
Note di Matematica ISSN 1123-2536, e-ISSN 1590-0932

Note Mat. 33 (2013) no. 1, 1–48. doi:10.1285/i15900932v33n1p1

Discrete dynamical systems in group theory

Dikran Dikranjan

Dipartimento di Matematica e Informatica, Università di Udine
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Abstract. In this expository paper we describe the unifying approach for many known
entropies in Mathematics developed in [27].

First we give the notion of semigroup entropy hS : S → R+ in the category S of normed
semigroups and contractive homomorphisms, recalling also its properties from [27]. For a spe-
cific category X and a functor F : X → S we have the entropy hF , defined by the composition
hF = hS ◦ F , which automatically satisfies the same properties proved for hS . This gen-
eral scheme permits to obtain many of the known entropies as hF , for appropriately chosen
categories X and functors F : X → S.

In the last part we recall the definition and the fundamental properties of the algebraic
entropy for group endomorphisms, noting how its deeper properties depend on the specific
setting. Finally we discuss the notion of growth for flows of groups, comparing it with the
classical notion of growth for finitely generated groups.
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1 Introduction

This paper covers the series of three talks given by the first named author
at the conference “Advances in Group Theory and Applications 2011” held in
June, 2011 in Porto Cesareo. It is a survey about entropy in Mathematics, the
approach is the categorical one adopted in [27] (and announced in [16], see also
[13]).

We start recalling that a flow in a category X is a pair (X,φ), where X is
an object of X and φ : X → X is a morphism in X. A morphism between two
flows φ : X → X and ψ : Y → Y is a morphism α : X → Y in X such that the
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diagram

X
α //

φ
��

Y

ψ
��

X
α // Y.

commutes. This defines the category FlowX of flows in X.

To classify flows in X up to isomorphisms one uses invariants, and entropy
is roughly a numerical invariant associated to flows. Indeed, letting R≥0 = {r ∈
R : r ≥ 0} and R+ = R≥0 ∪ {∞}, by the term entropy we intend a function

h : FlowX→ R+, (1)

obeying the invariance law h(φ) = h(ψ) whenever (X,φ) and (Y, ψ) are iso-
morphic flows. The value h(φ) is supposed to measure the degree to which X
is “scrambled” by φ, so for example an entropy should assign 0 to all identity
maps. For simplicity and with some abuse of notations, we adopt the following

Convention. If X is a category and h an entropy of X, writing h : X→ R+ we
always mean h : FlowX→ R+ as in (1).

The first notion of entropy in Mathematics was the measure entropy hmes
introduced by Kolmogorov [53] and Sinai [74] in 1958 in Ergodic Theory. The
topological entropy htop for continuous self-maps of compact spaces was defined
by Adler, Konheim and McAndrew [1] in 1965. Another notion of topological
entropy hB for uniformly continuous self-maps of metric spaces was given later
by Bowen [11] (it coincides with htop on compact metric spaces). Finally, entropy
was taken also in Algebraic Dynamics by Adler, Konheim and McAndrew [1] in
1965 and Weiss [85] in 1974; they defined an entropy ent for endomorphisms of
torsion abelian groups. Then Peters [64] in 1979 introduced its extension halg
to automorphisms of abelian groups; finally halg was defined in [19] and [20]
for any group endomorphism. Recently also a notion of algebraic entropy for
module endomorphisms was introduced in [70], namely the algebraic i-entropy
enti, where i is an invariant of a module category. Moreover, the adjoint alge-
braic entropy ent⋆ for group endomorphisms was investigated in [26] (and its
topological extension in [35]). Finally, one can find in [5] and [20] two “mutually
dual” notions of entropy for self-maps of sets, namely the covariant set-theoretic
entropy h and the contravariant set-theoretic entropy h∗.

The above mentioned specific entropies determined the choice of the main
cases considered in this paper. Namely, X will be one of the following categories
(other examples can be found in §§2.5 and 3.6):

(a) Set of sets and maps and its non-full subcategory Setfin of sets and finite-
to-one maps (set-theoretic entropies h and h∗ respectively);
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(b) CTop of compact topological spaces and continuous maps (topological
entropy htop);

(c) Mes of probability measure spaces and measure preserving maps (measure
entropy hmes);

(d) Grp of groups and group homomorphisms and its subcategory AbGrp of
abelian groups (algebraic entropy ent, algebraic entropy halg and adjoint
algebraic entropy ent⋆);

(e) ModR of right modules over a ring R and R-module homomorphisms
(algebraic i-entropy enti).

Each of these entropies has its specific definition, usually given by limits com-
puted on some “trajectories” and by taking the supremum of these quantities
(we will see some of them explicitly). The proofs of the basic properties take
into account the particular features of the specific categories in each case too.
It appears that all these definitions and basic properties share a lot of common
features. The aim of our approach is to unify them in some way, starting from a
general notion of entropy of an appropriate category. This will be the semigroup
entropy hS defined on the category S of normed semigroups.

In Section 2 we first introduce the category S of normed semigroups and
related basic notions and examples mostly coming from [27]. Moreover, in §2.2
(which can be avoided at a first reading) we add a preorder to the semigroup and
discuss the possible behavior of a semigroup norm with respect to this preorder.
Here we include also the subcategory L of S of normed semilattices, as the
functors given in Section 3 often have as a target actually a normed semilattice.

In §2.3 we define explicitly the semigroup entropy hS : S→ R+ on the cat-
egory S of normed semigroups. Moreover we list all its basic properties, clearly
inspired by those of the known entropies, such as Monotonicity for factors,
Invariance under conjugation, Invariance under inversion, Logarithmic Law,
Monotonicity for subsemigroups, Continuity for direct limits, Weak Addition
Theorem and Bernoulli normalization.

Once defined the semigroup entropy hS : S → R+, our aim is to obtain
all known entropies h : X → R+ as a composition hF := hS ◦ F of a functor
F : X→ S and hS:

X

F

��

h=hF

,,XXXXXXXXXXXXXXXXX

R+

S
hS

22fffffffffffffffff

This is done explicitly in Section 3, where all specific entropies listed above are
obtained in this scheme. We dedicate to each of them a subsection, each time
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giving explicitly the functor from the considered category to the category of
normed semigroups. More details and complete proofs can be found in [27].
These functors and the entropies are summarized by the following diagram:

Mes

mes
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*
*

*
*

��*
*

*
*

*
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In this way we obtain a simultaneous and uniform definition of all entropies and
uniform proofs (as well as a better understanding) of their general properties,
namely the basic properties of the specific entropies can be derived directly from
those proved for the semigroup entropy.

