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Abstract. Let P(z) be a polynomial of degree n and for a complex number «, let D, P(z) =
nP(z) + (o — z) P'(z) denote the polar derivative of the polynomial P(z) with respect to .
In this paper we establish some L, inequalities for the polar derivative of a polynomial
with restricted zeros. Our results not only generalizes some known polynomial inequalities, but
also a variety of interesting results can be deduced from these by a fairly uniform procedure.

Keywords: Polynomials, Polar derivative, Inequalities, Zeros.

MSC 2000 classification: 30A10, 30C10, 30E10, 30C15.

Introduction

Let P(z) be a polynomial of degree n and P’(z) its derivative. It was shown
by Turan [16] that if P(z) has all its zeros in |z| < 1, then

max |P'(2)| > = max |P(z)]. (1)
|z|=1 2 |z|=1

More generally, if P(z) has all its zeros in |z|] < k < 1, it was proved by
Malik [11] that (1) can be replaced by

n
P'(2)| > —— max|P 2
max | P(2)| 2 37 max| P(2)], (2)

whereas Govil [8] proved that if P(z) has all its zeros in |z| < k, where k > 1,
then

P'(z)| >
R e

[P(2)]- 3)
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As an improvement of (3), Govil [9] proved that if P(z) has all its zeros in
|z| <k, where k > 1, then

max | P'(z)| >

B =14k {maX|P( )| + min | P(z )I} (4)

|21=1 |z|=F

Again for the class of polynomials P(z) = anz"+377_, an_jz”_j, 1<u<n
of degree n having all its zeros in |z| < k, k < 1, Aziz and Shah [5] proved

n
P’ > P in |P . b
x| PG = 1 (e P+ o i PG | )
For u = 1, inequality (5) reduces to an inequality due to Govil [9].
We define D, P(z), the polar derivative of the polynomial P(z) of degree n
with respect to a complex number a by

DoP(2) =nP(2) + (a — 2)P'(2). (6)

It is easy to see that the polynomial D, P(z) is of degree atmost n — 1 and
it generalizes the ordinary derivative in the sense that

D,P
limg Do)

a—00 o

= P'(2). (7)

Shah [14] extended (1) to the polar derivative of P(z) and proved:

Theorem 1. If all the zeros of nth degree polynomial P(z) lie in |z| < 1,
then
lm‘ifli\DaP( 2)| = (!a\ - 1)1|fn|aX|P( 2)|, laf = 1. (8)
The result is best possible and equality in (8) holds for P(z ( )
Aziz and Rather [3] generalized (8) which also extends ( ) to the polar
derivative of a polynomial. In fact, they proved.

Theorem 2. If P(z) is a polynomial of degree n having all its zeros in
|z| <k, where k < 1, then for every real or complex number o with |a| > k,

o] — &
D,P > P 9
|02 > o (L5 ) max o) )
The result is best possible and equality in (9) holds for P(z) = (z — k)™ with
a>k.
Further, as a generalization of (3) to the polar derivative of a polynomial,
Aziz and Rather [3] proved the following:
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Theorem 3. If P(z) is a polynomial of degree n having all its zeros in
|z| <k, where k > 1, then for every real or complex number o with |a| > k,

—k
ﬁgu%PuMZn(TLM)gﬁyP@» (10)

In the same paper, Aziz and Rather [3] proved the following improvement
of inequality (8):

Theorem 4. If P(z) is a polynomial of degree n having all its zeros in
|z| <1, then for every real or complex number a with || > 1,

ggWJwﬂzQ%M—wmwwuwuw+nqu@} (1)

|z|=1 |z|=1

The result is best possible and equality in (11) holds for P(z) = (z—1)" with
a>1.

On the other hand Malik [12] obtained an L, analogue of (1) by proving
that if P(z) has all its zeros in |z| < 1, then for each r > 0,

2 1 2 1
n{/\P(eiG)rdH} < {/11+ei9\’”d0} |H1|E1)1(’P/(2)’. (12)
0 0 -

As an extension of (12) and a generalization of (2), Aziz [1] proved that if P(z)
has all its zeros in |z| < k < 1, then for each r > 0,

n{ Zyp(ew)r"da}i < { 07\1 + kewrda} " max|P'(2)]. (13)

j2=1

If we let 7 — oo in (12) and (13) and make use of the well known fact from
analysis (see example [13, p.73] or [15, p.91]) that

1
T

21
0y |7 ' i0
{/|P(e ) de} - max [P()] as 7 o0, (14)
0

we get inequalities (1) and (2) respectively.

Recently, Dewan et. al. [6] obtained the following result for the polar deriva-
tive of polynomials which generalizes inequalities (9) and (13). In fact they
proved:
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Theorem 5. If P(z) is a polynomial of degree n having all its zeros in
|z| <k, where k < 1, then for every real or complex number o with |o| > k and
for each r > 0,

2w

n(lal — {/|P if) |7"d9} < {/|1+ke“’|fd9}llmax|p P(z). (1)

0

In the limiting case, when » — 0o, the above inequality is sharp and equality
holds for the polynomial P(z) = (z — k)™ with o > k.

