Note di Matematica
 Some Results Concerning to Polar Derivative of Polynomials

Sajad Amin Baba
Department of Mathematics, Govt. Hr. Sec. Inst., Gbl-191201.
sajad2baba@yahoo.com

Abdullah Mir
Department of Mathematics, Kashmir University, Srinagar-190006. mabdullah h_{m} @yahoo.co.in

Received: 11.10.2010; accepted: 14.12.2011.

Abstract

Let $P(z)$ be a polynomial of degree n and for a complex number α, let $D_{\alpha} P(z)=$ $n P(z)+(\alpha-z) P^{\prime}(z)$ denote the polar derivative of the polynomial $P(z)$ with respect to α.

In this paper we establish some L_{r} inequalities for the polar derivative of a polynomial with restricted zeros. Our results not only generalizes some known polynomial inequalities, but also a variety of interesting results can be deduced from these by a fairly uniform procedure.

Keywords: Polynomials, Polar derivative, Inequalities, Zeros.
MSC 2000 classification: 30A10, 30C10, 30E10, 30C15.

Introduction

Let $P(z)$ be a polynomial of degree n and $P^{\prime}(z)$ its derivative. It was shown by Turan [16] that if $P(z)$ has all its zeros in $|z| \leq 1$, then

$$
\begin{equation*}
\max _{|z|=1}\left|P^{\prime}(z)\right| \geq \frac{n}{2} \max _{|z|=1}|P(z)| \tag{1}
\end{equation*}
$$

More generally, if $P(z)$ has all its zeros in $|z| \leq k \leq 1$, it was proved by Malik [11] that (1) can be replaced by

$$
\begin{equation*}
\max _{|z|=1}\left|P^{\prime}(z)\right| \geq \frac{n}{1+k} \max _{|z|=1}|P(z)| \tag{2}
\end{equation*}
$$

whereas Govil [8] proved that if $P(z)$ has all its zeros in $|z| \leq k$, where $k \geq 1$, then

$$
\begin{equation*}
\max _{|z|=1}\left|P^{\prime}(z)\right| \geq \frac{n}{1+k^{n}} \max _{|z|=1}|P(z)| . \tag{3}
\end{equation*}
$$

As an improvement of (3), Govil [9] proved that if $P(z)$ has all its zeros in $|z| \leq k$, where $k \geq 1$, then

$$
\begin{equation*}
\max _{|z|=1}\left|P^{\prime}(z)\right| \geq \frac{n}{1+k^{n}}\left\{\max _{|z|=1}|P(z)|+\min _{|z|=k}|P(z)|\right\} \tag{4}
\end{equation*}
$$

Again for the class of polynomials $P(z)=a_{n} z^{n}+\sum_{j=\mu}^{n} a_{n-j} z^{n-j}, 1 \leq \mu \leq n$ of degree n having all its zeros in $|z| \leq k, k \leq 1$, Aziz and Shah [5] proved

$$
\begin{equation*}
\max _{|z|=1}\left|P^{\prime}(z)\right| \geq \frac{n}{1+k^{\mu}}\left\{\max _{|z|=1}|P(z)|+\frac{1}{k^{n-\mu}} \min _{|z|=k}|P(z)|\right\} . \tag{5}
\end{equation*}
$$

For $\mu=1$, inequality (5) reduces to an inequality due to Govil [9].
We define $D_{\alpha} P(z)$, the polar derivative of the polynomial $P(z)$ of degree n with respect to a complex number α by

$$
\begin{equation*}
D_{\alpha} P(z)=n P(z)+(\alpha-z) P^{\prime}(z) . \tag{6}
\end{equation*}
$$

It is easy to see that the polynomial $D_{\alpha} P(z)$ is of degree atmost $n-1$ and it generalizes the ordinary derivative in the sense that

$$
\begin{equation*}
\lim _{\alpha \rightarrow \infty} \frac{D_{\alpha} P(z)}{\alpha}=P^{\prime}(z) . \tag{7}
\end{equation*}
$$

Shah [14] extended (1) to the polar derivative of $P(z)$ and proved:
Theorem 1. If all the zeros of nth degree polynomial $P(z)$ lie in $|z| \leq 1$, then

$$
\begin{equation*}
\max _{|z|=1}\left|D_{\alpha} P(z)\right| \geq \frac{n}{2}(|\alpha|-1) \max _{|z|=1}|P(z)|,|\alpha| \geq 1 . \tag{8}
\end{equation*}
$$

The result is best possible and equality in (8) holds for $P(z)=\left(\frac{z-1}{2}\right)^{n}$.
Aziz and Rather [3] generalized (8) which also extends (2) to the polar derivative of a polynomial. In fact, they proved.

