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Abstract. Let P (z) be a polynomial of degree n and for a complex number α, let DαP (z) =
nP (z) + (α− z)P ′(z) denote the polar derivative of the polynomial P (z) with respect to α.

In this paper we establish some Lr inequalities for the polar derivative of a polynomial
with restricted zeros. Our results not only generalizes some known polynomial inequalities, but
also a variety of interesting results can be deduced from these by a fairly uniform procedure.
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Introduction

Let P (z) be a polynomial of degree n and P ′(z) its derivative. It was shown
by Turan [16] that if P (z) has all its zeros in |z| ≤ 1, then

max
|z|=1

|P ′(z)| ≥ n

2
max
|z|=1

|P (z)|. (1)

More generally, if P (z) has all its zeros in |z| ≤ k ≤ 1, it was proved by
Malik [11] that (1) can be replaced by

max
|z|=1

|P ′(z)| ≥ n

1 + k
max
|z|=1

|P (z)|, (2)

whereas Govil [8] proved that if P (z) has all its zeros in |z| ≤ k, where k ≥ 1,
then

max
|z|=1

|P ′(z)| ≥ n

1 + kn
max
|z|=1

|P (z)|. (3)
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As an improvement of (3), Govil [9] proved that if P (z) has all its zeros in
|z| ≤ k, where k ≥ 1, then

max
|z|=1

|P ′(z)| ≥ n

1 + kn

®
max
|z|=1

|P (z)|+ min
|z|=k

|P (z)|
´
. (4)

Again for the class of polynomials P (z) = anz
n+

∑n
j=µ an−jz

n−j , 1 ≤ µ ≤ n
of degree n having all its zeros in |z| ≤ k, k ≤ 1, Aziz and Shah [5] proved

max
|z|=1

|P ′(z)| ≥ n

1 + kµ

®
max
|z|=1

|P (z)|+ 1

kn−µ
min
|z|=k

|P (z)|
´
. (5)

For µ = 1, inequality (5) reduces to an inequality due to Govil [9].
We define DαP (z), the polar derivative of the polynomial P (z) of degree n

with respect to a complex number α by

DαP (z) = nP (z) + (α− z)P ′(z). (6)

It is easy to see that the polynomial DαP (z) is of degree atmost n− 1 and
it generalizes the ordinary derivative in the sense that

lim
α→∞

DαP (z)

α
= P ′(z). (7)

Shah [14] extended (1) to the polar derivative of P (z) and proved:

Theorem 1. If all the zeros of nth degree polynomial P (z) lie in |z| ≤ 1,
then

max
|z|=1

|DαP (z)| ≥
n

2
(|α| − 1)max

|z|=1
|P (z)|, |α| ≥ 1. (8)

The result is best possible and equality in (8) holds for P (z) =
Ä
z−1
2

än
.

Aziz and Rather [3] generalized (8) which also extends (2) to the polar
derivative of a polynomial. In fact, they proved.

Theorem 2. If P (z) is a polynomial of degree n having all its zeros in
|z| ≤ k, where k ≤ 1, then for every real or complex number α with |α| ≥ k,

max
|z|=1

|DαP (z)| ≥ n
Ç |α| − k

1 + k

å
max
|z|=1

|P (z)| (9)

The result is best possible and equality in (9) holds for P (z) = (z− k)n with
α ≥ k.

Further, as a generalization of (3) to the polar derivative of a polynomial,
Aziz and Rather [3] proved the following:
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Theorem 3. If P (z) is a polynomial of degree n having all its zeros in
|z| ≤ k, where k ≥ 1, then for every real or complex number α with |α| ≥ k,

max
|z|=1

|DαP (z)| ≥ n
Ç |α| − k
1 + kn

å
max
|z|=1

|P (z)|. (10)

In the same paper, Aziz and Rather [3] proved the following improvement
of inequality (8):

Theorem 4. If P (z) is a polynomial of degree n having all its zeros in
|z| ≤ 1, then for every real or complex number α with |α| ≥ 1,

max
|z|=1

|DαP (z)| ≥
n

2

®
(|α| − 1)max

|z|=1
|P (z)|+ (|α|+ 1) min

|z|=1
|P (z)|

´
(11)

The result is best possible and equality in (11) holds for P (z) = (z−1)n with
α ≥ 1.