The last part of Section 3 is dedicated to what we call Bridge Theorem
(a term coined by L. Salce), that is roughly speaking a connection between
entropies h1 : X1 → R+ and h2 : X2 → R+ via functors ε : X1 → X2. Here is a
formal definition of this concept:

Definition 1. Let ε : X1 → X2 be a functor and let h1 : X1 → R+ and
h2 : X2 → R+ be entropies of the categories X1 and X2, respectively (as in the
diagram below).

X1

ε

��

h1

,,XXXXXXXXXXXXXXXXX

R+

X2
h2

22fffffffffffffffff

We say that the pair (h1, h2) satisfies the weak Bridge Theorem with respect to
the functor ε if there exists a positive constant Cε, such that for every endo-
morphism φ in X1

h2(ε(φ)) ≤ Cεh1(φ). (2)

If equality holds in (2) we say that (h1, h2) satisfies the Bridge Theorem with
respect to ε, and we shortly denote this by (BTε).
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In §3.10 we discuss the Bridge Theorem passing through the category S of
normed semigroups and so using the new semigroup entropy. This approach per-
mits for example to find a new and transparent proof of Weiss Bridge Theorem
(see Theorem 6) as well as for other Bridge Theorems.

A first limit of this very general setting is the loss of some of the deeper
properties that a specific entropy may have. So in the last Section 4 for the
algebraic entropy we recall the definition and the fundamental properties, which
cannot be deduced from the general scheme.

We start Section 4 recalling the Algebraic Yuzvinski Formula (see Theorem
9) recently proved in [37], giving the values of the algebraic entropy of lin-
ear transformations of finite-dimensional rational vector spaces in terms of the
Mahler measure. In particular, this theorem provides a connection of the alge-
braic entropy with the famous Lehmer Problem. Two important applications of
the Algebraic Yuzvinski Formula are the Addition Theorem and the Uniqueness
Theorem for the algebraic entropy in the context of abelian groups.

In §4.3 we describe the connection of the algebraic entropy with the classical
topic of growth of finitely generated groups in Geometric Group Theory. Its def-
inition was given independently by Schwarzc [72] and Milnor [56], and after the
publication of [56] it was intensively investigated; several fundamental results
were obtained by Wolf [89], Milnor [57], Bass [6], Tits [76] and Adyan [2]. In
[58] Milnor proposed his famous problem (see Problem 1 below); the question
about the existence of finitely generated groups with intermediate growth was
answered positively by Grigorchuk in [42, 43, 44, 45], while the characterization
of finitely generated groups with polynomial growth was given by Gromov in
[47] (see Theorem 12).

Here we introduce the notion of finitely generated flows (G,φ) in the category
of groups and define the growth of (G,φ). When φ = idG is the identical
endomorphism, then G is a finitely generated group and we find exactly the
classical notion of growth. In particular we recall a recent significant result
from [22] extending Milnor’s dichotomy (between polynomial and exponential
growth) to finitely generated flows in the abelian case (see Theorem 13). We
leave also several open problems and questions about the growth of finitely
generated flows of groups.

The last part of the section, namely §4.4, is dedicated to the adjoint al-
gebraic entropy. As for the algebraic entropy, we recall its original definition
and its main properties, which cannot be derived from the general scheme. In
particular, the adjoint algebraic entropy can take only the values 0 and ∞ (no
finite positive value is attained) and we see that the Addition Theorem holds
only restricting to bounded abelian groups.

A natural side-effect of the wealth of nice properties of the entropy hF =
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hS ◦ F , obtained from the semigroup entropy hS through functors F : X→ S,
is the loss of some entropies that do not have all these properties. For example
Bowen’s entropy hB cannot be obtained as hF since hB(φ−1) = hB(φ) fails
even for the automorphism φ : R → R defined by φ(x) = 2x, see §3.6 for an
extended comment on this issue; there we also discuss the possibility to obtain
Bowen’s topological entropy of measure preserving topological automorphisms
of locally compact groups in the framework of our approach. For the same
reason other entropies that cannot be covered by this approach are the intrinsic
entropy for endomorphisms of abelian groups [25] and the topological entropy
for automorphisms of locally compact totally disconnected groups [17]. This
occurs also for the function φ 7→ log s(φ), where s(φ) is the scale function
defined by Willis [86, 87]. The question about the relation of the scale function
to the algebraic or topological entropy was posed by T. Weigel at the conference;
these non-trivial relations are discussed for the topological entropy in [8].

2 The semigroup entropy

2.1 The category S of normed semigroups

We start this section introducing the category S of normed semigroups, and
other notions that are fundamental in this paper.

Definition 2. Let (S, ·) be a semigroup.

(i) A norm on S is a map v : S → R≥0 such that

v(x · y) ≤ v(x) + v(y) for every x, y ∈ S.
A normed semigroup is a semigroup provided with a norm.

If S is a monoid, a monoid norm on S is a semigroup norm v such that
v(1) = 0; in such a case S is called normed monoid.

(ii) A semigroup homomorphism φ : (S, v) → (S′, v′) between normed semi-
groups is contractive if

v′(φ(x)) ≤ v(x) for every x ∈ S.

Let S be the category of normed semigroups, which has as morphisms all
contractive semigroup homomorphisms. In this paper, when we say that S is
a normed semigroup and φ : S → S is an endomorphism, we will always mean
that φ is a contractive semigroup endomorphism. Moreover, let M be the non-
full subcategory of S with objects all normed monoids, where the morphisms
are all (necessarily contractive) monoid homomorphisms.

We give now some other definitions.
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Definition 3. A normed semigroup (S, v) is:

(i) bounded if there exists C ∈ N+ such that v(x) ≤ C for all x ∈ S;

(ii) arithmetic if for every x ∈ S there exists a constant Cx ∈ N+ such that
v(xn) ≤ Cx · log(n+ 1) for every n ∈ N.