Theorem 2. If $P(z)$ is a polynomial of degree n having all its zeros in $|z| \leq k$, where $k \leq 1$, then for every real or complex number α with $|\alpha| \geq k$,

$$
\begin{equation*}
\max _{|z|=1}\left|D_{\alpha} P(z)\right| \geq n\left(\frac{|\alpha|-k}{1+k}\right) \max _{|z|=1}|P(z)| \tag{9}
\end{equation*}
$$

The result is best possible and equality in (9) holds for $P(z)=(z-k)^{n}$ with $\alpha \geq k$.

Further, as a generalization of (3) to the polar derivative of a polynomial, Aziz and Rather [3] proved the following:

Theorem 3. If $P(z)$ is a polynomial of degree n having all its zeros in $|z| \leq k$, where $k \geq 1$, then for every real or complex number α with $|\alpha| \geq k$,

$$
\begin{equation*}
\max _{|z|=1}\left|D_{\alpha} P(z)\right| \geq n\left(\frac{|\alpha|-k}{1+k^{n}}\right) \max _{|z|=1}|P(z)| \tag{10}
\end{equation*}
$$

In the same paper, Aziz and Rather [3] proved the following improvement of inequality (8):

Theorem 4. If $P(z)$ is a polynomial of degree n having all its zeros in $|z| \leq 1$, then for every real or complex number α with $|\alpha| \geq 1$,

$$
\begin{equation*}
\max _{|z|=1}\left|D_{\alpha} P(z)\right| \geq \frac{n}{2}\left\{(|\alpha|-1) \max _{|z|=1}|P(z)|+(|\alpha|+1) \min _{|z|=1}|P(z)|\right\} \tag{11}
\end{equation*}
$$

The result is best possible and equality in (11) holds for $P(z)=(z-1)^{n}$ with $\alpha \geq 1$.

On the other hand Malik [12] obtained an L_{r} analogue of (1) by proving that if $P(z)$ has all its zeros in $|z| \leq 1$, then for each $r>0$,

$$
\begin{equation*}
n\left\{\int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{r} d \theta\right\}^{\frac{1}{r}} \leq\left\{\int_{0}^{2 \pi}\left|1+e^{i \theta}\right|^{r} d \theta\right\}^{\frac{1}{r}} \max _{|z|=1}\left|P^{\prime}(z)\right| \tag{12}
\end{equation*}
$$

As an extension of (12) and a generalization of (2), Aziz [1] proved that if $P(z)$ has all its zeros in $|z| \leq k \leq 1$, then for each $r>0$,

$$
\begin{equation*}
n\left\{\int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{r} d \theta\right\}^{\frac{1}{r}} \leq\left\{\int_{0}^{2 \pi}\left|1+k e^{i \theta}\right|^{r} d \theta\right\}^{\frac{1}{r}} \max _{|z|=1}\left|P^{\prime}(z)\right| \tag{13}
\end{equation*}
$$

If we let $r \rightarrow \infty$ in (12) and (13) and make use of the well known fact from analysis (see example [13, p.73] or [15, p.91]) that

$$
\begin{equation*}
\left\{\int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{r} d \theta\right\}^{\frac{1}{r}} \rightarrow \max _{0 \leq \theta<2 \pi}\left|P\left(e^{i \theta}\right)\right| \text { as } \quad r \rightarrow \infty \tag{14}
\end{equation*}
$$

we get inequalities (1) and (2) respectively.
Recently, Dewan et. al. [6] obtained the following result for the polar derivative of polynomials which generalizes inequalities (9) and (13). In fact they proved:

