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Abstract. After a brief survey of the theory of group extensions and, in particular, of auto-
morphisms of group extensions, we describe some recent reduction theorems for the inducibility
problem for pairs of automorphisms.
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1 Background from Extension Theory

A group extension e of N by @ is a short exact sequence of groups and
homomorphisms

e: NS aSo,
so that N ~ Im pu = Ker ¢, G/Ker ¢ ~ ). Usually one writes N additively, G
and @ multiplicatively.

A morphism of extensions is a triple («, 3,v) of homomorphisms such that
the diagram

A
el: M T}
Jo |

A
ex: No 2, Gy 2 @

commutes. If o and v — and hence (8 — are isomorphisms, then («, 3,7) is an
isomorphism of extensions. If o,y are identity maps, it is called an equivalence.
Let

[e]

denote the equivalence class of e and write
E(Q,N) ={[e] | e an extension of N by Q}

for the category of equivalence classes and morphisms of extensions of N by Q.
The main object of extension theory is to describe the set £(Q, N).

Automorphisms
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An isomorphism («, 3,7) from e to e is called an automorphism of e,

N .G =90
I N
N .6 —=90

The pair (a,y) € Aut(V) x Aut(Q) is then said to be induced by [ in e. The
automorphisms of e clearly form a group Aut(e) and

Aut(e) ~ Nyyq)(Im p) < Aut(G).

We would like to understand the group Aut(e) and, in particular, to determine
which pairs (a, ) are inducible in e.

Couplings and factor sets

. . H € .
Given an extension e : N —G —(Q), choose a transversal function
T:Q — G,

i.e., a map such that 7e = the identity map on Q. Conjugation in Im p by
27, (r € Q), induces an automorphism ¢ in N,

(@) = («")"la'a", (a € N),

so we have a function

€:Q — Aut(N).
Note that z¢ depends on the choice of 7, but 2¢(Inn(N)) does not. Define
X = 2¢(Inn(N)) € Out(N). Then

X : @ — Out(N)

is a homomorphism which is independent of 7. This is the coupling of the
extension e. Equivalent extensions have the same coupling, so we can form

gX(Qu N)7

the subcategory of extensions of N by @ with coupling x.
The function 7 is usually not a homomorphism, but

rTy" = (vy)" (p(x, y))"

where ¢(z,y) € N. The associative law (z7y")z" = 2" (y"2") implies that
plz,y2) +(y,2) = plzy,2) + p(z.y) - 25 (%)
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for x,y,z € Q. Such a function ¢ : Q x Q — N is called a factor set. We may
assume that 17, = 1, in which case o(l,2) =0=¢(z,1) for all x € Q, and ¢
is called a normalized factor set.

From 2™y" = (zy)"p(z,y)* we deduce that

2oyt = (2y)to(e,y), (1,y€Q)  (+%)
where @ denotes conjugation by a in N. Call £ and ¢ associated functions for

the extension e.

Constructing extensions

Suppose we are given groups N, and functions £ : @ — Aut(N) and
¢ Q x Q — N (normalized), satisfying (%) and (x*). Then we can construct
an extension

m
e(6,p) : N G(69) > Q,
where G(&,¢) = Q x N, with group operation
(z,a)(y,b) = (zy, p(z,y) + ay* +b), (z,y €Q, a,be N).

Also a* = (1,a) and (x,a)® = x. Then the transversal function x — (z,0) yields
associated functions &, ¢ for e(&, ¢).

If N is abelian, it is a @-module via the coupling £ = x : @ — Out(N) =
Aut(N) and ¢ € Z%(Q, N) is a 2-cocycle, while there is a bijection

gX(QaN) A H2(Q7N)

2 The Automorphism Group of an Extension
Consider an extension L.
e: N—-G—>Q
with coupling x. Assume p: N < G is inclusion and € : G — @ = G/N is the

canonical map. If o € Aut(e), then o induces automorphisms a|y in N, a|g in
Q, while a — (a|n, a|g) is a homomorphism,

U : Aut(e) — Aut(N) x Aut(Q).

If « € Ker ¥, then « is trivial on N and G/N, so [G,a] < A = Z(N), while the
map gN +— g 1¢% (g € G), is a derivation or 1-cocycle from Q to Z(N) = A.
In fact Ker ¥ ~ Z1(Q, A) and there is an exact sequence

0 — ZY(Q, A) — Aut(e) SAut(N) x Aut(Q).

