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Abstract. Analogous to *-polynomial identities in rings, we introduce the concept of *-
group identities in groups. When F' is an infinite field of characteristic different from 2, we
classify the torsion groups with involution G so that the unit group of F'G satisfies a *-group
identity. The history and motivations will be given for such an investigation.
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1 Introduction and motivations
The motivation for the study of this topic is from two sides:
(a) Hartley’s conjecture on group identities of units of group rings,
(b) Amitsur’s Theorem on *-polynomial identities in rings.

Let F' be a field and G a group. Write U(FG) for the unit group of the group
algebra F'G. We say that a subset S of U(F'G) satisfies a group identity if there
exists a non-trivial word w(zy,...,zy,) in the free group on a countable set of
generators (xy,za,...) such that w(uy,...,u,) =1 for all uj,...,u, € S.

Brian Hartley in the 80s conjectured that when F' is infinite and G is torsion,
if U(F'G) satisfies a group identity then FG satisfies a polynomial identity. We
recall that a subset H of an F-algebra A satisfies a polynomial identity if there
exists a non-zero polynomial f(z1,...,2y) in the free associative algebra on non-
commuting variables x1, xa, ... over F, F{x1,z2,...}, such that f(aq,...,a,) =
0 for all a1,...,a, € H (in this case we shall write also that H is PI).

Hartley’s conjecture was solved affirmatively by Giambruno, Jespers and
Valenti [3] in the semiprime case (hence, in particular, for fields of characteristic
zero) and by Giambruno, Sehgal and Valenti [7] in the general case. Its solution
was at the basis of the work of Passman [18] who characterized group algebras
whose units satisfy a group identity. Recall that, for any prime p, a group G
is said to be p-abelian if its commutator subgroup G’ is a finite p-group, and
0-abelian means abelian.
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Theorem 1. Let F' be an infinite field of characteristic p > 0 and G a
torsion group. The following statements are equivalent:

(i) U(FG) satisfies a group identity;
(ii) U(FQ) satisfies the group identity (x,y)?" = 1, for some r > 0;

(iii) G has a normal p-abelian subgroup of finite index and G' is a p-group of
bounded exponent.

In the characteristic zero case, when G is torsion, U(F'G) satisfies a group
identity if, and only if, G is abelian. In particular, the fact that G contains
a normal p-abelian subgroup of finite index (condition (iii) of the theorem) is
equivalent to saying that F'G must satisfy a polynomial identity, as was estab-
lished earlier by Isaacs and Passman (see Corollaries 5.3.8 and 5.3.20 of [17]).
More recently, the above results have been extended to the more general context
of finite fields in [15] and [16] and arbitrary groups in [9].

Along this line, a natural question of interest is to ask whether group iden-
tities satisfied by some special subset of the unit group of F'G can be lifted to
U(FG) or force FG to satisfy a polynomial identity. In this framework, the
symmetric units have been the subject of a good deal of attention.

Assume that F' has characteristic different from 2. The linear extension to
FG of the map * on G such that g* = g~ for all g € G is an involution of FG,
namely an antiautomorphism of order 2 of F'G, called the classical involution.
An element « € FG is said to be symmetric with respect to % if o = a. We
write FGT for the set of symmetric elements, which are easily seen to be the
linear combinations of the terms g + g%, g € G. Let UM (FG) denote the set
of symmetric units. Giambruno, Sehgal and Valenti [8] confirmed a stronger
version of Hartley’s Conjecture by proving

Theorem 2. Let F'G be the group algebra of a torsion group G over an
infinite field F' of characteristic different from 2 endowed with the classical in-
volution. If UT(FQG) satisfies a group identity, then FG satisfies a polynomial
identity.