Theorem 5. If $P(z)$ is a polynomial of degree n having all its zeros in $|z| \leq k$, where $k \leq 1$, then for every real or complex number α with $|\alpha| \geq k$ and for each $r>0$,

$$
\begin{equation*}
n(|\alpha|-k)\left\{\int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{r} d \theta\right\}^{\frac{1}{r}} \leq\left\{\int_{0}^{2 \pi}\left|1+k e^{i \theta}\right|^{r} d \theta\right\}^{\frac{1}{r}} \max _{|z|=1}\left|D_{\alpha} P(z)\right| . \tag{15}
\end{equation*}
$$

In the limiting case, when $r \rightarrow \infty$, the above inequality is sharp and equality holds for the polynomial $P(z)=(z-k)^{n}$ with $\alpha \geq k$.

If we divide both the sides of inequality (15) by $|\alpha|$ and let $|\alpha| \rightarrow \infty$, we get inequality (13). If we let $r \rightarrow \infty$, in (15), we get inequality (9).

1 Main Results

In this paper, we will obtain some L_{r} inequalities for the polar derivative of a polynomial which generalize the inequalities (8), (9) and (15) in particular. More precisely, we prove the following theorem:

Theorem 6. If $P(z)=a_{n} z^{n}+\sum_{j=\mu}^{n} a_{n-j} z^{n-j}, 1 \leq \mu \leq n$ is a polynomial of degree n having all its zeros in $|z| \leq k$, where $k \leq 1$, then for every real or complex number α with $|\alpha| \geq k$ and for each $r>0, p>1, q>1$ with $1 / p+1 / q=1$, we have

$$
\begin{equation*}
n\left(|\alpha|-S_{\mu}\right)\left\{\int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{r} d \theta\right\}^{\frac{1}{r}} \leq\left\{\int_{0}^{2 \pi}\left|1+S_{\mu} e^{i \theta}\right|^{p r} d \theta\right\}^{\frac{1}{p r}}\left\{\int_{0}^{2 \pi}\left|D_{\alpha} P\left(e^{i \theta}\right)\right|^{q r} d \theta\right\}^{\frac{1}{q r}} \tag{16}
\end{equation*}
$$

where

$$
\begin{equation*}
S_{\mu}=\left\{\frac{n\left|a_{n}\right| k^{2 \mu}+\mu\left|a_{n-\mu}\right| k^{\mu-1}}{n\left|a_{n}\right| k^{\mu-1}+\mu\left|a_{n-\mu}\right|}\right\} \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\mu}{n}\left|\frac{a_{n-\mu}}{a_{n}}\right| \leq k^{\mu} . \tag{18}
\end{equation*}
$$

Remark 1. Since $S_{\mu} \leq k^{\mu} \leq k, 1 \leq \mu \leq n$ it follows from above theorem that

$$
\begin{align*}
& n\left(|\alpha|-k^{\mu}\right)\left\{\int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{r} d \theta\right\}^{\frac{1}{r}} \\
& \leq\left\{\int_{0}^{2 \pi}\left|1+k^{\mu} e^{i \theta}\right|^{p r} d \theta\right\}^{\frac{1}{p r}}\left\{\int_{0}^{2 \pi}\left|D_{\alpha} P\left(e^{i \theta}\right)\right|^{q r} d \theta\right\}^{\frac{1}{q r}} \tag{19}
\end{align*}
$$

For $\mu=1$, we get a generalization of inequality (15) in the sense that $\max _{|z|=1}\left|D_{\alpha} P(z)\right|$ on the right hand side of (15) is replaced by a factor involving the integral mean of $\left|D_{\alpha} P(z)\right|$ on $|z|=1$.