Obviously, bounded semigroups are arithmetic.

Example 1. Consider the monoid S = (N,+).

(a) Norms v on S correspond to subadditive sequences (an)n∈N in R+ (i.e.,
an+m ≤ an + am) via v 7→ (v(n))n∈N. Then limn→∞

an

n = infn∈N
an

n exists
by Fekete Lemma [33].

(b) Define v : S → R+ by v(x) = log(1+x) for x ∈ S. Then v is an arithmetic
semigroup norm.

(c) Define v1 : S → R+ by v1(x) =
√
x for x ∈ S. Then v1 is a semigroup

norm, but (S,+, v1) is not arithmetic.

(d) For a ∈ N, a > 1 let va(n) =
∑

i bi, when n =
∑k

i=0 bia
i and 0 ≤ bi < a

for all i. Then va is an arithmetic norm on S making the map x 7→ ax an
endomorphism in S.

2.2 Preordered semigroups and normed semilattices

A triple (S, ·,≤) is a preordered semigroup if the semigroup (S, ·) admits a
preorder ≤ such that

x ≤ y implies x · z ≤ y · z and z · x ≤ z · y for all x, y, z ∈ S.

Write x ∼ y when x ≤ y and y ≤ x hold simultaneously. Moreover, the positive
cone of S is

P+(S) = {a ∈ S : x ≤ x · a and x ≤ a · x for every x ∈ S}.

A norm v on the preordered semigroup (S, ·,≤) is monotone if x ≤ y implies
v(x) ≤ v(y) for every x, y ∈ S. Clearly, v(x) = v(y) whenever x ∼ y and the
norm v of S is monotone.

Now we propose another notion of monotonicity for a semigroup norm which
does not require the semigroup to be explicitly endowed with a preorder.

Definition 4. Let (S, v) be a normed semigroup. The norm v is s-monotone
if

max{v(x), v(y)} ≤ v(x · y) for every x, y ∈ S.
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This inequality may become a too stringent condition when S is close to be
a group; indeed, if S is a group, then it implies that v(S) = {v(1)}, in particular
v is constant.

If (S,+, v) is a commutative normed monoid, it admits a preorder ≤a defined
for every x, y ∈ S by x ≤a y if and only if there exists z ∈ S such that x+z = y.
Then (S, ·,≤) is a preordered semigroup and the norm v is s-monotone if and
only if v is monotone with respect to ≤a.

The following connection between monotonicity and s-monotonicity is clear.

Lemma 1. Let S be a preordered semigroup. If S = P+(S), then every
monotone norm of S is also s-monotone.

A semilattice is a commutative semigroup (S,∨) such that x ∨ x = x for
every x ∈ S.

Example 2. (a) Each lattice (L,∨,∧) gives rise to two semilattices, namely
(L,∨) and (L,∧).

(b) A filter F on a given set X is a semilattice with respect to the intersection,
with zero element the set X.

Let SL be the full subcategory of S with objects all normed semilattices.

Every normed semilattice (L,∨) is trivially arithmetic, moreover the canon-
ical partial order defined by

x ≤ y if and only if x ∨ y = y,

for every x, y ∈ L, makes L also a partially ordered semigroup.

Neither preordered semigroups nor normed semilattices are formally needed
for the definition of the semigroup entropy. Nevertheless, they provide signifi-
cant and natural examples, as well as useful tools in the proofs, to justify our
attention to this topic.

2.3 Entropy in S

For (S, v) a normed semigroup φ : S → S an endomorphism, x ∈ S and
n ∈ N+ consider the n-th φ-trajectory of x

Tn(φ, x) = x · φ(x) · . . . · φn−1(x)

and let

cn(φ, x) = v(Tn(φ, x)).

Note that cn(φ, x) ≤ n · v(x). Hence the growth of the function n 7→ cn(φ, x) is
at most linear.
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Definition 5. Let S be a normed semigroup. An endomorphism φ : S → S
is said to have logarithmic growth, if for every x ∈ S there exists Cx ∈ N+ with
cn(φ, x) ≤ Cx · log(n+ 1) for all n ∈ N+.

Obviously, a normed semigroup S is arithmetic if and only if idS has loga-
rithmic growth.

The following theorem from [27] is fundamental in this context as it witnesses
the existence of the semigroup entropy; so we give its proof also here for reader’s
convenience.

Theorem 1. Let S be a normed semigroup and φ : S → S an endomor-
phism. Then for every x ∈ S the limit

hS(φ, x) := lim
n→∞

cn(φ, x)

n
(3)

exists and satisfies hS(φ, x) ≤ v(x).

Proof. The sequence (cn(φ, x))n∈N+
is subadditive. Indeed,

cn+m(φ, x) = v(x · φ(x) · . . . · φn−1(x) · φn(x) · . . . · φn+m−1(x))

= v((x · φ(x) · . . . · φn−1(x)) · φn(x · . . . · φm−1(x)))

≤ cn(φ, x) + v(φn(x · . . . · φm−1(x)))

≤ cn(φ, x) + v(x · . . . · φm−1(x)) = cn(φ, x) + cm(φ, x).

By Fekete Lemma (see Example 1 (a)), the limit limn→∞
cn(φ,x)

n exists and

coincides with infn∈N+

cn(φ,x)
n . Finally, hS(φ, x) ≤ v(x) follows from cn(φ, x) ≤

nv(x) for every n ∈ N+. QED

Remark 1. (a) The proof of the existence of the limit defining hS(φ, x)
exploits the property of the semigroup norm and also the condition on φ
to be contractive. For an extended comment on what can be done in case
the function v : S → R+ fails to have that property see §2.5.

(b) With S = (N,+), φ = idN and x = 1 in Theorem 1 we obtain exactly item
(a) of Example 1.

Definition 6. Let S be a normed semigroup and φ : S → S an endomor-
phism. The semigroup entropy of φ is

hS(φ) = sup
x∈S

hS(φ, x).
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If an endomorphism φ : S → S has logarithmic growth, then hS(φ) = 0. In
particular, hS(idS) = 0 if S is arithmetic.

