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This is a report on joint work of the author with S. C. Featherstonhaugh
and L. N. Childs, and expands slightly on the presentation given by the author
at Porto Cesareo, on June 9, 2011, at the Conference on Advances in Group
Theory and Applications. The full results appear in [5].

1 Hopf Galois structures

The concept of Hopf Galois structures arose in the study of purely insepa-
rable field extensions, and was introduced by Chase and Sweedler, in their 1969
work [4]. It was later recognized that the Hopf algebras in question were too
small to be able to describe the full automorphism structure of a purely insep-
arable extension of arbitrary height. However, Greither and Pareigis gave new
life to the subject in 1987 [6], showing that the concept of Hopf Galois extension
could be profitably applied to separable and Galois field extensions.

We will not give a definition of Hopf Galois structures (we refer to [3] for
that), because we take advantage of the following result, which provides a trans-
lation in terms of regular subgroups of symmetric groups.

Theorem 1 (Greither-Pareigis). Let L/K be a separable extension with
normal closure E.
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Let G = Gal(E/K), G′ = Gal(E/L), and X = G/G′ = { aG′ : a ∈ G } be
the space of left coset.

Then there is a bijection between

(1) Hopf Galois structures on L/K, and

(2) regular subgroups N of Sym(X) normalized by λ(G).

Here λ : G→ Sym(X) is the usual action of G on the left cosets:

g 7→ (aG′ 7→ gaG′).

It might be remarked that in this context the only Hopf algebras that occur are
the group algebras EN .

Byott [1] was able to rephrase and refine Theorem 1.

Theorem 2 (Byott). Let G′ ≤ G be finite groups, X = G/G′, and N a
group of order |X|. There is a correspondence between

(1) injective morphisms α : N → Sym(X) such that α(N) is regular, and

(2) injective morphisms β : G → Sym(N) such that β(G′) is the stabilizer of
the identity of N .

Here α1(N) = α2(N) if and only if β1(G) and β2(G) are conjugate under
Aut(N). Moreover α(N) is normalized by λ(G) if and only if β(G) ≤ Hol(N).

These results can be summed up as follows.

Theorem 3. Let L/K be a separable field extension with normal closure E.
Let G = Gal(E/K), G′ = Gal(E/L). Let S be the set of isomorphism classes
of groups N of order |G/G′|.

Then the number of Hopf Galois structures on L/K is

∑

N∈S

e(G,N),

where e(G,N) is the number of equivalence classes, modulo conjugation under
Aut(N), of regular embeddings β : G→ Hol(N) such that β(G′) is the stabilizer
of the identity of N .

The main goal of [5] is to prove the following vanishing result for the sum-
mand e(G,N) in Theorem 3.

Theorem 4. Suppose G and N are non-isomorphic abelian p-groups, where
N has rank m, and p > m+ 1.

Then
e(G,N) = 0,
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that is, all abelian regular subgroups of Hol(N) are isomorphic to N .
It follows that if L/K is a Galois extension of fields with abelian Galois group

G, and if L/K is H-Hopf Galois, where the K-Hopf algebra H has associated
group N , then N is isomorphic to G.

2 Regular abelian subgroups

The key to our proof is the following result of [2].

Theorem 5. Let F be an arbitrary field, and (V,+) a vector space of arbi-
trary dimension over F .

There is a one-to-one correspondence between

(1) abelian regular subgroups T of AGL(V ), and

(2) commutative, associative F -algebra structures (V,+, ·) that one can impose
on the vector space structure (V,+), such that the resulting ring is radical.

In this correspondence, isomorphism classes of F -algebras correspond to conju-
gacy classes under the action of GL(V ) of abelian regular subgroups of AGL(V ).

Now AGL(V ) is the split extension of V by GL(V ). This acts naturally on
V . The above result holds verbatim if one replaces V by any abelian group N ,
and AGL(V ) by the holomorph Hol(N) of N , that is the split extension of N
by Aut(N). This also acts naturally on N . Thus we have

Theorem 6. Let (N,+) be an abelian group.
There is a one-to-one correspondence between

(1) abelian regular subgroups T of Hol(N), and

(2) commutative, associative ring structures (N,+, ·) that one can impose on
the abelian group structure (N,+), such that the resulting ring is radical.