Instead of proving inequality (16), we prove the following more general result:
Theorem 7. If $P(z)=a_{n} z^{n}+\sum_{j=\mu}^{n} a_{n-j} z^{n-j}, 1 \leq \mu \leq n$ is a polynomial of degree n having all its zeros in $|z| \leq k$, where $k \leq 1$ and $m:=\min _{|z|=k}|P(z)|$, then for every real or complex number α, β with $|\alpha| \geq k,|\beta|<1$ and for each $r>0, p>1, q>1$ with $1 / p+1 / q=1$, we have

$$
\begin{align*}
n(|\alpha| & \left.-A_{\mu}\right)\left\{\int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)-\frac{m \beta e^{i n \theta}}{k^{n}}\right|^{r} d \theta\right\}^{\frac{1}{r}} \\
& \leq\left\{\int_{0}^{2 \pi}\left|1+A_{\mu} e^{i \theta}\right|^{p r} d \theta\right\}^{\frac{1}{p r}}\left\{\int_{0}^{2 \pi}\left|D_{\alpha} P\left(e^{i \theta}\right)-\frac{m n \alpha \beta e^{i(n-1) \theta}}{k^{n}}\right|^{q r} d \theta\right\}^{\frac{1}{q r}} \tag{20}
\end{align*}
$$

where

$$
\begin{equation*}
A_{\mu}=\left\{\frac{n\left|a_{n}-\frac{m \beta}{k^{n}}\right| k^{2 \mu}+\mu\left|a_{n-\mu}\right| k^{\mu-1}}{n\left|a_{n}-\frac{m \beta}{k^{n}}\right| k^{\mu-1}+\mu\left|a_{n-\mu}\right|}\right\} \tag{21}
\end{equation*}
$$

Finally, we present the L_{r} analogue of inequalities (8) and (9) by using the location of zeros of $P(z)$. We prove:

Theorem 8. If $P(z)=\prod_{j=0}^{n}\left(z-z_{j}\right)$ is a polynomial of degree n such that $\left|z_{j}\right| \leq k_{j} \leq 1, \quad 1 \leq j \leq n$, then for every real or complex number α with $|\alpha| \geq t_{0}$ and for each $r>0, p>1, q>1$ with $1 / p+1 / q=1$, we have

$$
\begin{equation*}
n\left(|\alpha|-t_{0}\right)\left\{\int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{r} d \theta\right\}^{\frac{1}{r}} \leq\left\{\int_{0}^{2 \pi}\left|1+t_{0} e^{i \theta}\right|^{p r} d \theta\right\}^{\frac{1}{p r}}\left\{\int_{0}^{2 \pi}\left|D_{\alpha} P\left(e^{i \theta}\right)\right|^{q r} d \theta\right\}^{\frac{1}{q r}} \tag{22}
\end{equation*}
$$

where

$$
\begin{equation*}
t_{0}=1-\frac{n}{\sum_{j=1}^{n}\left(\frac{1}{1-k_{j}}\right)} \tag{23}
\end{equation*}
$$

Remark 2. If we let $q \rightarrow \infty, r \rightarrow \infty$ so that $p \rightarrow 1$, in inequality (22), we get

$$
\begin{equation*}
\max _{|z|=1}\left|D_{\alpha} P(z)\right| \geq n\left(\frac{|\alpha|-t_{0}}{1+t_{0}}\right) \max _{|z|=1}|P(z)| \tag{24}
\end{equation*}
$$

where t_{0} is defined by (23). The result is best possible and equality in (24) holds for $P(z)=(z-k)^{n}$ where $\alpha \geq k$.

Remark 3. It can be easily seen that inequality (24) includes as special cases inequality (8) when $k_{j}=1$ for $1 \leq j \leq n$ and inequality (9) when $k_{j}=k$ for $1 \leq j \leq n$.

Remark 4. Dividing the two sides of (24) by $|\alpha|$, letting $|\alpha| \rightarrow \infty$ and noting (7), we get

$$
\begin{equation*}
\max _{|z|=1}\left|P^{\prime}(z)\right| \geq \frac{n}{1+t_{0}} \max _{|z|=1}|P(z)| . \tag{25}
\end{equation*}
$$

By putting the value of t_{0} in (25) and after simplification, we get

$$
\begin{equation*}
\max _{|z|=1}\left|P^{\prime}(z)\right| \geq \frac{n}{2}\left\{1+\frac{1}{1+\frac{2}{n} \sum_{j=1}^{n} \frac{k_{j}}{1-k_{j}}}\right\} \max _{|z|=1}|P(z)| \tag{26}
\end{equation*}
$$

The above inequality was proved by Aziz and Ahmad [2].