Recall that an endomorphism φ : S → S of a normed semigroup S is locally
quasi periodic if for every x ∈ S there exist n, k ∈ N, k > 0, such that φn(x) =
φn+k(x). If S is a monoid and φ(1) = 1, then φ is locally nilpotent if for every
x ∈ S there exists n ∈ N+ such that φn(x) = 1.

Lemma 2. Let S be a normed semigroup and φ : S → S an endomorphism.

(a) If S is arithmetic and φ is locally periodic, then hS(φ) = 0.

(b) If S is a monoid and φ(1) = 1 and φ is locally nilpotent, then hS(φ) = 0.

Proof. (a) Let x ∈ S, and let l, k ∈ N+ be such that φl(x) = φl+k(x). For every
m ∈ N+ one has

Tl+mk(φ, x) = Tl(φ, x) · Tm(idS , y) = Tl(φ, x) · ym,

where y = φl(Tk(φ, x)). Since S is arithmetic, there exists Cx ∈ N+ such that

v(Tl+mk(φ, x)) = v(Tl(φ, x) · ym) ≤
v(Tl(φ, x)) + v(ym) ≤ v(Tl(φ, x)) + Cx · log(m+ 1),

so limm→∞
v(Tl+mk(φ,x))

l+mk = 0.
Therefore we have found a subsequence of (cn(φ, x))n∈N+

converging to 0, so
also hS(φ, x) = 0. Hence hS(φ) = 0.

(b) For x ∈ S, there exists n ∈ N+ such that φn(x) = 1. Therefore
Tn+k(φ, x) = Tn(φ, x) for every k ∈ N, hence hS(φ, x) = 0. QED

We discuss now a possible different notion of semigroup entropy. Let (S, v)
be a normed semigroup, φ : S → S an endomorphism, x ∈ S and n ∈ N+. One
could define also the “left” n-th φ-trajectory of x as

T#
n (φ, x) = φn−1(x) · . . . · φ(x) · x,

changing the order of the factors with respect to the above definition. With
these trajectories it is possible to define another entropy letting

h#
S(φ, x) = lim

n→∞

v(T#
n (φ, x))

n
,

and
h#

S(φ) = sup{h#
S(φ, x) : x ∈ S}.

In the same way as above, one can see that the limit defining h#
S(φ, x) exists.
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Obviously h#
S and hS coincide on the identity map and on commutative

normed semigroups, but now we see that in general they do not take always the
same values. Item (a) in the following example shows that it may occur the case
that they do not coincide “locally”, while they coincide “globally”. Moreover,
modifying appropriately the norm in item (a), J. Spevák found the example in

item (b) for which h#
S and hS do not coincide even “globally”.

Example 3. Let X = {xn}n∈Z be a faithfully enumerated countable set
and let S be the free semigroup generated by X. An element w ∈ S is a word
w = xi1xi2 . . . xim with m ∈ N+ and ij ∈ Z for j = 1, 2, . . . ,m. In this case m
is called the length ℓX(w) of w, and a subword of w is any w′ ∈ S of the form
w′ = xikxik+1 . . . xil with 1 ≤ k ≤ l ≤ n.

Consider the automorphism φ : S → S determined by φ(xn) = xn+1 for
every n ∈ Z.

(a) Let s(w) be the number of adjacent pairs (ik, ik+1) in w such that ik <
ik+1. The map v : S → R+ defined by v(w) = s(w) + 1 is a semigroup
norm. Then φ : (S, v)→ (S, v) is an automorphism of normed semigroups.

It is straightforward to prove that, for w = xi1xi2 . . . xim ∈ S,

(i) h#
S(φ,w) = hS(φ,w) if and only if i1 > im + 1;

(ii) h#
S(φ,w) = hS(φ,w)− 1 if and only if im = i1 or im = i1 − 1.

Moreover,

(iii) h#
S(φ) = hS(φ) =∞.

In particular, hS(φ, x0) = 1 while h#
S(φ, x0) = 0.

(b) Define a semigroup norm ν : S → R+ as follows. For w = xi1xi2 . . . xin ∈ S
consider its subword w′ = xikxik+1

. . . xil with maximal length satisfying
ij+1 = ij + 1 for every j ∈ Z with k ≤ j ≤ l − 1 and let ν(w) = ℓX(w′).
Then φ : (S, ν)→ (S, ν) is an automorphism of normed semigroups.

It is possible to prove that, for w ∈ S,

(i) if ℓX(w) = 1, then ν(Tn(φ,w)) = n and ν(T#
n (φ,w)) = 1 for every

n ∈ N+;

(ii) if ℓX(w) = k with k > 1, then ν(Tn(φ,w)) < 2k and ν(T#
n (φ,w)) <

2k for every n ∈ N+.

From (i) and (ii) and from the definitions we immediately obtain that

(iii) hS(φ) = 1 6= 0 = h#
S(φ).
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We list now the main basic properties of the semigroup entropy. For com-
plete proofs and further details see [27].

Lemma 3 (Monotonicity for factors). Let S, T be normed semigroups and
φ : S → S, ψ : T → T endomorphisms. If α : T → S is a surjective homomor-
phism such that α ◦ ψ = φ ◦ α, then hS(φ) ≤ hS(ψ).

Proof. Fix x ∈ S and find y ∈ T with x = α(y). Then cn(x, φ) ≤ cn(ψ, y) for
every n ∈ N+. Dividing by n and taking the limit gives hS(φ, x) ≤ hS(ψ, y).
So hS(φ, x) ≤ hS(ψ). When x runs over S, we conclude that hS(φ) ≤ hS(ψ).

QED

Corollary 1 (Invariance under conjugation). Let S be a normed semigroup
and φ : S → S an endomorphism. If α : S → T is an isomorphism, then
hS(φ) = hS(α ◦ φ ◦ α−1).

Lemma 4 (Invariance under inversion). Let S be a normed semigroup and
φ : S → S an automorphism. Then hS(φ−1) = hS(φ).

Theorem 2 (Logarithmic Law). Let (S, v) be a normed semigroup and φ :
S → S an endomorphism. Then

hS(φk) ≤ k · hS(φ)

for every k ∈ N+. Furthermore, equality holds if v is s-monotone. Moreover, if
φ : S → S is an automorphism, then

hS(φk) = |k| · hS(φ)

for all k ∈ Z \ {0}.