On the other hand Malik [12] obtained an Lr analogue of (1) by proving
that if P (z) has all its zeros in |z| ≤ 1, then for each r > 0,

n

® 2π∫

0

|P (eiθ)|rdθ
´ 1

r

≤
® 2π∫

0

|1 + eiθ|rdθ
´ 1

r

max
|z|=1

|P ′(z)|. (12)

As an extension of (12) and a generalization of (2), Aziz [1] proved that if P (z)
has all its zeros in |z| ≤ k ≤ 1, then for each r > 0,

n

® 2π∫

0

|P (eiθ)|rdθ
´ 1

r

≤
® 2π∫

0

|1 + keiθ|rdθ
´ 1

r

max
|z|=1

|P ′(z)|. (13)

If we let r →∞ in (12) and (13) and make use of the well known fact from
analysis (see example [13, p.73] or [15, p.91]) that

® 2π∫

0

|P (eiθ)|rdθ
´ 1

r

→ max
0≤θ<2π

|P (eiθ)| as r →∞, (14)

we get inequalities (1) and (2) respectively.

Recently, Dewan et. al. [6] obtained the following result for the polar deriva-
tive of polynomials which generalizes inequalities (9) and (13). In fact they
proved:
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Theorem 5. If P (z) is a polynomial of degree n having all its zeros in
|z| ≤ k, where k ≤ 1, then for every real or complex number α with |α| ≥ k and
for each r > 0,

n(|α| − k)
® 2π∫

0

|P (eiθ)|rdθ
´ 1

r

≤
® 2π∫

0

|1 + keiθ|rdθ
´ 1

r

max
|z|=1

|DαP (z)|. (15)

In the limiting case, when r →∞, the above inequality is sharp and equality
holds for the polynomial P (z) = (z − k)n with α ≥ k.

If we divide both the sides of inequality (15) by |α| and let |α| → ∞, we get
inequality (13). If we let r →∞, in (15), we get inequality (9).

1 Main Results

In this paper, we will obtain some Lr inequalities for the polar derivative of
a polynomial which generalize the inequalities (8), (9) and (15) in particular.
More precisely, we prove the following theorem:

Theorem 6. If P (z) = anz
n +

∑n
j=µ an−jz

n−j , 1 ≤ µ ≤ n is a polynomial
of degree n having all its zeros in |z| ≤ k, where k ≤ 1, then for every real
or complex number α with |α| ≥ k and for each r > 0, p > 1, q > 1 with
1/p+ 1/q = 1, we have

n(|α| − Sµ)
® 2π∫

0

|P (eiθ)|rdθ
´ 1

r

≤
® 2π∫

0

|1 + Sµe
iθ|prdθ

´ 1
pr
® 2π∫

0

|DαP (e
iθ)|qrdθ

´ 1
qr

(16)
where

Sµ =

®
n|an|k2µ + µ|an−µ|kµ−1

n|an|kµ−1 + µ|an−µ|

´
(17)

and
µ

n

∣∣∣∣∣
an−µ

an

∣∣∣∣∣ ≤ k
µ. (18)

Remark 1. Since Sµ ≤ kµ ≤ k, 1 ≤ µ ≤ n it follows from above theorem
that

n(|α| − kµ)
® 2π∫

0

|P (eiθ)|rdθ
´ 1

r

≤
® 2π∫

0

|1 + kµeiθ|prdθ
´ 1

pr
® 2π∫

0

|DαP (e
iθ)|qrdθ

´ 1
qr

(19)
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For µ = 1, we get a generalization of inequality (15) in the sense that
max|z|=1 |DαP (z)| on the right hand side of (15) is replaced by a factor involving
the integral mean of |DαP (z)| on |z| = 1.