2 Lemmas

For the proofs of these Theorems we need the following Lemmas.
Lemma 1. If $P(z)$ has all its zeros in $|z| \leq k$ where $k \leq 1$ and $Q(z)=$ $z^{n} \overline{P\left(\frac{1}{\bar{z}}\right)}$, then

$$
\begin{equation*}
\left|Q^{\prime}(z)\right| \leq S_{\mu}\left|P^{\prime}(z)\right| \quad \text { for } \quad|z|=1 \tag{27}
\end{equation*}
$$

where S_{μ} is defined by (18).
The above lemma is due to Aziz and Rather [4].
Lemma 2. If $P(z)=\prod_{j=1}^{n}\left(z-z_{j}\right)$ is a polynomial of degree n with $\left|z_{j}\right| \geq$ $k_{j} \geq 1,1 \leq j \leq n$, then for $|z|=1$,

$$
\begin{equation*}
\left|\frac{q^{\prime}(z)}{P^{\prime}(z)}\right| \geq 1+\frac{n}{\sum_{j=1}^{n}\left(\frac{1}{k_{j}-1}\right)} \tag{28}
\end{equation*}
$$

where $q(z)=z^{n} \overline{P(1 / \bar{z})}$.
This Lemma is due to Gardner and Govil [7].

3 Proof of the Theorems

PROOF OF THEOREM If $P(z)$ has a zero on $|z|=k$, then $\min _{|z|=k}|P(z)|$ $=0$ and the result follows from inequality (16) in this case. Hence, we suppose that all the zeros of $P(z)$ lie in $|z|<k$ where $k \leq 1$, so that $m>0$. Now $m \leq|P(z)|$ for $|z|=k$, therefore, if β is any real or complex number such
that $|\beta|<1$, then $\left|\frac{m \beta z^{n}}{k^{n}}\right|<|P(z)|$ for $|z|=k$. Since all the zeros of $P(z)$ lie in $|z|<k$, it follows by Rouche's theorem, that all the zeros of $F(z)=P(z)-\frac{m \beta z^{n}}{k^{n}}$ also lie in $|z|<k$. If $G(z)=z^{n} \overline{F\left(\frac{1}{\bar{z}}\right)}=Q(z)-\frac{m \bar{\beta}}{k^{n}}$ then it can be easily verified that for $|z|=1$,

$$
\begin{equation*}
\left|F^{\prime}(z)\right|=\left|n G(z)-z G^{\prime}(z)\right| . \tag{29}
\end{equation*}
$$

As $F(z)$ has all its zeros in $|z|<k \leq 1$, the inequality (27) in conjunction with inequality (29), gives,

$$
\begin{equation*}
\left|G^{\prime}(z)\right| \leq A_{\mu}\left|n G(z)-z G^{\prime}(z)\right| \text { for }|z|=1, \tag{30}
\end{equation*}
$$

where A_{μ} is defined in (21).
Now for every real or complex number α with $|\alpha| \geq k$, we have

$$
\begin{gather*}
\left|D_{\alpha} F(z)\right|=\left|n F(z)+(\alpha-z) F^{\prime}(z)\right| \tag{31}\\
\geq|\alpha|\left|F^{\prime}(z)\right|-\left|n F(z)-z F^{\prime}(z)\right|^{\prime} \tag{32}
\end{gather*}
$$

which gives by interchanging the roles of $F(z)$ and $G(z)$ in (29) for $|z|=1$ that

$$
\begin{gather*}
\left|D_{\alpha} F(z)\right| \geq|\alpha|\left|F^{\prime}(z)\right|-\left|G^{\prime}(z)\right| \tag{33}\\
\geq\left(|\alpha|-A_{\mu}\right)\left|F^{\prime}(z)\right| \tag{34}\\
\left|D_{\alpha} P(z)-\frac{n m \alpha \beta z^{n}}{k^{n}}\right| \geq\left(|\alpha|-A_{\mu}\right)\left|P^{\prime}(z)-\frac{m n \beta z^{n-1}}{k^{n}}\right| \tag{35}
\end{gather*}
$$