Proof. Fix k ∈ N+, x ∈ S and let y = x · φ(x) · . . . · φk−1(x). Then

hS(φk) ≥ hS(φk, y) = lim
n→∞

cn(φ
k, y)

n
= lim

n→∞

v(y · φk(y) · . . . · φ(n−1)k(y))

n
=

= k · lim
n→∞

cnk(φ, x)

nk
= k · hS(φ, x).

This yields hS(φk) ≥ k · hS(φ, x) for all x ∈ S, and consequently, hS(φk) ≥
k · hS(φ).

Suppose v to be s-monotone, then

hS(φ, x) = lim
n→∞

v(x · φ(x) · . . . · φnk−1(x))

n · k ≥

lim
n→∞

v(x · φk(x) · . . . · (φk)n−1(x))

n · k =
hS(φk, x)

k
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Hence, k · hS(φ) ≥ hS(φk, x) for every x ∈ S. Therefore, k · hS(φ) ≥ hS(φk).
If φ is an automorphism and k ∈ Z \ {0}, apply the previous part of the

theorem and Lemma 4. QED

The next lemma shows that monotonicity is available not only under taking
factors:

Lemma 5 (Monotonicity for subsemigroups). Let (S, v) be a normed semi-
group and φ : S → S an endomorphism. If T is a φ-invariant normed subsemi-
group of (S, v), then hS(φ) ≥ hS(φ ↾T ). Equality holds if S is ordered, v is
monotone and T is cofinal in S.

Note that T is equipped with the induced norm v ↾T . The same applies to
the subsemigroups Si in the next corollary:

Corollary 2 (Continuity for direct limits). Let (S, v) be a normed semi-
group and φ : S → S an endomorphism. If {Si : i ∈ I} is a directed family
of φ-invariant normed subsemigroup of (S, v) with S = lim−→Si, then hS(φ) =
suphS(φ ↾Si

).

We consider now products in S. Let {(Si, vi) : i ∈ I} be a family of normed
semigroups and let S =

∏
i∈I Si be their direct product in the category of

semigroups.
In case I is finite, then S becomes a normed semigroup with the max-norm

v∏ , so (S, v∏) is the product of the family {Si : i ∈ I} in the category S; in
such a case one has the following

Theorem 3 (Weak Addition Theorem - products). Let (Si, vi) be a normed
semigroup and φi : Si → Si an endomorphism for i = 1, 2. Then the endomor-
phism φ1 × φ2 of S1 × S2 has hS(φ1 × φ2) = max{hS(φ1), hS(φ2)}.

If I is infinite, S need not carry a semigroup norm v such that every pro-
jection pi : (S, v)→ (Si, vi) is a morphism in S. This is why the product of the
family {(Si, vi) : i ∈ I} in S is actually the subset

Sbnd = {x = (xi)i∈I ∈ S : sup
i∈I

vi(xi) ∈ R}

of S with the norm v∏ defined by

v∏(x) = sup
i∈I

vi(xi) for any x = (xi)i∈I ∈ Sbnd.

For further details in this direction see [27].

2.4 Entropy in M

We collect here some additional properties of the semigroup entropy in the
category M of normed monoids where also coproducts are available. If (Si, vi)
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is a normed monoid for every i ∈ I, the direct sum

S =
⊕

i∈I

Si = {(xi) ∈
∏

i∈I

Si : |{i ∈ I : xi 6= 1}| <∞}

becomes a normed monoid with the norm

v⊕(x) =
∑

i∈I

vi(xi) for any x = (xi)i∈I ∈ S.

This definition makes sense since vi are monoid norms, so vi(1) = 0. Hence,
(S, v⊕) becomes a coproduct of the family {(Si, vi) : i ∈ I} in M.

We consider now the case when I is finite, so assume without loss of gen-
erality that I = {1, 2}. In other words we have two normed monoids (S1, v1)
and (S2, v2). The product and the coproduct have the same underlying monoid
S = S1×S2, but the norms v⊕ and v∏ in S are different and give different val-
ues of the semigroup entropy hS; indeed, compare Theorem 3 and the following
one.

Theorem 4 (Weak Addition Theorem - coproducts). Let (Si, vi) be a normed
monoid and φi : Si → Si an endomorphism for i = 1, 2. Then the endomor-
phism φ1 ⊕ φ2 of S1 ⊕ S2 has hS(φ1 ⊕ φ2) = hS(φ1) + hS(φ2).

For a normed monoid (M, v) ∈ M let B(M) =
⊕

NM , equipped with the
above coproduct norm v⊕(x) =

∑
n∈N v(xn) for any x = (xn)n∈N ∈ B(M). The

right Bernoulli shift is defined by

βM : B(M)→ B(M), βM (x0, . . . , xn, . . . ) = (1, x0, . . . , xn, . . . ),

while the left Bernoulli shift is

Mβ : B(M)→ B(M), Mβ(x0, x1, . . . , xn, . . . ) = (x1, x2, . . . , xn, . . . ).

Theorem 5 (Bernoulli normalization). Let (M, v) be a normed monoid.
Then:

(a) hS(βM ) = supx∈M v(x);

(b) hS(Mβ) = 0.

Proof. (a) For x ∈ M consider x = (xn)n∈N ∈ B(M) such that x0 = x and
xn = 1 for every n ∈ N+. Then v⊕(Tn(βM , x)) = n · v(x), so hS(βM , x) = v(x).
Hence hS(βM ) ≥ supx∈M v(x). Let now x = (xn)n∈N ∈ B(M) and let k ∈ N be
the greatest index such that xk 6= 1; then

v⊕(Tn(βM , x)) =
k+n∑

i=0

v(Tn(βM , x)i) ≤

k−1∑

i=0

v(x0 · . . . · xi) + (n− k) · v(x1 · . . . · xk) +
k∑

i=1

v(xi · . . . · xk).
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Since the first and the last summand do not depend on n, after dividing by n
and letting n converge to infinity we obtain

hS(βM , x) = lim
n→∞

v⊕(Tn(βM , x))

n
≤ v(x1 · . . . · xk) ≤ sup

x∈M
v(x).