If we divide both the sides of inequality (15) by |«| and let || — oo, we get
inequality (13). If we let » — oo, in (15), we get inequality (9).

1 Main Results

In this paper, we will obtain some L, inequalities for the polar derivative of
a polynomial which generalize the inequalities (8), (9) and (15) in particular.
More precisely, we prove the following theorem:

Theorem 6. If P(z) = anz" + Y7, an—j2"" I, 1< pu<nis a polynomial
of degree n having all its zeros in |z| < k, where k < 1, then for every real
or complex number o with |a| > k and for each v > 0,p > 1,q > 1 with
1/p+1/q =1, we have

2 1 27 1 1
n(|of —SM){/]P(ew)]TdH} < {/\Hsuewme} {/\D P( 19)]qu6}
0 0
(16)
where | |k2 | " .
| njan |k + plan—p, |EFT
o = { Alan 1 4 plan_y] } 1
and
Hlan—p < kM, (18)
n| ap

Remark 1. Since S, < k#* <k, 1 < p < n it follows from above theorem
that

2

el -1 | |P<ei9>|7"cw}i
0
2 1 1
< {O/|1+k“ew|md9} {/\D P( ’9)|‘1’"d6} (19)
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For p = 1, we get a generalization of inequality (15) in the sense that
max|;—1 | Do P(2)| on the right hand side of (15) is replaced by a factor involving
the integral mean of |D,P(z)| on |z| = 1.

Instead of proving inequality (16), we prove the following more general result:

Theorem 7. If P(z) = an2" + Y7, an—j2"7, 1 < p <nis a polynomial
of degree n having all its zeros in |z| < k, where k <1 and m = min, |, |P(2)],
then for every real or complex number «, B with |a] >k, |B| < 1 and for each
r>0,p>1,q>1withl/p+1/q=1, we have

2 . 1
; mﬂemér -
allal = 40 [ 1P = "5 oo}
0
1 27

21 . 1
] - ] i(n—1)0 ar
< {/|1+Aue“’|md0}p {/|DQP(e’9) - ”mﬁki\qwe}q (20)
0 0
k2 + plan—,|k*t

n
A= { } 1)
k1 + plan—y|

Finally, we present the L, analogue of inequalities (8) and (9) by using the
location of zeros of P(z). We prove:

where

m
an_TE

m
nan_Tnﬁ

Theorem 8. If P(z) = [[j_o(z — z;) is a polynomial of degree n such that
|zj| < k; <1, 1< 5 <n, then for every real or complex number o with |a| > g
and for each v > 0,p > 1,9 > 1 with 1/p+1/q = 1, we have

1

27 1 27 1 2w 1
n(|of —to){ / |P(ei9)\”d9}r < { / y1+toei9\p’"d9} { / yDaP(eia)\q’”de} "
0 0 0

where
n

AVEETRY
];1<1_kj>

Remark 2. If we let ¢ — 0o, 7 — 00 so that p — 1, in inequality (22), we
get

to=1-—

|z|=1 141

where t¢ is defined by (23). The result is best possible and equality in (24) holds
for P(z) = (z — k)™ where a > k.

mas [ DaP()] > n (’O‘"t‘)) max |P(2). (21)
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Remark 3. It can be easily seen that inequality (24) includes as special
cases inequality (8) when k; =1 for 1 < j < n and inequality (9) when k; = k
for 1 <j<n.

Remark 4. Dividing the two sides of (24) by |al, letting |a|] — oo and
noting (7), we get

Pl(z) > — P(2)]. 25
max | P(2)] 2 3o max | P(2)] (25)

By putting the value of g in (25) and after simplification, we get

n 1
max |[P'(z)| > =<1+ max | P(z 26
macx [ P/(2) 2{ HZZ%I%}M ) (26)

The above inequality was proved by Aziz and Ahmad [2].

2 Lemmas

For the proofs of these Theorems we need the following Lemmas.
Lemma 1. If P(z) has all its zeros in |z| < k where k < 1 and Q(z) =
Z"P(1), then

Q' ()| < SulP'(2)| for |2] =1, (27)
where S,, is defined by (18).
The above lemma is due to Aziz and Rather [4].

Lemma 2. If P(2) = [[}=,(¢ — z;) is a polynomial of degree n with |z;| >
k;j > 1,1 <j <n, then for |z| =1,

(28)

S ()

where q(z) = z"P(1/%).

This Lemma is due to Gardner and Govil [7].