Again since $F(z)$ has all its zeros in $|z| \leq k \leq 1$, therefore by Gauss-Lucas theorem all the zeros of the polynomial $F^{\prime}(z)=P^{\prime}(z)-\frac{m n \beta z^{n-1}}{k^{n}}$ lie in $|z|<$ $k \leq 1$. Therefore the polynomial $z^{n-1} \overline{F^{\prime}\left(\frac{1}{\bar{z}}\right)}=n G(z)-z G^{\prime}(z)$ has all its zeros in $|z|>\frac{1}{k} \geq 1$. Hence it follows that the function

$$
\begin{equation*}
W(z)=\frac{z G^{\prime}(z)}{A_{\mu}\left\{n G(z)-z G^{\prime}(z)\right\}} \tag{36}
\end{equation*}
$$

is analytic for $|z| \leq 1,|W(z)| \leq 1$ for $|z|=1$ and $W(0)=0$. Thus the function $1+A_{\mu} W(z)$ is subordinate to the function $1+A_{\mu} z$ for $|z| \leq 1$. By a well known property of subordination [10, P.422], we have for each $r>0$,

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|1+A_{\mu} W\left(e^{i \theta}\right)\right|^{q} d \theta \leq\left.\int_{0}^{2 \pi}\left|1+A_{\mu} e^{i \theta}\right|\right|^{q} d \theta \tag{37}
\end{equation*}
$$

Now by (36), we have

$$
\begin{align*}
&\left|1+A_{\mu} W(z)\right|=\left|\frac{n G(z)}{n G(z)-z G^{\prime}(z)}\right| \tag{38}\\
&=\frac{n|G(z)|}{\left|P^{\prime}(z)-\frac{m n \beta z^{n-1}}{k^{n}}\right|} \tag{39}\\
&=\frac{n|F(z)|}{\left|P^{\prime}(z)-\frac{m n \beta z^{n-1}}{k^{n}}\right|} \tag{40}\\
&=\frac{n\left|P(z)-\frac{m \beta z^{n}}{k^{n}}\right|}{\left|P^{\prime}(z)-\frac{m n \beta z^{n-1}}{k^{n}}\right|} . \tag{41}
\end{align*}
$$

From (35),(37) and (41), we deduce that for each $r>0$,

$$
\begin{align*}
n^{r}\left(|\alpha|-A_{\mu}\right)^{r} & \left\{\int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)-\frac{m \beta e^{i n \theta}}{k^{n}}\right|^{r} d \theta\right\} \\
& \leq\left\{\int_{0}^{2 \pi}\left|1+A_{\mu} e^{i \theta}\right|^{r} \int_{0}^{2 \pi}\left|D_{\alpha} P\left(e^{i \theta}\right)-\frac{m n \alpha \beta e^{i(n-1) \theta}}{k^{n}}\right|^{r} d \theta\right\} . \tag{42}
\end{align*}
$$

Now applying Holder's inequality for $p>1, q>1$ with $1 / p+1 / q=1$, we get

$$
\begin{align*}
n(|\alpha| & \left.-A_{\mu}\right)\left\{\int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)-\frac{m \beta e^{i n \theta}}{k^{n}}\right|^{r} d \theta\right\}^{\frac{1}{r}} \\
& \leq\left\{\int_{0}^{2 \pi}\left|1+A_{\mu} e^{i \theta}\right|^{p r} d \theta\right\}^{\frac{1}{p r}}\left\{\int_{0}^{2 \pi}\left|D_{\alpha} P\left(e^{i \theta}\right)-\frac{m n \alpha \beta e^{i(n-1) \theta}}{k^{n}}\right|^{q r} d \theta\right\}^{\frac{1}{q r}} \tag{43}
\end{align*}
$$

and this completes the proof of inequality (20).
PROOF OF THEOREM Let $q(z)=z^{n} \overline{P(1 / \bar{z})}$, then for $|z|=1$, we have

$$
\begin{equation*}
\left|q^{\prime}(z)\right|=\left|n P(z)-z P^{\prime}(z)\right| \tag{44}
\end{equation*}
$$