(b) Note that Mβ is locally nilpotent and apply Lemma 2. QED

2.5 Semigroup entropy of an element and pseudonormed semi-

groups

One can notice a certain asymmetry in Definition 6. Indeed, for S a normed
semigroup, the local semigroup entropy defined in (3) is a two variable function

hS : End(S)× S → R+.

Taking hS(φ) = supx∈S hS(φ, x) for an endomorphism φ ∈ End(S), we obtained
the notion of semigroup entropy of φ. But one can obviously exchange the roles
of φ and x and obtain the possibility to discuss the entropy of an element x ∈ S.
This can be done in two ways. Indeed, in Remark 2 we consider what seems
the natural counterpart of hS(φ), while here we discuss a particular case that
could appear to be almost trivial, but actually this is not the case, as it permits
to give a uniform approach to some entropies which are not defined by using
trajectories. So, by taking φ = idS in (3), we obtain a map h0

S : S → R+:

Definition 7. Let S be a normed semigroup and x ∈ S. The semigroup
entropy of x is

h0
S(x) := hS(idS , x) = lim

n→∞

v(xn)

n
.

We shall see now that the notion of semigroup entropy of an element is
supported by many examples. On the other hand, since some of the examples
given below cannot be covered by our scheme, we propose first a slight extension
that covers those examples as well.

Let S∗ be the category having as objects of all pairs (S, v), where S is a
semigroup and v : S → R+ is an arbitrary map. A morphism in the category
S∗ is a semigroup homomorphism φ : (S, v)→ (S′, v′) that is contracting with
respect to the pair v, v′, i.e., v′(φ(x)) ≤ v(x) for every x ∈ S. Note that
our starting category S is simply a full subcategory of S∗, having as objects
those pairs (S, v) such that v satisfies (i) from Definition 2. These pairs were
called normed semigroups and v was called a semigroup norm. For the sake of
convenience and in order to keep close to the current terminology, let us call the
function v in the larger category S∗ a semigroup pseudonorm (although, we are
imposing no condition on v whatsoever).
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So, in this setting, one can define a local semigroup entropy hS∗ : End(S)×
S → R+ following the pattern of (3), replacing the limit by

hS∗(φ, x) = lim sup
n→∞

v(Tn(φ, x))

n
.

In particular,

h0
S∗(x) = lim sup

n→∞

v(xn)

n
.

Let us note that in order to have the last lim sup a limit, one does not need
(S, v) to be in S, but it suffices to have the semigroup norm condition (i) from
Definition 2 fulfilled only for products of powers of the same element.

We consider here three different entropies, respectively from [55], [32] and
[73], that can be described in terms of h0

S or its generalized version h0
S∗ . We do

not go into the details, but we give the idea how to capture them using the notion
of semigroup entropy of an element of the semigroup of all endomorphisms of a
given object equipped with an appropriate semigroup (pseudo)norm.

(a) Following [55], let R be a Noetherian local ring and φ : R → R an endo-
morphism of finite length; moreover, λ(φ) is the length of φ, which is a
real number ≥ 1. In this setting the entropy of φ is defined by

hλ(φ) = lim
n→∞

log λ(φn)

n

and it is proved that this limit exists.

Then the set S = Endfl(R) of all finite-length endomorphisms of R is a
semigroup and log λ(−) is a semigroup norm on S. For every φ ∈ S, we
have

hλ(φ) = hS(idS , φ) = h0
S(φ).

In other words, hλ(φ) is nothing else but the semigroup entropy of the
element φ of the normed semigroup S = Endfl(R).

(b) We recall now the entropy considered in [73], which was already introduced
in [7]. Let t ∈ N+ and ϕ : Pt → Pt be a dominant rational map of degree
d. Then the entropy of ϕ is defined as the logarithm of the dynamical
degree, that is

hδ(ϕ) = log δφ = lim sup
n→∞

log deg(ϕn)

n
.
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Consider the semigroup S of all dominant rational maps of Pn and the
function log deg(−). In general this is only a semigroup pseudonorm on S
and

h0
S∗(ϕ) = hδ(ϕ).

Note that log deg(−) is a semigroup norm when ϕ is an endomorphism of
the variety Pt.

(c) We consider now the growth rate for endomorphisms introduced in [10]
and recently studied in [32]. Let G be a finitely generated group, X a
finite symmetric set of generators of G, and ϕ : G→ G an endomorphism.
For g ∈ G, denote by ℓX(g) the length of g with respect to the alphabet
X. The growth rate of ϕ with respect to x ∈ X is

logGR(ϕ, x) = lim
n→∞

log ℓX(ϕn(x))

n

(and the growth rate of ϕ is logGR(ϕ) = supx∈X logGR(ϕ, x)).

Consider S = End(G) and, fixed x ∈ X, the map logGR(−, x). As in
item (b) this is only a semigroup pseudonorm on S. Nevertheless, also in
this case the semigroup entropy

logGR(ϕ, x) = h0
S∗(ϕ).

Remark 2. For a normed semigroup S, let hS : End(S)× S → R+ be the
local semigroup entropy defined in (3). Exchanging the roles of φ ∈ End(S) and
x ∈ S, define the global semigroup entropy of an element x ∈ S by

hS(x) = sup
φ∈End(S)

hS(φ, x).

Obviously, h0
S(x) ≤ hS(x) for every x ∈ S.

3 Obtaining known entropies

3.1 The general scheme

Let X be a category and let F : X→ S be a functor. Define the entropy

hF : X→ R+

on the category X by

hF (φ) = hS(F (φ)),
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for any endomorphism φ : X → X in X. Recall that with some abuse of notation
we write hF : X→ R+ in place of hF : FlowX→ R+ for simplicity.

Since the functor F preserves commutative squares and isomorphisms, the
entropy hF has the following properties, that automatically follow from the
previously listed properties of the semigroup entropy hS. For the details and
for properties that need a further discussion see [27].

Let X, Y be objects of X and φ : X → X, ψ : Y → Y endomorphisms in X.

