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Introduction

We define the pseudo-Euclidean inner product 〈·, ·〉s in Rn+p as

〈X,Y 〉s = −
s∑

i=1

xiyi +
n+p∑

i=s+1

xiyi, X = (xi), Y = (yi) ∈ Rn+p,

Let RPn+2 be a real projective space. < ·, · >2 is the pseudo-Euclidean inner
product in Rn+3. The quadratic surface

Qn+1
1 = {[ξ] ∈ RPn+2|〈ξ, ξ〉2 = 0}

in RPn+2 is called the conformal space.
Suppose that x : Mn→Qn+1

1 is a space-like hypersurface in the conformal
space Qn+1

1 , {ei} is a local orthonormal frame of Mn for the standard metric
I = dx · dx with dual basis {θi}. Then we define the first fundamental form I,
the second fundamental form II and the mean curvature of x as

I = 〈dx, dx〉1 =
∑

i

θi ⊗ θi; II =
∑

ij

hijθi ⊗ θj ; H =
1

n

∑

i

hii.
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In [5], Nie and Wu classified the hypersurfaces with parallel conformal second
fundamental form.They obtained

Theorem 1. [5] Let x :Mn→Qn+1
1 be a space-like hypersurface with parallel

conformal second fundamental form, then Mn is conformally equivalent to an
open part of one of the following hypersurfaces in Qn+1

1 :

1) Sk(a)×Hn−k(b) ⊂ Sn+1
1

2) Hk(a)×Hn−k(b) ⊂ Hn+1
1 ;

3) Hk(a)×Rn−k ⊂ Rn+1
1 ;

4) WP (p, q, a) ⊂ Rn+1
1 , WP (p, q, a) is the warped product embedding u :

Sp(a)×Hq(b)×R+ ×Rn−p−q−1 ⊂ Rn+2
1 → Rn+1

1 , a > 1, b =
√
a2 − 1, which is

given by

u = (tu1, tu2, tu3), u1 ∈ Sp(a), u2 ∈ Hq(b), u3 ∈ Rn−p−q−1, t ∈ R+.

In this paper, we consider the space-like hypersurfaces Mn with conformal
form C = 0, which also have harmonic curvature. Here is our main theorem

Theorem 2. Let x :Mn→Qn+1
1 be a space-like hypersurface in Qn+1

1 with-
out umbilics. If its conformal form C = 0 and its curvature tensor is harmonic,
then its conformal second fundamental form is parallel.

Every manifold with parallel Ricci tensor has harmonic curvature. This ap-
plies, for instance, to Einstein manifolds. Consequently, we have the following
corollary

Corollary 1. Let x :Mn→Qn+1
1 be a space-like hypersurface in Qn+1

1 with-
out umbilics. If its conformal form C = 0 and Mn is Einstein hypersurface with
respect to conformal metric g, then Mn is conformally equivalent to an open
part of one of the following hypersurfaces in Qn+1

1 :

1) Hk(a)×Hn−k(b) ⊂ Hn+1
1 ;

2) H1(a)×Rn−1 ⊂ Rn+1
1 .

1 Conformal invariants for space-like hypersurfaces

in Qn+1
1

Let x :Mn→Qn+1
1 be a space-like hypersurface in the conformal space Qn+1

1 .
The cone of light in Rn+3 is given by

Cn+2 = {ξ ∈ Rn+3|〈ξ, ξ〉2 = 0, ξ 6= 0}.

Then there exists a unique lift Y :Mn → Cn+2 of x such that g = 〈dY, dY 〉
up to a sign, Y is called the canonical lift of x. Then we have



Ovals with Invariant Maximal Quadrilaterals 65

Theorem 3. [6]Two space-like hypersurfaces x, x̃ : Mn→Qn+1
1 are confor-

mally equivalent if and only if there exists a pseudo-orthogonal transformation
T∈O(n, 2) in Rn+3

2 such that Y = Ỹ T .

It follows immediately from Theorem 3 that g = 〈dY, dY 〉 = e2τdx·dx, e2τ =
n

n− 1
(
∑

ij

(hij)
2 − nH2) is a conformal invariant, which is called the conformal

metric of x :Mn→Qn+1
1 .