Also we have $\left|z_{j}\right| \leq k_{j} \leq 1,1 \leq j \leq n$, therefore, $\frac{1}{\left|z_{j}\right|} \geq \frac{1}{k_{j}} \geq 1,1 \leq j \leq n$, and hence by inequality (28), for $|z|=1$,

$$
\begin{align*}
\left|\frac{P^{\prime}(z)}{q^{\prime}(z)}\right| & \geq 1+\frac{n}{\sum_{j=1}^{n}\left(\frac{k_{j}}{1-k_{j}}\right)} \tag{45}\\
& =\frac{\sum_{j=1}^{n}\left(\frac{k_{j}}{1-k_{j}}+1\right)}{\sum_{j=1}^{n}\left(\frac{k_{j}}{1-k_{j}}\right)} \tag{46}\\
& =\frac{\sum_{j=1}^{n}\left(\frac{1}{1-k_{j}}\right)}{\sum_{j=1}^{n}\left(\frac{k_{j}}{1-k_{j}}\right)} \tag{47}
\end{align*}
$$

which gives for $|z|=1$,

$$
\begin{align*}
\left|\frac{q^{\prime}(z)}{P^{\prime}(z)}\right| & \leq \frac{\sum_{j=1}^{n}\left(\frac{k_{j}}{1-k_{j}}\right)}{\sum_{j=1}^{n}\left(\frac{1}{1-k_{j}}\right)} \tag{48}\\
& =\frac{\sum_{j=1}^{n}\left(\frac{1}{1-k_{j}}-1\right)}{\sum_{j=1}^{n}\left(\frac{1}{1-k_{j}}\right)} \tag{49}\\
& =1-\frac{n}{\sum_{j=1}^{n}\left(\frac{1}{1-k_{j}}\right)}=t_{0} . \tag{50}
\end{align*}
$$

Hence for $|z|=1$,

$$
\begin{equation*}
\left|q^{\prime}(z)\right| \leq t_{0}\left|P^{\prime}(z)\right| . \tag{51}
\end{equation*}
$$

Now for every real or complex number α with $|\alpha| \geq t_{0}$, we have

$$
\begin{gather*}
\left|D_{\alpha} P(z)\right|=\left|n P(z)+(\alpha-z) P^{\prime}(z)\right| \tag{52}\\
\geq|\alpha|\left|P^{\prime}(z)\right|-\left|n P(z)-z P^{\prime}(z)\right| \tag{53}
\end{gather*}
$$

which implies by (44) and (51) for $|z|=1$

$$
\begin{align*}
\left|D_{\alpha} P(z)\right| & \geq|\alpha|\left|P^{\prime}(z)\right|-t_{0}\left|P^{\prime}(z)\right| \tag{54}\\
= & \left(|\alpha|-t_{0}\right)\left|P^{\prime}(z)\right| \tag{55}
\end{align*}
$$

Again since $P(z)$ has all its zeros in $|z| \leq k \leq 1$, therefore by Gauss-Lucas theorem all the zeros of the polynomial $P^{\prime}(z)$ lie in $|z|<k \leq 1$. Therefore the polynomial $z^{n-1} \overline{P^{\prime}\left(\frac{1}{\bar{z}}\right)}=n Q(z)-z Q^{\prime}(z)$ has all its zeros in $|z|>\frac{1}{k} \geq 1$. Hence it follows that the function

$$
\begin{equation*}
W(z)=\frac{z Q^{\prime}(z)}{t_{0}\left\{n Q(z)-z Q^{\prime}(z)\right\}} \tag{56}
\end{equation*}
$$

is analytic for $|z| \leq 1,|W(z)| \leq 1$ for $|z|=1$ and $W(0)=0$. Thus the function $1+t_{0} W(z)$ is subordinate to the function $1+t_{0} z$ for $|z| \leq 1$. By a well known property of subordination [10, P.422], we have for each $r>0$,

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|1+t_{0} W\left(e^{i \theta}\right)\right|^{q} d \theta \leq \int_{0}^{2 \pi}\left|1+t_{0} e^{i \theta}\right|^{q} d \theta \tag{57}
\end{equation*}
$$