Under the same restrictions as in the above theorem, they also obtained
necessary and sufficient conditions for YT (FQG) to satisfy a group identity. Ob-
viously, group identities on U T (FG) do not force group identities on U(FG).
To see this it is sufficient to observe that if Qg is the quaternion group of order
8, for any infinite field F' of characteristic p > 2 F Qg is commutative, hence
UT(FQg) satisfies a group identity but, according to Theorem 1, U(FQg) does
not satisfy a group identity. For a complete overview of these and related results
we refer to the monograph [13].
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Recently, there has been a considerable amount of work on involutions of
FG obtained as F-linear extensions of arbitrary group involutions on G (namely
antiautomorphisms of order 2 of () other than the classical one. The final
outcome has been the complete classification of the torsion groups G such that
the units of F'G which are symmetric under the given involution satisfy a group
identity (see [5]).

Here we discuss a more general problem, that of x-group identities on U(FG).
We can define an involution on the free group (z1,z2,...) via x5, | = xy
for all ¢+ > 1. Renumbering, we obtain the free group with involution F :=
(1,27, 22,25, ...). We say the unit group U(F'G) satisfies a *-group identity if
there exists a non-trivial word w(zy,27,..., 2y, x)) € F such that

w(ug, ul, ... Up,uy) =1

for all uy,...,u, € U(FG). Obviously, if UT(FG) satisfies the group identity
v(x1,...,z,), then U(FQG) satisfies the x-group identity v(zix7,...,zyzk). It
seems of interest to understand the behaviour of the symmetric units when
the group of units satisfies a *-group identity. The main motivation for this
investigation dates back to the classical result of Amitsur on *-polynomial iden-
tities satisfied by an algebra with involution. Let A be an F-algebra having
an involution *. We can define an involution on the free algebra F{zi,z2,...}
via x5, ; = x9 for all 7 > 1. As in the free group case, renumbering we
obtain the free algebra with involution F{zy,x},x2,25,...}. We say that A
satisfies a *-polynomial identity (or A is *-PI) if there exists a non-zero element

flzy, 25, . xn, x)) € F{xy, 2], x0,25,...} such that f(a1,ai,...,an,a}) =0
for all ay,...,a, € A. It is obvious that if the symmetric elements of A satisfy
the polynomial identity g(x1,...,x,) then A satisfies the *-polynomial identity
g(x1+27, ..., z.+2)). It is more difficult to see that if A satisfies a *-polynomial

identity, then AT satisfies a polynomial identity. The deep result of Amitsur [2]
shows that this is the case, by proving that if A satisfies a *-polynomial identity,
then A satisfies a polynomial identity.

The surprising result we obtain is just a group-theoretical analogue of Amit-
sur’s theorem for the unit groups of torsion group rings endowed with the linear
extension of an arbitrary group involution. The original results were estab-
lished in [6]. Recently a long and detailed survey on the subject by Lee [14] has
appeared.
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2 x-group identities on units of torsion group alge-
bras

Let (X) be the free group of countable rank on a set X := {x1,z2,...}. We
can regard it as a group with involution by setting, for every ¢ > 1, x5, | = x2;
and extending * to an involution of (X) in the obvious way. Write X; :=
{z2i—1 |7 > 1} and Xy := {x9;|i > 1}. The group above, we call F, has the
following universal property: if H is a group with involution, any map X; — H
can be uniquely extended to a group homomorphism f : F — H commuting
with the involution.

Let 1 # w(zy,27,...,2n,2)) € F and let H be a group with involution .
The word w is said to be a *-group identity (or %-GI) of H if w is equal to 1
for any evaluation p(x;) = w; € H, p(z}) = uv; € H with 1 <i < n. Clearly
a group identity is a *-GI. Moreover, since for any x € X za* is symmetric, a
group identity on symmetric elements of H yields a x-group identity of H. We
focus our attention on the converse problem, namely the possibility of a x-group
identity of H to force a group identity on the symmetric elements of H itself
when H is the unit group of a group algebra.

One of the key ingredients is the following result dealing with finite-dimensional
semisimple algebras with involution over an infinite field.

Lemma 1. Let A be a finite-dimensional semisimple algebra with involution
over an infinite field of characteristic different from 2. If its unit group U(A)
satisfies a *-GI, then A is a direct sum of finitely many simple algebras of
dimension at most 4 over their centre. Moreover A% is central in A.