Let ∆ be the Laplacian operator with respect to g. We define

N = − 1

n
∆Y − 1

2n2
〈∆Y,∆Y 〉Y. (1)

It is easy to see that

〈∆Y, Y 〉2 = −n, 〈Y, dY 〉2 = 0, (2)

〈Y, Y 〉2 = 〈N,N〉2 = 0, 〈Y,N〉2 = 1. (3)

Let {Ei := e−τei} be a local orthonormal basis for the conformal metric g
with dual basis {ωi = eτθi}. Writing {Yi = Ei(Y )}, we have

〈Yi, Yj〉2 = δij , 〈Yi, Y 〉2 = 〈Yi, N〉2 = 0, 1 ≤ i, j ≤ n. (4)

If we denote by V is the orthogonal complement space of the subspace
span{Y,N, Y1, · · · , Yn} in Rn+3

2 , then we have

Rn+3
2 = span{Y,N}⊕span{Y1, · · · , Yn} ⊕ V,

here V is called the conformal normal bundle of x : Mn→Sn+1. We define
the local orthonormal basis of V by

E = En+1 := (H,Hx+ en+1), (5)

then {Y,N, Y1, · · · , Yn, E} is a moving frame of Rn+3
2 along Mn, we can write

the structure equations as
dY =

∑

i

Yiωi, (6)

dN =
∑

i

ψiYi + CE, (7)

dYi = −ψiY − ωiN +
∑

j

ωijYj + ωi,n+1E, (8)

dE = CY +
∑

i

ωi,n+1Yi. (9)

The tensors A =
∑
i,j
Aijωiωj , B =

∑
i,j
Bijωiωj , C =

∑
i
Ciωi are called the

Blaschke tensor, the conformal second fundamental form and the conformal
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form respectively. All of them are conformal invariants. The relations between
conformal invariants and Euclidean invariants of x are given by

Bij = e−τ (hij −Hδij), (10)

Ci = e−2τ (Hτi −
∑

j

hijτj −Hi), (11)

Aij = e−2τ [τiτj − τi,j −Hhij +
1

2
(H2 −

∑

k

(τk)
2 + ǫ)δij ]. (12)

Here τi = ei(τ), Hi = ei(H). τi,j and ∇ are called the Hessian-matrix and the
gradient with respect to I = dx · dx respectively.

We define the covariant derivatives of Ci, Aij , Bij as follows
∑

j

Ci,jωj = dCi −
∑

j

Cjωji, (13)

∑

k

Aij,kωk = dAij −
∑

k

Aikωkj −
∑

k

Akjωki, (14)

∑

k

Bij,kωk = dBij −
∑

k

Bikωkj −
∑

k

Bkjωki. (15)

Then the structure equations (6)–(9) are equivalent to

Aij,k −Aik,j = BikCi −BijCk, (16)

Ci,j − Cj,i =
∑

k

(BikAkj −BkjAki), (17)

Bij,k −Bik,j = δijCk − δikCj , (18)

Rijkl = δikAjl − δilAjk + δjlAik − δjkAil − (BikBjl −BilBjk), (19)

Rij :=
∑

k

Rikjk =
∑

k

BikBjk + (trA)δij + (n− 2)Aij , (20)

∑

i

Bii = 0,
∑

i,j

(Bij)
2 =

n− 1

n
, trA =

∑

i

Aii =
1

2n
(n2κ− 1). (21)

Here Rijkl is the curvature tensor of g, Q =
∑
i,j
Rijωi ⊗ ωj is the conformal

Ricci curvature and κ =
1

n(n− 1)

∑

i

Rii is the normalized conformal scalar

curvature of x :Mn→Sn+1.