In this correspondence, isomorphism classes of rings correspond to conjugacy
classes under the action of Aut(N) of abelian regular subgroups of Hol(N).

Note how the equivalence classes fit perfectly with those of Theorem 2,
involved in counting Hopf Galois structures.

3 An elementary result

Let p be a prime. Let (N,+) be an elementary abelian group of order pm.
Let (N,+, ·) be a commutative, associative, nilpotent ring based on the group
(N,+). Then (N, ◦) is also a group, where

u ◦ v = u+ v + u · v.
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Because of the result above, each regular subgroup G of Hol(N) is isomorphic
to such a (N, ◦).

We begin with

Lemma 1. If (N,+) is elementary abelian of order pm, with p > m, then
(N, ◦) is also elementary abelian.

Note that this is simply stating the obvious fact that a p-element of GL(m, p),
with m < p, has order p. However, we are using this simple instance as a first
illustration of the way we are using Theorem 6 in the proof of Theorem 4.

We will be using repeatedly the simple relation

p◦a =

p∑

i=1

(
p

i

)
ai

= pa+

p−1∑

i=2

(
p

i

)
ai + ap,

where we use the notation k◦a = a ◦ · · · ◦ a︸ ︷︷ ︸
k times

.

Proof of Lemma 1. (N,+, ·) is a nilpotent ring of order pm. p ≥ m + 1. Thus
Np ⊆ Nm+1 = { 0 }. It follows that ap = 0 for a ∈ N . Now

p◦a =

p−1∑

i=1

(
p

i

)
ai + ap

implies that (N, ◦) is also elementary abelian. QED

4 Two examples

In constructing examples, the idea is to start with a suitable ring. Let F be
the field with p elements, p a prime. Consider the ring of order pp

(N,+, ·) = xF [x]/xp+1F [x],

where F [x] is the ring of polynomials in the indeterminate x. Now (N, ◦) is
(isomorphic to) a regular abelian subgroup of Hol(N,+), where u◦v = u+v+u·v.
Let a be the image of x in the ring N . Then

p◦a =

p−1∑

i=1

(
p

i

)
ai + ap = ap 6= 0,
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so that (N, ◦) has exponent (at least) p2. (It would be easy to see that (N, ◦)
has type (p2, p, . . . , p).)

This shows that the result of Lemma 1 is sharp.
For a “converse”, start with the ring xZ[x]/xp+1Z[x], where p is a prime.

Consider the quotient ring (N,+, ·) of it modulo the ideal spanned by the image
of px+ xp. Write a for the image of x in N . Then N has order pp,

pa+ ap = 0, pai = 0, for i > 1,

and (N,+) has m = p − 1 generators a, a2, . . . , ap−1, and type (p2, p, . . . , p).
Then there is an abelian regular subgroup of Hol(N,+) which is isomorphic to
(N, ◦). In (N, ◦) we have p◦a

i = 0 for i > 1, and

p◦a = pa+

p−1∑

i=2

(
p

i

)
ai + ap = pa+ ap = 0,

so that (N, ◦) is elementary abelian.
In this example, m = p + 1, and the conclusion of Theorem 4 fails. This

shows that the result of Theorem 4 is sharp.

5 Proof of Theorem 4

Because of the correspondence established in Theorem 6, we have to prove
that, under the assumptions of Theorem 4, if (N,+, ·) is any associative, nilpo-
tent ring, then (N,+) and (N, ◦) are isomorphic.

We will show that the two finite abelian groups (N,+) and (N, ◦) have the
same number of elements of each order, from which isomorphism follows.

Consider the subgroups of (N,+)

Ωi(N,+) =
{
x ∈ N : pix = 0

}
.