Now,

$$
\begin{equation*}
n|Q(z)|=\left|1+t_{0} W(z)\right|\left|P^{\prime}(z)\right| \tag{58}
\end{equation*}
$$

Since $|P(z)|=|Q(z)|$ for $|z|=1$, therefore from (58) we get

$$
\begin{equation*}
\left|P^{\prime}(z)\right|=\frac{n|Q(z)|}{\left|1+t_{0} W(z)\right|} \quad \text { for } \quad|z|=1 \tag{59}
\end{equation*}
$$

From $(55),(57)$ and (59), we deduce that for each $r>0$,

$$
\begin{equation*}
n^{r}\left(|\alpha|-t_{0}\right)^{r}\left\{\int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{r} d \theta\right\} \leq\left\{\int_{0}^{2 \pi}\left|1+t_{0} e^{i \theta}\right|^{r} \int_{0}^{2 \pi}\left|D_{\alpha} P\left(e^{i \theta}\right)\right|^{r} d \theta\right\} \tag{60}
\end{equation*}
$$

Now applying Holder's inequality for $p>1, q>1$ with $1 / p+1 / q=1$, we get

$$
\begin{equation*}
n\left(|\alpha|-t_{0}\right)\left\{\int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{r} d \theta\right\}^{\frac{1}{r}} \leq\left\{\int_{0}^{2 \pi}\left|1+t_{0} e^{i \theta}\right|^{p r} d \theta\right\}^{\frac{1}{p r}}\left\{\int_{0}^{2 \pi}\left|D_{\alpha} P\left(e^{i \theta}\right)\right|^{q r} d \theta\right\}^{\frac{1}{q r}} \tag{61}
\end{equation*}
$$

and this completes the proof of inequality (22).

References

[1] A. Aziz, Integral mean estimates for polynomials with restricted zeros, J.Approx. Theory 55 (1998), 232-239.
[2] A. Aziz and N. Ahmad, Inequalties for the derivative of a polynomial, Proc. Indian Acad. Sci.(Math. Sci.), 2 (1997), 189-196.
[3] A. Aziz and N. A. Rather, A refinement of a Theorem of Paul Turan Concerning polynomials, J. Math. Ineq. Appl., 1(1998), 231-238.
[4] A. Aziz and N.A. Rather, Some Zygmund type L^{q} inequalities for polynomials, J. Math. Anal. and Appl., 289(2004), 14-29.
[5] A.Aziz and W.M.Shah, An integral mean estimate for polynomials, Indian J. Pure Appl. Math. 28(1997), 1413-1419.
[6] K.K.Dewan, Naresh Singh, Abdullah Mir and A.Bhat, Some inequalities for the polar derivative of a polynomial, Southeast Asian Bulletin of Mathematics, (2010),34, 69-77.
[7] R. B. Gardner and N. K. Govil, Inequalities concerning L^{p} norm of a polynomial and its derivative, J. Math. Anal. Appl., 179 (1993), 208-213.
[8] N. K Govil, On derivative of a polynomial, Proc. Amer. Math. Soc., 41 (1973), 543-546.
[9] N. K. Govil, Some inequalities for derivative of polynomials, J. Approx. Theory, 66(1991), 29-35.
[10] E. Hille, Analytic Function Theory, vol-II, Ginn and Company, New York, Toronto, 1962.
[11] M. A. Malik, On derivative of a polynomial, J. London Math. Soc., 1,(1969), 57-60.
[12] M.A.Malik, An integral mean estimates for polynomials, Proc.Amer.Math.Soc., 91(1984),281-284.
[13] W.Rudin, Real and Complex Analysis, Tata McGraw-Hill Publishing Company,1977.
[14] W. M. Shah, A generalization of a Theorem of Paul Turan, J. Ramanujan Math. Soc., 1(1996), 67-72.
[15] A.E.Taylor, Introduction to functional Analysis, John Wiley and Sons Inc., New York, 1958.
[16] P. Turan, Über die ableitung von polynomen, Compositio Math., 7 (1939), 89-95.