Theorem 4. [6]Two space-like hypersurfaces x :Mn→Qn+1
1 and x̃ : M̃n →

Qn+1
1 (n ≥ 3) are conformally equivalent if and only if there exists a diffeomor-

phism σ : Mn → M̃nwhich preserves the conformal metric g and conformal
second fundamental form B.
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2 The proof of main results

Proof of Theorem 2. Let x : Mn→Qn+1
1 be a space-like hypersurface in

Qn+1
1 with conformal form C = 0. From (17), we choose a local orthonormal

frame {ei} with respect to g such that A,B are diagonalizable at the same time,
i.e.,

Bij = biδij , Aij = aiδij , 1 ≤ i, j ≤ n. (22)

We are assuming that x has harmonic conformal curvature, i.e.,
∑
i
Rijkl,i =

0. This happens if and only if the Ricci tensor is Codazzi tensor, i.e., Rij,k =
Rik,j . Thus the scalar curvature of x with respect to g is constant and tr(A) is
constant too. From (20), we have

Rij,k =
∑

l

Bil,kBlj +
∑

l

BilBlj,k + (n− 2)Aij,k, (23)

Rik,j =
∑

l

Bil,jBlk +
∑

l

BilBlk,j + (n− 2)Aik,j , (24)

Since C = 0, form(17), (18), we have Bij,k = Bik,j , Aij,k = Aik,j . Thus from
(22) and (23), we get ∑

l

Bil,kBlj =
∑

l

Bil,jBlk.

By using (22), for any indices of i, j, k, we get

Bij,kbj = Bik,jbk, (25)

If bj 6= bk, then we have

Bij,k = 0. (26)

If bj = bk, since
∑
l
Bjk,lωl = dBjk +

∑
l
Bjlωlk +

∑
l
Bljωli

= dBjk + (bj − bk)ωjk

(27)

It is easy to see from (22) that

Bij,k = 0. (28)

From (26), (28) and
∑
j
Bij,j = 0, for any indices of i, j, k, we get

Bij,k = 0. (29)

Therefore we obtain our main Theorem 2.
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Now let t be the number of the distinct eigenvalues of A, and a1, a2, · · · , at
be all of distinct eigenvalues. Taking a suitably local orthonormal frame field
{E1, E2, · · · , En} such that the matrix (Aij) can be written as

(Aij) = Diag(a1, · · · , a1︸ ︷︷ ︸
k1

, a2, · · · , a2︸ ︷︷ ︸
k2

, · · · , at, · · · , at︸ ︷︷ ︸
kt

),

that is

A1 = · · · = Ak1 = a1, · · · , An−kt+1 = · · · = An = at,

here a1, · · · , at are not necessarily different from each other.

Similarly, under the same orthonormal frame field, the matrix (Bij) can be
written as

(Bij) = Diag(b1, · · · , b1︸ ︷︷ ︸
k1

, b2, · · · , b2︸ ︷︷ ︸
k2

, · · · , bt, · · · , bt︸ ︷︷ ︸
kt

),

or equivalently

B1 = · · · = Bk1 = b1, · · · , Bn−kt+1 = · · · = Bn = bt,

and b1, · · · , bt are not necessarily different from each other.

Proposition 1. If the number of the distinct eigenvalues is t ≥ 3, then
t = 3.

Proof. If t > 3, then there exist at least four indices i1, i2, i3, i4, such that
Ai1 , Ai2 , Ai3 , Ai4 are distinct from each other.

Making the convention on the ranges of indices as follows

1 ≤ i1, j1 ≤ k1, k1 + 1 ≤ i2, j2 ≤ k1 + k2, · · · , k1 + k2 + 1 ≤ it, jt ≤ n.

From (15) and Bij,k = 0, we have ωimin = 0(m 6= n, 1 ≤ m,n ≤ t). Using
Gauss equation and from (19), we obtain

Bi1Bi2 +Ai1 +Ai2 = 0, Bi3Bi4 +Ai3 +Ai4 = 0,

Bi1Bi3 +Ai1 +Ai3 = 0, Bi2Bi4 +Ai2 +Ai4 = 0.

Consequently, (Ai1−Ai4)(Ai2−Ai3) = 0, it contradicts with the assumption
that Ai1 , Ai2 , Ai3 , Ai4 are distinct from each other.

Proposition 2. The Einstein space-like hypersurfaces with vanishing con-
formal form in conformal space have at most two different conformal principal
curvatures.



Ovals with Invariant Maximal Quadrilaterals 69

Proof. If that doesn’t happen, t = 3. Taking a local orthonormal frame field
{E1, E2, · · · , En} such that

(Bij) = Diag(b1, · · · , b1︸ ︷︷ ︸
k1

, b2, · · · , b2︸ ︷︷ ︸
k2

, b3, · · · , b3︸ ︷︷ ︸
k3

)

with the multiplicity are k1, k2, k3 respectively, and k1 + k2 + k3 = n.