These are ideals of (N,+, ·), so that they are also subgroups of (N, ◦), as x◦y =
x+ y + x · y. We want to show that for each i the following equalities hold

Ωi+1(N,+) \ Ωi(N,+) = Ωi+1(N, ◦) \ Ωi(N, ◦) (5.1)

between the set of elements of order pi+1 in (N,+), respectively (N, ◦).
However, we only need to prove the inequalities

Ωi+1(N,+) \ Ωi(N,+) ⊆ Ωi+1(N, ◦) \ Ωi(N, ◦). (5.2)

In fact, suppose all of the (5.2) hold. If this is the case, note that N is the
disjoint union of the left-hand terms of (5.2) (plus { 0 }). Since N is finite, it
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follows that all inequalities in (5.2) are equalities, that is, all of the (5.1) also
hold.

Consider the sections of the group (N,+)

Si = Ωi+1(N,+)/Ωi−1(N,+),

for 1 ≤ i < e, where pe is the exponent of (N,+). These sections have exponent
p2 as groups with respect to +. Note that these are also sections of the ring
(N,+, ·) and of the group (N, ◦).

We will now prove the following

Lemma 2. The orders of the elements of each Si are the same with respect
to + and ◦.

From this the inequalities (5.2) will follow, and thus the main result. In
fact, the cases i = 0, 1 of (5.2) are taken care directly by the Lemma for i = 1,
as in this case S = Ω2(N,+). Proceeding by induction, if a ∈ Ωi+1(N,+) \
Ωi(N,+), the Lemma states that p◦a ∈ Ωi(N,+)\Ωi−1(N,+). By the inductive
hypothesis, this is contained in Ωi(N, ◦) \ Ωi−1(N, ◦), so that a ∈ Ωi+1(N, ◦) \
Ωi(N, ◦).

Proof of Lemma 2. Clearly T = Ω1(S,+) = Ωi(N,+)/Ωi−1(N,+), and pS ⊆ T .
Consider first an element 0 6= a ∈ T , so that a has order p with respect

to +. We want to show that a has order p also with respect to ◦. Since T
is an elementary abelian section of (N,+), it has order at most pm. Since
p > m+ 1 > m, Lemma 1 implies that (T, ◦) is also elementary abelian.

Suppose now a ∈ S \ T , so that a has order p2 with respect to +. We want
to show that a has order p2 also with respect to ◦.

Note that (S/T,+) is an elementary abelian section of (N,+), and thus
S/T has order at most pm. Now (S/T,+, ·) is a nilpotent ring of order at most
pm < pp, so that Sp ⊆ Sm+1 ⊆ T . Using this, and the fact that pS ⊆ T , in the
formula

p◦a =

p−1∑

i=1

(
p

i

)
ai + ap,

we obtain that p◦a ∈ T , and so a has order at most p2 with respect to ◦.
We will now show that p◦a 6= 0, so that a will have order exactly p2 also

with respect to ◦. Since we are only working in the subring of S spanned by a,
we redefine S to be just that. If pa /∈ S2, then it is clear from

p◦a = pa+

p∑

i=2

(
p

i

)
ai

that p◦a ≡ pa 6≡ 0 modulo S2, so that p◦a 6= 0, and we are done.
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So assume pa ∈ S2, and let k ≥ 2 be such that pa ∈ Sk \ Sk+1. Since
S is generated by a, we will have pS ⊆ Sk. This means that (S/Sk,+) is
elementary abelian. Now Sk 6= { 0 }, as it contains pa 6= 0. Thus in the
nilpotent ring S we have the proper inclusions S ⊃ S2 ⊃ · · · ⊃ Sk ⊃ { 0 }.
It follows that the elementary abelian section (S/Sk,+) of (N,+) has a basis
given by a, a2, . . . , ak−1, so that it has order pk−1, and thus k − 1 ≤ m.

Consider once more

p◦a = pa+

p−1∑

i=2

(
p

i

)
ai + ap.

Since pa ∈ Sk, for 2 ≤ i ≤ p− 1 we have

(
p

i

)
ai ∈ SkS = Sk+1.

Since p ≥ m+ 2 ≥ k+ 1, we have also ap ∈ Sp ⊆ Sk+1. Now the formula above
yields p◦a ≡ pa 6≡ 0 modulo Sk+1, so that p◦a 6= 0, and we are done. QED
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