X), (14)

Vé, = —Ff, aec{l,2,..., s} (15)

The converse may also be proved. In case of Sasakian structure (i.e. s = 1) (3.4)
implies (3.5). In Kéehler case (i.e. s = 0), we get Vf = 0. For s > 1, examples
of S-structure are given in [3] [4] [5].

A plane section in T, M is called a f—section if there exists a vector X € T,,M
orthogonal to &, &, ..., & such that {X, fX} span the section. The sectional
curvature of a f—section is called a f—sectional curvature. It is known that [14]
in an S-manifold of constant f—sectional curvature ¢

RX,YV)Z =Y {n*(X)n°(2) Y —n*(Y)n’(2)f*X
a76
—g(f X, fYIn*(Y)s +a(fY, fZ)n™(X)és}
(c+3s), _ 2 _ 2 (16)
1 {=9(fY, f2)f*X +9(fX, f2)f*Y'}
(c—s)
1

+

{9(X, 12)1Y —g(Y, f2)f X +29(X, fY) [ 2},

for all X,Y,Z € TM, where R is curvature tensor of M. An S-manifold of
constant f—sectional curvature c is called an S-space form M (c).

A submanifold M of an S-space form M(c) is called a C-totally real sub-
manifold if and only if f(T,M) C T;-M, for all x € M(T,M and T}M are
respectively the tangent space and normal space of M at z). When &, is tan-
gent to M, M is a C-totally real submanifold if and only if Vx&, = 0, for all
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X eM,ae{l,2,...,s}, where V is the connection on M induced from Levi-
Civita connection V on M. It is to see that the C-totally real submanifolds M
of M are submanifolds with &, € T+M.

We already know that [1] if M is an n-dimensional C-totally real submanifold
of a (2m + s)—dimensional S-space form M (c), then following statements are
equivalent:

(i) M is totally geodesic.

(ii) M is of constant curvature K = 1(c+ 3s).
(iii) The Ricci tensor S = £(n — 1)(c + 3s)g.
(iv) The scalar curvature £ = $n(n — 1)(c + 3s).

Following the argument as in [11], we can prove

Theorem 2. Let M be a minimal, C-totally real submanifold of an S-space
form M (c), then
n?(n — 2)
— 3
K> 22n = 1)(0—1— s),
implies that M 1is totally geodesic.
Following the argument as in [10], we can prove:

Proposition 1. If M is an n-dimensional C-totally real submanifold of an
S-space form M(c). Then the following conditions are equivalent:

(i) M is minimal.

(i) The mean curvature vector H of M is parallel.

4 Main Results

Theorem 3. Let M(c) be a (2n+ s)—dimensional S-space form of constant
f-sectional curvature ¢ and M be an n-dimensional C-totally real, minimal sub-
manifold of M(c). If M is pseudo parallel and Ln — 3(n(c + 3s) +c —s) > 0,
then M is totally geodesic.

Proof. Let M be an n-dimensional C-totally real submanifold of a (2n +
s)—dimensional S-space form M/(c) of constant f—sectional curvature c. We
choose an orthonormal basis {ej, ea, ..., e,, fe1 =€f, ..., fe, =€}, et = &1,
enis = &} Then for 1 <4, j <n,n+1< a < 2n+ s, the components of

second fundamental form h are given by

hiy = g(h(ei, €j), €a). (17)
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Similarly, the components of first and second covariant derivative of h are given
by
?jk = g((vekh)(eiﬂej)7ea) = vekhz‘aj (18)

and
h%’kzl - g((velvek h)(ei’ ej)v ea) - vez %’k = vezﬁek h% (19)

respectively. It is well known that

W =i =nl, R =0,

ij

If F'is pseudo-parallel, then by definition, the condition
Rer,ex).h = L[(eiAgey)|h (20)
is fulfilled where
[(eiAger)R)(eiyej) = —h((eiAger)ei, e5) — hiei, (eiAger)e;), (21)

for 1 <4,5,k, 1 <n.
Now using (2.2) in (4.5), we get

(61‘, 6]) = g<ek7 ei)h(el7 ej) + g(ely ei)h(ek7 6])