Instead of proving inequality (16), we prove the following more general result:

Theorem 7. If P (z) = anz
n +

∑n
j=µ an−jz

n−j , 1 ≤ µ ≤ n is a polynomial
of degree n having all its zeros in |z| ≤ k, where k ≤ 1 and m := min|z|=k |P (z)|,
then for every real or complex number α, β with |α| ≥ k, |β| < 1 and for each
r > 0, p > 1, q > 1 with 1/p+ 1/q = 1, we have

n(|α| −Aµ)

® 2π∫

0

|P (eiθ)− mβeinθ

kn
|rdθ
´ 1

r

≤
® 2π∫

0

|1 +Aµe
iθ|prdθ

´ 1
pr
® 2π∫

0

|DαP (e
iθ)− mnαβei(n−1)θ

kn
|qrdθ

´ 1
qr

(20)

where

Aµ =

{n
∣∣∣∣∣an −

mβ
kn

∣∣∣∣∣k
2µ + µ|an−µ|kµ−1

n

∣∣∣∣∣an −
mβ
kn

∣∣∣∣∣k
µ−1 + µ|an−µ|

}
. (21)

Finally, we present the Lr analogue of inequalities (8) and (9) by using the
location of zeros of P (z). We prove:

Theorem 8. If P (z) =
∏n

j=0(z − zj) is a polynomial of degree n such that
|zj | ≤ kj ≤ 1, 1 ≤ j ≤ n, then for every real or complex number α with |α| ≥ t0
and for each r > 0, p > 1, q > 1 with 1/p+ 1/q = 1, we have

n(|α| − t0)
® 2π∫

0

|P (eiθ)|rdθ
´ 1

r

≤
® 2π∫

0

|1 + t0e
iθ|prdθ

´ 1
pr
® 2π∫

0

|DαP (e
iθ)|qrdθ

´ 1
qr

(22)
where

t0 = 1− n
n∑

j=1

Ç
1

1−kj

å . (23)

Remark 2. If we let q → ∞, r → ∞ so that p → 1, in inequality (22), we
get

max
|z|=1

|DαP (z)| ≥ n
Ç |α| − t0

1 + t0

å
max
|z|=1

|P (z)|, (24)

where t0 is defined by (23). The result is best possible and equality in (24) holds
for P (z) = (z − k)n where α ≥ k.
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Remark 3. It can be easily seen that inequality (24) includes as special
cases inequality (8) when kj = 1 for 1 ≤ j ≤ n and inequality (9) when kj = k
for 1 ≤ j ≤ n.

Remark 4. Dividing the two sides of (24) by |α|, letting |α| → ∞ and
noting (7), we get

max
|z|=1

|P ′(z)| ≥ n

1 + t0
max
|z|=1

|P (z)|. (25)

By putting the value of t0 in (25) and after simplification, we get

max
|z|=1

|P ′(z)| ≥ n

2



1 +

1

1 + 2
n

∑n
j=1

kj
1−kj



max

|z|=1
|P (z)| (26)

The above inequality was proved by Aziz and Ahmad [2].

2 Lemmas

For the proofs of these Theorems we need the following Lemmas.

Lemma 1. If P (z) has all its zeros in |z| ≤ k where k ≤ 1 and Q(z) =

znP (1z̄ ), then

|Q′

(z)| ≤ Sµ|P
′

(z)| for |z| = 1, (27)

where Sµ is defined by (18).

The above lemma is due to Aziz and Rather [4].

Lemma 2. If P (z) =
∏n

j=1(z − zj) is a polynomial of degree n with |zj | ≥
kj ≥ 1, 1 ≤ j ≤ n, then for |z| = 1,

∣∣∣∣∣
q′(z)

P ′(z)

∣∣∣∣∣ ≥ 1 +
n

∑n
j=1

(
1

kj−1

) (28)

where q(z) = znP (1/z̄).

This Lemma is due to Gardner and Govil [7].