It is more difficult to identify Im W. This is where the Wells sequence comes
into play.
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Theorem 1. (C. Wells [12]) Let e : N — G — Q be an extension with
coupling x : @ — Out(N) and let A= Z(N). Then there is an ezxact sequence

0 — Z1(Q, A) — Aut(e) > Comp(y) > H*(Q, A)

where Comp(x) is the subgroup of x-compatible pairs (9, p) € Aut(N)x Aut(Q),
i.e., pairs satisfying ox = xv, with 9 conjugation by ¥ in Out(N).

To see where the compatibility condition comes from, let o € Aut(e) induce
(9, ), so that (a)¥ = (9, ). From

(a®)* = (@), (ae N,z €Q),

we get 259 = 9(2%)¢ mod Inn(N). Thus 9~ 'zX9 = (2¥)X in Out(N), i.e.
XU = ox.

The Wells map A
Let (9,¢) € Comp(A). In order to understand where (9, p)A € H?(Q, A)
comes from, we take note of two actions on the set £, (Q, N).

(i) H*(Q, A) acts regularly on £,(Q, N) by adding a fixed 2-cocycle to each
factor set.

(ii) Aut(N) x Aut(Q) acts in the natural way on &, (Q, N).
Hence, given (,¢) € Comp(x) and [e] € &(Q,N), by regularity there is a
unique h € H2(Q, A) such that [e] = ([e] - (9, )) - h. Define

(0, 0)A = h,

so that
[e] = ([e] - (7, 9)) - (9, 0)A.
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Properties of the Wells map

(i) Im ¥ = Ker A. (This is a routine calculation.)

For a long time it was believed that A, which is clearly not a homomor-
phism, was merely a set map. Then in 2010 Jin and Liu [4] discovered two very
interesting facts about A.

(ii) A : Comp(x) — H?(Q, A) is a derivation, so that A € Z!(Comp(x), H*(Q, A))
and
(UVA=U)A-V+(V)A, (U, V e Comp(x)).

(iii) The cohomology class
[A] € H' (Comp(x), H*(Q,A))

depends on [e] only through its coupling X, i.e., extensions with the same coupling
have cohomologous Wells maps A.

Applications of the Wells Sequence

For a given extension e : N — G — @ with coupling x, the inducibility
problem is to determine when a given pair (¢, ) € Aut(N) x Aut(Q) is induced
by some automorphism of e. This happens if and only if (¢, ¢) € Comp(y) and
(9,0)A = 0.

We will describe theorems which reduce the inducibility problem to certain
subgroups of Q).

Reduction to Sylow subgroups

Consider an extension e : N — G — @ = G/N with coupling x where @ is
finite. Let m(Q) = {p1,...,px} and choose P; € Syl,, (Q), say P; = R;/N. Then
we have subextensions

e :N— R, » P
with couplings x; = x|p,- Let (J,¢) € Aut(N) x Aut(Q). Then P € Syl, (Q),
1 —

so P = P/ for some g; € G. Then Pf% = P, so ¢g;|p, € Aut(P;).

Theorem 2. With the above notation, the pair (9, p) is inducible in e if
and only if (Vg;, ¢g;|p,) is inducible in e; fori=1,2,... k.
Proof. Necessity is routine. Assume the condition holds, i.e. (Vg;, ©g;|p;) is
inducible for i = 1,2,... k. Let A= Z(N).
(i) (9,¢) is x-compatible. This is a straightforward calculation.

(ii) (9, @) is inducible in e. To see this, form a subsequence of the Wells sequence
for e by restricting to automorphisms that leave R; invariant.

0— Z'(Q, A) = Nauye)(Ri) — Ci — H*(Q, A)
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where C; = {(\, 1) € Comp(x) | P = P;}. Now apply the restriction map for
P; to get the commutative diagram

Ci 2 HAQ,A)
J{resPi lresPi
Comp(yi) —i— H2(P;, A)

Since (9, ¢) and (g;, g;) are x-compatible, (9g;, ¢g;) € Comp(x). Also
(99:, ¢gi)resp, o Ai = (Ug;, ¥gs|p,)Ai =0,
and A o resp, maps (9g;, ¢g;) to 0. Since A is a derivation,
(99:, 9:)A = (9, ©)(9s, 9:))A = (0, )N - (95, 95) + (G 9:)A = (U, ) A

This is because (g;,g;) is obviously inducible and it acts trivially on H?(Q, A).
Thus ((9, ¢)A)resp, =0 for i =1,..., k.