(a) [Invariance under conjugation] If α : X → Y is an isomorphism in X, then
hF (φ) = hF (α ◦ φ ◦ α−1).

(b) [Invariance under inversion] If φ : X → X is an automorphism in X, then
hF (φ−1) = hF (φ).

(c) [Logaritmic Law] If the norm of F (X) is s-monotone, then hF (φk) =
k · hF (φ) for all k ∈ N+.

Other properties of hF depend on properties of the functor F .

(d) [Monotonicity for invariant subobjects] If F sends subobject embeddings
in X to embeddings in S or to surjective maps in S, then, if Y is a
φ-invariant subobject of X, we have hF (φ ↾Y ) ≤ hF (φ).

(e) [Monotonicity for factors] If F sends factors in X to surjective maps in S

or to embeddings in S, then, if α : T → S is an epimorphism in X such
that α ◦ ψ = φ ◦ α, then hF (φ) ≤ hF (ψ).

(f) [Continuity for direct limits] If F is covariant and sends direct limits to
direct limits, then hF (φ) = supi∈I hF (φ ↾Xi

) whenever X = lim−→Xi and
Xi is a φ-invariant subobject of X for every i ∈ I.

(g) [Continuity for inverse limits] If F is contravariant and sends inverse limits
to direct limits, then hF (φ) = supi∈I hF (φi) whenever X = lim←−Xi and
(Xi, φi) is a factor of (X,φ) for every i ∈ I.

In the following subsections we describe how the known entropies can be
obtained from this general scheme. For all the details we refer to [27]

3.2 Set-theoretic entropy

In this section we consider the category Set of sets and maps and its (non-
full) subcategory Setfin having as morphisms all the finitely many-to-one maps.
We construct a functor atr : Set→ S and a functor str : Setfin → S, which give
the set-theoretic entropy h and the covariant set-theoretic entropy h∗, introduced
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in [5] and [20] respectively. We also recall that they are related to invariants for
self-maps of sets introduced in [34] and [3] respectively.

A natural semilattice with zero, arising from a set X, is the family (S(X),∪)
of all finite subsets of X with neutral element ∅. Moreover the map defined by
v(A) = |A| for every A ∈ S(X) is an s-monotone norm. So let atr(X) =
(S(X),∪, v). Consider now a map λ : X → Y between sets and define atr(λ) :
S(X) → S(Y ) by A 7→ λ(A) for every A ∈ S(X). This defines a covariant
functor

atr : Set→ S

such that
hatr = h.

Consider now a finite-to-one map λ : X → Y . As above let str(X) =
(S(X),∪, v), while str(λ) : str(Y ) → str(X) is given by A 7→ λ−1(A) for every
A ∈ S(Y ). This defines a contravariant functor

str : Setfin → S

such that
hstr = h∗.

3.3 Topological entropy for compact spaces

In this subsection we consider in the general scheme the topological entropy
htop introduced in [1] for continuous self-maps of compact spaces. So we specify
the general scheme for the category X = CTop of compact spaces and contin-
uous maps, constructing the functor cov : CTop→ S.

For a topological space X let cov(X) be the family of all open covers U of
X, where it is allowed ∅ ∈ U . For U ,V ∈ cov(X) let U ∨ V = {U ∩ V : U ∈
U , V ∈ V} ∈ cov(X). One can easily prove commutativity and associativity of
∨; moreover, let E = {X} denote the trivial cover. Then

(cov(X),∨, E) is a commutative monoid.

For a topological space X, one has a natural preorder U ≺ V on cov(X);
indeed, V refines U if for every V ∈ V there exists U ∈ U such that V ⊆ U .
Note that this preorder has bottom element E , and that it is not an order. In
general, U ∨ U 6= U , yet U ∨ U ∼ U , and more generally

U ∨ U ∨ . . . ∨ U ∼ U . (4)

For X, Y topological spaces, a continuous map φ : X → Y and U ∈ cov(Y ),
let φ−1(U) = {φ−1(U) : U ∈ U}. Then, as φ−1(U ∨ V) = φ−1(U) ∨ φ−1(V), we
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have that cov(φ) : cov(Y ) → cov(X), defined by U 7→ φ−1(U), is a semigroup
homomorphism. This defines a contravariant functor cov from the category of
all topological spaces to the category of commutative semigroups.

To get a semigroup norm on cov(X) we restrict this functor to the sub-
category CTop of compact spaces. For a compact space X and U ∈ cov(X),
let

M(U) = min{|V| : V a finite subcover of U} and v(U) = logM(U).

Now (4) gives v(U ∨ U ∨ . . . ∨ U) = v(U), so

(cov(X),∨, v) is an arithmetic normed semigroup.

For every continuous map φ : X → Y of compact spaces and W ∈ cov(Y ),
the inequality v(φ−1(W)) ≤ v(W) holds. Consequently

cov(φ) : cov(Y )→ cov(X), defined by W 7→ φ−1(W), is a morphism in S.

Therefore the assignments X 7→ cov(X) and φ 7→ cov(φ) define a contravariant
functor

cov : CTop→ S.

Moreover,

hcov = htop.

Since the functor cov takes factors in CTop to embeddings in S, embeddings
in CTop to surjective morphisms in S, and inverse limits in CTop to direct
limits in S, we have automatically that the topological entropy htop is monotone
for factors and restrictions to invariant subspaces, continuous for inverse limits,
is invariant under conjugation and inversion, and satisfies the Logarithmic Law.

3.4 Measure entropy

In this subsection we consider the category MesSp of probability measure
spaces (X,B, µ) and measure preserving maps, constructing a functor mes :
MesSp → S in order to obtain from the general scheme the measure entropy
hmes from [53] and [74].

For a measure space (X,B, µ) let P(X) be the family of all measurable
partitions ξ = {A1, A2, . . . , Ak} of X. For ξ, η ∈ P(X) let ξ ∨ η = {U ∩ V : U ∈
ξ, V ∈ η}. As ξ ∨ ξ = ξ, with zero the cover ξ0 = {X},

(P(X),∨) is a semilattice with 0.
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Moreover, for ξ = {A1, A2, . . . , Ak} ∈ P(X) the entropy of ξ is given by Boltz-
mann’s Formula

v(ξ) = −
k∑

i=1

µ(Ak) log µ(Ak).