3 Proof of the Theorems

PROOF OF THEOREM If P (z) has a zero on |z| = k, then min|z|=k |P (z)|
= 0 and the result follows from inequality (16) in this case. Hence, we suppose
that all the zeros of P (z) lie in |z| < k where k ≤ 1, so that m > 0. Now
m ≤ |P (z)| for |z| = k, therefore, if β is any real or complex number such
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that |β| < 1, then

∣∣∣∣∣
mβzn

kn

∣∣∣∣∣ < |P (z)| for |z| = k. Since all the zeros of P (z) lie in

|z| < k, it follows by Rouche’s theorem, that all the zeros of F (z) = P (z)−mβzn

kn

also lie in |z| < k. If G(z) = znF (1z̄ ) = Q(z)− mβ̄
kn then it can be easily verified

that for |z| = 1,

|F ′

(z)| = |nG(z)− zG′

(z)|. (29)

As F (z) has all its zeros in |z| < k ≤ 1, the inequality (27) in conjunction
with inequality (29), gives,

|G′

(z)| ≤ Aµ|nG(z)− zG
′

(z)| for |z| = 1, (30)

where Aµ is defined in (21).

Now for every real or complex number α with |α| ≥ k, we have

|DαF (z)| = |nF (z) + (α− z)F ′(z)| (31)

≥ |α||F ′(z)| − |nF (z)− zF ′(z)|′ (32)

which gives by interchanging the roles of F (z) and G(z) in (29) for |z| = 1 that

|DαF (z)| ≥ |α||F ′(z)| − |G′(z)| (33)

≥ (|α| −Aµ)|F ′(z)| (34)

∣∣∣∣DαP (z)−
nmαβzn

kn

∣∣∣∣ ≥ (|α| −Aµ)

∣∣∣∣P
′

(z)− mnβzn−1

kn

∣∣∣∣ (35)

Again since F (z) has all its zeros in |z| ≤ k ≤ 1, therefore by Gauss-Lucas

theorem all the zeros of the polynomial F
′

(z) = P
′

(z) − mnβzn−1

kn lie in |z| <
k ≤ 1. Therefore the polynomial zn−1F ′(1z̄ ) = nG(z) − zG′

(z) has all its zeros
in |z| > 1

k ≥ 1. Hence it follows that the function

W (z) =
zG

′

(z)

Aµ{nG(z)− zG′(z)} (36)

is analytic for |z| ≤ 1, |W (z)| ≤ 1 for |z| = 1 and W (0) = 0. Thus the function
1+AµW (z) is subordinate to the function 1+Aµz for |z| ≤ 1. By a well known
property of subordination [10, P.422], we have for each r > 0,

2π∫

0

|1 +AµW (eiθ)|qdθ ≤
2π∫

0

|1 +Aµe
iθ|qdθ. (37)
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Now by (36), we have

|1 +AµW (z)| =
∣∣∣∣∣

nG(z)

nG(z)− zG′(z)

∣∣∣∣∣ (38)

=
n

∣∣∣∣G(z)
∣∣∣∣

∣∣∣∣P
′(z)− mnβzn−1

kn

∣∣∣∣
(39)

=
n

∣∣∣∣F (z)
∣∣∣∣

∣∣∣∣P
′(z)− mnβzn−1

kn

∣∣∣∣
(40)

=
n

∣∣∣∣P (z)− mβzn

kn

∣∣∣∣
∣∣∣∣P

′(z)− mnβzn−1

kn

∣∣∣∣
. (41)

From (35),(37) and (41), we deduce that for each r > 0,

nr(|α| −Aµ)
r

® 2π∫

0

|P (eiθ)− mβeinθ

kn
|rdθ
´

≤
® 2π∫

0

|1 +Aµe
iθ|r

2π∫

0

|DαP (e
iθ)− mnαβei(n−1)θ

kn
|rdθ
´
. (42)

Now applying Holder’s inequality for p > 1, q > 1 with 1/p+ 1/q = 1, we get

n(|α| −Aµ)

® 2π∫

0

|P (eiθ)− mβeinθ

kn
|rdθ
´ 1

r

≤
® 2π∫

0

|1 +Aµe
iθ|prdθ

´ 1
pr
® 2π∫

0

|DαP (e
iθ)− mnαβei(n−1)θ

kn
|qrdθ

´ 1
qr

(43)

and this completes the proof of inequality (20).