(Aij) = Diag(a1, · · · , a1︸ ︷︷ ︸
k1

, a2, · · · , a2︸ ︷︷ ︸
k2

, a3, · · · , a3︸ ︷︷ ︸
k3

).

Since B is parallel, By Using Gauss equation and from (15), (19), we obtain




b1b2 + a1 + a2 = 0,
b1b3 + a1 + a3 = 0,
b2b3 + a2 + a3 = 0.

(30)

Obviously, we have

b3(b1 − b2) = −(a1 − a2). (31)

Since M is Einstein manifold, i.e., the Ricci curvature Rij =
r

n
δij = (n −

1)κδij(n ≥ 3), so its conformal scalar curvature κ is constant. From (20) we
have 




(n− 1)κ = tr(A) + (n− 2)a1 + b21,
(n− 1)κ = tr(A) + (n− 2)a2 + b22,
(n− 1)κ = tr(A) + (n− 2)a3 + b23.

(32)

Subtracting the second formula from the the first formula, we get

(b1 + b2)(b1 − b2) = −(n− 2)(a1 − a2). (33)

Substituting (31) into (33), we obtain

b1 + b2 = −(n− 2)b3.

Similarly, we have
b1 + b3 = −(n− 2)b2.

Making subtraction in above two formulas and obtain b2 = b3, it contradicts
with the assumption, so we complete the proof of Proposition 2.

Next, we give the proof of Corollary 1.
Proof of Corollary 1. Suppose that the number of different principle cur-

vatures of the Einstein space-like hypersurfaces is t = 2, by using the first two
formulas of (21) to calculate b1, b2, we obtain

b1 =
1

n

 
(n− k)(n− 1)

k
, b2 = −

1

n

 
(n− 1)k

n− k .
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a1 + a2 = b1 · b2 = −
n− 1

n2
< 0.

Since(M, g) = (M1, g1)×(M2, g2), dimM1 = k, dimM2 = n−k. From (19),
(M1, g1) and (M2, g2) have constant curvature R1 and R2. By direct calculation,
we get

R1 = 2a1 − b21, R2 = 2a2 − b22.

R1 +R2 = −b21 − b22 + 2(a1 + a2) = −(b1 − b2)2 < 0.

Then at least one of R1, R2 is negative, without generality, we let R1 < 0, i.e.,
2a1 − b21 < 0.

Since M is Einstein manifold, from (20), we have

(n− 1)κδij = Rij = tr(A)δij + (n− 2)Aij +
∑

k

BikBjk.

Furthermore, we have
®

(n− 1)κ = tr(A) + (n− 2)a1 + b21,
(n− 1)κ = tr(A) + (n− 2)a2 + b22.

(34)

Adding the above two formulas, we get

2(n− 1)κ = 2tr(A) + (n− 2)(a1 + a2) + b21 + b22.

From (21), we obtain

κ =
(1− k)(n− k − 1)

k(n− k)(n− 2)
.

a2 =
1

n− 2
[(n− 1)κ− tr(A)− b22]

=
1

n− 2
[
(1− k)(n− k − 1)

2k(n− k) +
1

2n
− (n− 1)k

n2(n− k) ].

By direct calculation, we have

R2 = 2a2 − b22
=

2

n− 2
[
(1− k)(n− k − 1)

2k(n− k) +
1

2n
− (n− 1)k

n2(n− k) ]−
(n− 1)k

n2(n− k)
=

(1− k)(n− 1)

k(n− 2)(n− k) ≤ 0.

Here we get ” = ” if and only if k = 1. So we complete the proof of the
Corollary 1.
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in Mathematics(China), 2008, 37:57-66.

[5] Nie C., Wu C : Space-like hypersurfaces with parallel second fundamental forms in the
conformal space, Acta Math. Sinica, 2008, 51:685-692.

[6] Nie C., Li T. : Conformal isoparametric hypersurfaces with two distinct conformal prin-
cipal curvatures in conformal space. Sci China Math, 2010,53(4):953-963.