Apply the corestriction map for P;, noting that (resp,) o (corp,) is multipli-
cation by |Q : P;|. Also |Q| - |H?(Q, A)| = 0 and (9, p)A has order a pi-number
for all 7. Hence (¥, ¢)A = 0, and (9, ¢) is inducible in e. QED

Special cases of Theorem 1 have appeared in [3] and [8].

Reduction to finite subgroups
Next consider an extension e : N — G — @ with coupling x where @ is a
locally finite group. Choose a local system of finite subgroups in Q

{Qi}ielv
i.e., every finite subset of () is contained in some ;. Let I be ordered by

inclusion, i.e., i < j if and only if Q; < @;. Then {Q;} is a direct system and
Q = lim {Q;}. By restricting to Q;, we form the corresponding subextension

ei:NHGi—»QiZGi/N, (iEI),
with coupling x; = x|o,-
Suppose that (9, ) € Aut(N) x Aut(Q) is given such that Q¥ = Q; for all
i. (If ¢ has finite order, such a system {Q;} will always exist). Assume that
(¥, ¢lg,) is inducible in e; for all i € 1.
Question: does this imply that (¥, ¢) is inducible in e ?
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By restriction form the commutative diagram

Comp(x) —2— H2(Q,A)

[, [,
Comp(xi) —— H*(Qy, A)

where A = Z(N). Since (9, ¢|g,)Ai = 0, we have (¢, p)A € Ker(resg,) for all
i € I, and (¢, ¢)A belongs to

K = Ker(H(Q, 4) — lim H(Q;, A)) :

note here that {H 2(Qs, A)} is an inverse system of abelian groups with restric-
tion maps.

A spectral sequence for H"(lim, —)

In general cohomology does not interact well with direct limits. However,
there is a spectral sequence converging to H"(lim {@;}, A) = H"(Q, A), namely

EPT PEET @, A)
where

EP =1im P {HI(Q;, A)}

and lim ?) is the pth derived functor of lim. (This may be deduced from the

Grothendieck spectral sequence — see [6], [9]). Hence when n = 2 we obtain a
series

0=1Ly< L <Ly < Ly = HQ, A)

where L1 ~ E®, Ly/Ly ~ E!! and L3/Ly ~ E%. Thus L, = K and in our
situation (9, ¢)A € Ly. To prove that (9, )A = 0 it suffices to show that

Ey' =0=E3".
For this to be true additional conditions must be imposed: for example,

ZTP(A) < 09,

p

the sum being for p = 0 or a prime, i.e., A has finite total rank. In fact this
condition implies that

lim M {HY (N, 4)} =0=1im® {4V},

(see [2]). Hence (9, 9)A =0 and (¢, ¢) is inducible in e.
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Theorem 3. With the above notation, assume that Z(N) has finite total
rank. Then (0, ) is inducible in e if and only if (9, ¢|qg,) is inducible in e; for
allieI.

By combining Theorems 1 and 2 we reduce the inducibility problem for ()
locally finite to the case of a finite p-group.

Counterexamples
Theorem 3 does not hold without some conditions on A = Z(N). Consider
a non-split extension

e:N—G—>»Q

where G is locally finite, 7(N)N7(Q) =0, 2 € 7(N) and N is abelian. In fact
there are many such extensions — see for example [5], [11]. Let Q; < @ be finite.
Then H"(Q;, N) =0 for all n > 1 by Schur’s theorem, so that

e : N — G; » Q; = G;/N splits. Let ¥ € Aut(IN) be the inversion automor-
phism. Then (9,1) is inducible in e; for every 7 since e; is a split extension.
However, (9, 1) is not inducible in e: for if it were, the cohomology class A of e
would satisfy A = Ad, = —A and hence A = 0 since H?(Q, N) has no elements
of order 2. This is a contradiction.

Remark. Full details of the proofs may be found in [10].
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