— g(exs ej)h(er, ei) + g(er, ej)h(ek, €;). #2)

By (2.9) we have

(R(er,ex)-h)(eise) = (Ve, Ve h) (i e5) — (Ve Ve h) (e, €5). (23)

Making use of (4.1), (4.3), (4.6) and (4.7), the pseudo-parallelity condition (4.4)
gives us

bk = hijue — L{0kihij — duihi; + Okihsy — dihi; }, (24)

where g(e;,ej) =65 and 1 < 4,5,k l<n,n+1<a<2n+s.
Recall that the Laplacian Aho‘ of ho‘ is defined by

Z hzgkk (25)
i,5,k=1
Then we obtain
n 2n+s)
ABIPY =" D hihiw + VA, (26)

i,k l=1 a=n-+1
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where
n 2n—+s

InF= > > ()2 (27)

ik, =1a=n+1
n 2n+s

IVRIP= >0 > (A, (28)

i,k =1 a=n-+1

are the square of the length of second and third fundamental forms of M,
respectively. In view of (4.1) and (4.3), we obtain

hiihiiee = 9(h(eir €5); €a)g((Ve, Ve h)(€is €5), €a)
= 9((Ve, Verh)(eis €5), g(hleis €5), €a), €a) (29)
= g((vekv%h)(elv e])’ h(ei> ej))-
Therefore, due to (4.13), equation (4.10) becomes
Nl Z g(( W) (eise;), hleise)) + [[Vh] . (30)
i,5,k,=1
Further, by the use of (4.4), (4.6) and (4.7), we get
g((ﬁekvﬁch)(ei’ ej)v h(es, ej)) = g((vekveih)<ek7 ej) h(ei, 6]))
:g((ﬁeivek h)(ej7 ek)) - L{g(eiv ej)g(h(elm ek) (627 6]))
— g(ex, e5)g(h(ex, €:), h(ei, €5)) + g(ex, €i)g(h(ej, ex), h

- g(ek, €k)g(h<6i, €j), h(eiv 6])>}
From equations (4.14) and (4.15), we have

(eir€5)) (31)

n

%A(IIhIIQ)Z > [9((Ve,Ve;h) (e, ex), hlei ¢j))

ij =1
— L{g(ei,ej)g(h(er, ex), h(ei, e5)) — glex, €5)g(hler, i), hiei e5))  (32)
+g(ex, ei)g(h(es, ex), hei, e5)) — glek, ex)g(h(ei, e), h(ei, e5))}]
+ ||Vh]?.
Further by definitions
‘hHQ Z g 6276] 61763‘)),
t,j=1
Ha == Z h‘%k’
=1

1 2n+s

HIP == S (1,

a=n+1
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and after some calculations, we get

n 2n+s
A(RIPY =30 > h(Ve, Ve, HY) = L{n?|[H|]” = n||h][*} + [[VR|[2. (33)
1,j=1 a=n+1

Using minimality condition, equation (4.17) reduces to
SOIRIP) = Lojlh[[* + |[VhA][>. (34)

Now,using the arguments as Blair has shown in [9], we have

2n+s
A(IRIP) = 1IVRP= > {[Tr(Aa0dp) + ||[Aa, As]l*}
a,f=n+1 (35)
1
+ Z(n(c + 3s) + ¢ — s)||h||2.
From (4.18) and (4.19), we have
1 2n+s
0=(Ln— (n(c+3s)+c— IR+ > {1 (Aa04s)]? + 1[[Aa, Agll1%}
a,f=n+1

if Ln — $(n(c+3s) + ¢ —s) > 0, then T,(4,0A3) = 0.
In particular, ||A4]|*> = T;.(Aq0Ag) = 0, then h = 0 and hence M is totally
geodesic.

Corollary 1. Let M(c) be a (2n+ s)—dimensional S-space form of constant
f—sectional curvature ¢ and M be an n-dimensional C-totally real, minimal
submanifold of M (c). If M is semi-parallel (i.e. R.h = 0) and n(c+3s)+c—s <
0, then it is totally geodesic.
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