3 Proof of the Theorems

PROOF OF THEOREM If P(z) has azero on |z| = k, then min, |, | P(2)]
= 0 and the result follows from inequality (16) in this case. Hence, we suppose
that all the zeros of P(z) lie in |z| < k where k < 1, so that m > 0. Now
m < |P(z)| for |z| = k, therefore, if § is any real or complex number such
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mBz"
%D

that |8] < 1, then < |P(z)] for |z| = k. Since all the zeros of P(z) lie in

_ mpBz"

|2 <k, it follows by Rouche’s theorem, that all the zeros of F'(z) = P(z) — =%
also lie in |z| < k. If G(2) = 2"F (1) = Q(z) — 7;—5 then it can be easily verified
that for |z| =1,

|F'(2)] = InG(2) — =G (2)]. (29)

As F(z) has all its zeros in |z| < k < 1, the inequality (27) in conjunction
with inequality (29), gives,

|G (2)] < AulnG(z) = 2G (2)] for |2| =1, (30)

where A, is defined in (21).
Now for every real or complex number a with |a| > k, we have

[DoF'(2)| = [nF(2) + (o = 2) F'(2))] (31)

> |al|F'(2)] = InF(2) — 2F(2)/ (32)

which gives by interchanging the roles of F'(z) and G(z) in (29) for |z| = 1 that

|DaF(2)| > |a||[F'(2)] — |G'(2)] (33)
> (la] = Ap)|F'(2)| (34)
nmaSz" / mnBz" !
DoP(z) " > (ja) - 4| P'(2) - MO (35)

Again since F'(z) has all its zeros in |z| < k < 1, therefore by Gauss-Lucas

theorem all the zeros of the polynomial F'(z) = P'(z) — mnkﬁ%l lie in |z] <
k < 1. Therefore the polynomial 2" 1F'(1) = nG(2) — 2G' (2) has all its zeros
in [z| > £ > 1. Hence it follows that the function

B =G (2)
Wiz) = A, {nG(z) — 2G'(2)} (36)

is analytic for |z| <1, |W(z)| <1 for |z| =1 and W (0) = 0. Thus the function
1+ A, W (z) is subordinate to the function 1+ A,z for |z| < 1. By a well known
property of subordination [10, P.422], we have for each r > 0,

2T 2
/ 11+ AW (e)]9d0 < / L+ A9, (37)
0 0
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Now by (36), we have

1 AW ()| = | 5 (39)
n|G(z)
Y (39)
OBES -
n|F(z)
o - (40)
P(z) -
it (1)

P/(Z) . mniin—l

From (35),(37) and (41), we deduce that for each r > 0,

2T inb
r T 7 mpe T
ol = ] [ 1P 5 o
0

2 oo . mnaBei =10
< {/|1+AM619|T/DQP(6W) - knrda}. (42)
0 0

Now applying Holder’s inequality for p > 1, ¢ > 1 with 1/p+1/q =1, we get

27 inb L

7 mpe T "

alal = 4] [ 1P - "0 s
0

2 L2 mnaBein=10 L
< { / \1+Auei9\p’“d9} { / |DoP(e?) — kn|‘"d6} (43)
0 0

and this completes the proof of inequality (20).
PROOF OF THEOREM Let ¢(z) = 2"P(1/z), then for |z| = 1, we have

|¢'(2)| = InP(2) — 2P'(2)] (44)
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Also we have |z;| < k; < 1,1 < j < n, therefore, %

EA

and hence by inequality (28), for |z| = 1,

which gives for |z| =1,

Hence for |z| =1,

Now for every real or complex number a with |«| > to, we have

Py _m
71 E )
_ jzz:l (121' + 1)
z (#5)
_ jé (1—1’%)
jil (1ﬁjkj)
q(2) < j; (1%)
P'(z) p ()
= J'i1 <171kﬂ a 1>
£ )
- =y
> ()

|4'(2)] < tol P'(2)].

[DaP(2)] = [nP(2) + (o — 2) P'(2))|

> |a| [P(2)] = [nP(z) — 2P'(2)]

which implies by (44) and (51) for |z| =1

[DaP(2)| = |af |P(2)] — to| P'(2)]

= (lal = to)|P'(2)|

>1L,1<j<n

31

i

(45)

(47)
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Again since P(z) has all its zeros in |z| < k < 1, therefore by Gauss-Lucas
theorem all the zeros of the polynomial P'(z) lie in |z| < k < 1. Therefore the

polynomial 2" ' P'(1) = nQ(z) — 2Q'(z) has all its zeros in |z| > £ > 1. Hence
it follows that the function

Qe
to{nQ(2) — 2Q'(2)}
is analytic for |z| <1, |[W(z)| <1 for |z| =1 and W(0) = 0. Thus the function

1+ toW(z) is subordinate to the function 1+ tpz for |z| < 1. By a well known
property of subordination [10, P.422], we have for each r > 0,

W(z) (56)

2m 2
/ 11+ toW()[9d6 < / 11+ toe®|de. (57)
0 0
Now,
n|Q(z)| = [1+tW (2)[|P'(2)]. (58)
Since |P(z)| = |Q(z)| for |z| = 1, therefore from (58) we get
P = for (59)

From (55),(57) and (59), we deduce that for each r > 0,
27 27 21
" (| —to)r{/w(ei@)we} < {/1+toei9|r/DaP(ew)|’”d0}. (60)
0 0 0

Now applying Holder’s inequality for p > 1, ¢ > 1 with 1/p+1/q =1, we get

2 1 2 1 2 1
n(|of —to){/yp(ew)rde} < {/|1+toei9|wcz9}p {/\Dap(eie)que}q
0 0 0

(61)
and this completes the proof of inequality (22).
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