PROOF OF THEOREM Let q(z) = znP (1/z̄), then for |z| = 1, we have

|q′(z)| = |nP (z)− zP ′(z)| (44)
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Also we have |zj | ≤ kj ≤ 1, 1 ≤ j ≤ n, therefore, 1
|zj |
≥ 1

kj
≥ 1, 1 ≤ j ≤ n,

and hence by inequality (28), for |z| = 1,

∣∣∣∣∣
P ′(z)

q′(z)

∣∣∣∣∣ ≥ 1 +
n

n∑
j=1

(
kj

1−kj

) (45)

=

n∑
j=1

(
kj

1−kj
+ 1

)

n∑
j=1

(
kj

1−kj

) (46)

=

n∑
j=1

(
1

1−kj

)

n∑
j=1

(
kj

1−kj

) (47)

which gives for |z| = 1,

∣∣∣∣∣
q′(z)

P ′(z)

∣∣∣∣∣ ≤

n∑
j=1

(
kj

1−kj

)

n∑
j=1

(
1

1−kj

) (48)

=

n∑
j=1

(
1

1−kj
− 1

)

n∑
j=1

(
1

1−kj

) (49)

= 1− n
n∑

j=1

(
1

1−kj

) = t0. (50)

Hence for |z| = 1,
|q′(z)| ≤ t0|P ′(z)|. (51)

Now for every real or complex number α with |α| ≥ t0, we have

|DαP (z)| = |nP (z) + (α− z)P ′(z)| (52)

≥ |α| |P ′(z)| − |nP (z)− zP ′(z)| (53)

which implies by (44) and (51) for |z| = 1

|DαP (z)| ≥ |α| |P ′(z)| − t0|P ′(z)| (54)

= (|α| − t0)|P ′(z)| (55)
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Again since P (z) has all its zeros in |z| ≤ k ≤ 1, therefore by Gauss-Lucas
theorem all the zeros of the polynomial P

′

(z) lie in |z| < k ≤ 1. Therefore the

polynomial zn−1P ′(1z̄ ) = nQ(z)− zQ′

(z) has all its zeros in |z| > 1
k ≥ 1. Hence

it follows that the function

W (z) =
zQ

′

(z)

t0{nQ(z)− zQ′(z)} (56)

is analytic for |z| ≤ 1, |W (z)| ≤ 1 for |z| = 1 and W (0) = 0. Thus the function
1 + t0W (z) is subordinate to the function 1 + t0z for |z| ≤ 1. By a well known
property of subordination [10, P.422], we have for each r > 0,

2π∫

0

|1 + t0W (eiθ)|qdθ ≤
2π∫

0

|1 + t0e
iθ|qdθ. (57)

Now,
n|Q(z)| = |1 + t0W (z)||P ′(z)|. (58)

Since |P (z)| = |Q(z)| for |z| = 1, therefore from (58) we get

|P ′(z)| = n|Q(z)|
|1 + t0W (z)| for |z| = 1. (59)

From (55),(57) and (59), we deduce that for each r > 0,

nr(|α| − t0)r
® 2π∫

0

|P (eiθ)|rdθ
´
≤
® 2π∫

0

|1 + t0e
iθ|r

2π∫

0

|DαP (e
iθ)|rdθ

´
. (60)

Now applying Holder’s inequality for p > 1, q > 1 with 1/p+ 1/q = 1, we get

n(|α| − t0)
® 2π∫

0

|P (eiθ)|rdθ
´ 1

r

≤
® 2π∫

0

|1 + t0e
iθ|prdθ

´ 1
pr
® 2π∫

0

|DαP (e
iθ)|qrdθ

´ 1
qr

(61)
and this completes the proof of inequality (22).
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