Proof. See Lemma 5 of [6]. QED

The conclusions of the above lemma are not a novelty in the setting of alge-
bras with involution. For instance the same happens when one considers finite-
dimensional semisimple algebras with involution whose symmetric elements are
Lie nilpotent (see [4]).

In the framework of group algebras, this gives crucial information on the
structure of the basis group. In fact, assume that F' is an infinite field of
characteristic p > 2 and G a finite group with an involution * and let F'G have
the induced involution. Write P := {z|z € G, z is a p-element}. Suppose
that U(FG) satisfies a x-group identity w. The Jacobson radical J of the group
algebra F'G is nilpotent and *-invariant. This is sufficient to conclude that
U(FG/J) also satisfies w. But FG/J is finite-dimensional and semisimple. By
applying Lemma 1, the simple components of its Wedderburn decomposition are
all of dimension at most 4 over their centres. But Lemma 2.6 of [4] or Lemma 3
of [12] show that this forces P to be a (normal and *-invariant) subgroup of G.
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We can summarize all these deductions in the following

Lemma 2. Let F' be an infinite field of characteristic p > 2 and G a finite
group with involution and let FG have the induced involution. IfU(FG) satisfies
a x-group identity, then the p-elements of G form a subgroup.

It is trivial to see that the conclusion holds for locally finite groups G as
well.

Now, let F' and G be as in the lemma. We know that if U(F'G) satisfies a
#-GI, then P is a subgroup, F'(G/P) has an induced involution and U (F(G/P))
still satisfies a *-GI. By Lemma 1 F/(G/P)™" is central in F(G/P). In particular,
F(G/P)* must be commutative. Therefore it is of interest to classify group
algebras with linear extensions of arbitrary group involutions whose symmetric
elements commute. In order to state this, a definition is required.

We recall that a group G is said to be an LC-group (that is, it has the “lack
of commutativity” property) if it is not abelian, but if g,h € G, and gh = hg,
then at least one of g, h and gh must be central. These groups were introduced
by Goodaire. By Proposition II1.3.6 of [10], a group G is an LC-group with a
unique non-identity commutator (which must, obviously, have order 2) if and
only if G/((G) = Cy x Cy. Here, ((G) denotes the centre of G.

Definition 1. A group G endowed with an involution * is said to be a
special LC-group, or SLC-group, if it is an LC-group, it has a unique non-
identity commutator z, and for all ¢ € G, we have g* = g if g € ((G), and
otherwise, g* = zg.

The SLC-groups arise naturally in the following result proved by Jespers
and Ruiz Marin [11] for an arbitrary involution on G.

Theorem 3. Let R be a commutative ring of characteristic different from
2, G a non-abelian group with an involution x which is extended linearly to RG.
The following statements are equivalent:

(i) RG* is commutative;
(ii) RG™ is the centre of RG;
(i1i) G is an SLC-group.

We recall that in [1] Amitsur proved that if R is a ring with involution and
R* is PI, then R is PI Later the same arguments were used by him to prove
that if R is *-PI, then R is PI In particular, if R is *-PI then RT is PI. The
developments for us were similar. In fact, by using exactly the same arguments
as in [5] (Section 3 for the semiprime case and Sections 4 and 5 for the general
case) we provide the following result which is the core of [6].
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Theorem 4. Let F' be an infinite field of characteristic p # 2, G a torsion
group with an involution * which is extended linearly to FG. The following
statements are equivalent:

(i) the symmetric units of FG satisfy a group identity;
(ii) the units of FG satisfy a x-group identity;
(iii) one of the following conditions holds:

(a) FG is semiprime and G is abelian or an SLC-group;

(b) FG is not semiprime, the p-elements of G form a (normal) subgroup
P, G has a p-abelian normal subgroup of finite index, and either
(1) G’ is a p-group of bounded exponent, or
(2) G/P is an SLC-group and G contains a normal *-invariant p-

subgroup B of bounded exponent, such that P/B is central in
G/B and the induced involution acts as the identity on P/B.
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