This is a monotone semigroup norm making P(X) a normed semilattice and a
normed monoid.

Consider now a measure preserving map T : X → Y . For a cover ξ =
{Ai}ki=1 ∈ P(Y ) let T−1(ξ) = {T−1(Ai)}ki=1. Since T is measure preserving,
one has T−1(ξ) ∈ P(X) and µ(T−1(Ai)) = µ(Ai) for all i = 1, . . . , k. Hence,
v(T−1(ξ)) = v(ξ) and so

mes(T ) : P(Y )→ P(X), defined by ξ 7→ T−1(ξ), is a morphism in SL.

Therefore the assignments X 7→ P(X) and T 7→ mes(T ) define a contravariant
functor

mes : MesSp→ SL .

Moreover,
hmes = hmes.

The functor mes : MesSp → SL is covariant and sends embeddings in
MesSp to surjective morphisms in SL and sends surjective maps in MesSp to
embeddings in SL. Hence, similarly to htop, also the measure-theoretic entropy
hmes is monotone for factors and restrictions to invariant subspaces, continuous
for inverse limits, is invariant under conjugation and inversion, satisfies the
Logarithmic Law and the Weak Addition Theorem.

In the next remark we briefly discuss the connection between measure en-
tropy and topological entropy.

Remark 3. (a) If X is a compact metric space and φ : X → X is a
continuous surjective self-map, by Krylov-Bogolioubov Theorem [9] there
exist some φ-invariant Borel probability measures µ on X (i.e., making
φ : (X,µ) → (X,µ) measure preserving). Denote by hµ the measure
entropy with respect to the measure µ. The inequality hµ(φ) ≤ htop(φ)
for every µ ∈ M(X,φ) is due to Goodwyn [41]. Moreover the variational
principle (see [84, Theorem 8.6]) holds true:

htop(φ) = sup{hµ(φ) : µ φ-invariant measure on X}.

(b) In the computation of the topological entropy it is possible to reduce to
surjective continuous self-maps of compact spaces. Indeed, for a com-
pact space X and a continuous self-map φ : X → X, the set Eφ(X) =⋂
n∈N φ

n(X) is closed and φ-invariant, the map φ ↾Eφ(X): Eφ(X)→ Eφ(X)
is surjective and htop(φ) = htop(φ ↾Eφ(X)) (see [84]).
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(c) In the case of a compact group K and a continuous surjective endomor-
phism φ : K → K, the group K has its unique Haar measure and so φ is
measure preserving as noted by Halmos [49]. In particular both htop and
hmes are available for surjective continuous endomorphisms of compact
groups and they coincide as proved in the general case by Stoyanov [75].

In other terms, denote by CGrp the category of all compact groups and
continuous homomorphisms, and by CGrpe the non-full subcategory of
CGrp, having as morphisms all epimorphisms in CGrp. So in the fol-
lowing diagram we consider the forgetful functor V : CGrpe → Mes,
while i is the inclusion of CGrpe in CGrp as a non-full subcategory and
U : CGrp→ Top is the forgetful functor:

CGrpe
i //

V
��

CGrp
U // Top

Mes

For a surjective endomorphism φ of the compact group K, we have then
hmes(V (φ)) = htop(U(φ)).

3.5 Algebraic entropy

Here we consider the category Grp of all groups and their homomorphisms
and its subcategory AbGrp of all abelian groups. We construct two functors
sub : AbGrp → SL and pet : Grp → S that permits to find from the general
scheme the two algebraic entropies ent and halg. For more details on these
entropies see the next section.

Let G be an abelian group and let (F(G), ·) be the semilattice consisting of
all finite subgroups of G. Letting v(F ) = log |F | for every F ∈ F(G), then

(F(G), ·, v) is a normed semilattice

and the norm v is monotone.
For every group homomorphism φ : G→ H,

the map F(φ) : F(G)→ F(H), defined by F 7→ φ(F ), is a morphism in SL.

Therefore the assignments G 7→ F(G) and φ 7→ F(φ) define a covariant functor

sub : AbGrp→ SL .

Moreover
hsub = ent .
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Since the functor sub takes factors in AbGrp to surjective morphisms in
S, embeddings in AbGrp to embeddings in S, and direct limits in AbGrp

to direct limits in S, we have automatically that the algebraic entropy ent is
monotone for factors and restrictions to invariant subspaces, continuous for di-
rect limits, invariant under conjugation and inversion, satisfies the Logarithmic
Law.

For a group G let H(G) be the family of all finite non-empty subsets of
G. Then H(G) with the operation induced by the multiplication of G is a
monoid with neutral element {1}. Moreover, letting v(F ) = log |F | for every
F ∈ H(G) makes H(G) a normed semigroup. For an abelian group G the
monoid H(G) is arithmetic since for any F ∈ H(G) the sum of n summands
satisfies |F + . . .+F | ≤ (n+1)|F |. Moreover, (H(G),⊆) is an ordered semigroup
and the norm v is s-monotone.

For every group homomorphism φ : G→ H,

the map H(φ) : H(G)→ H(H), defined by F 7→ φ(F ), is a morphism in S.

Consequently the assignments G 7→ (H(G), v) and φ 7→ H(φ) give a covariant
functor

pet : Grp→ S.

Hence
hpet = halg.

Note that the functor sub is a subfunctor of pet : AbGrp→ S as F(G) ⊆ H(G)
for every abelian group G.

As for the algebraic entropy ent, since the functor pet takes factors in Grp to
surjective morphisms in S, embeddings in Grp to embeddings in S, and direct
limits in Grp to direct limits in S, we have automatically that the algebraic
entropy halg is monotone for factors and restrictions to invariant subspaces,
continuous for direct limits, invariant under conjugation and inversion, satisfies
the Logarithmic Law.

3.6 htop and halg in locally compact groups

As mentioned above, Bowen introduced topological entropy for uniformly
continuous self-maps of metric spaces in [11]. His approach turned out to be es-
pecially efficient in the case of locally compact spaces provided with some Borel
measure with good invariance properties, in particular for continuous endomor-
phisms of locally compact groups provided with their Haar measure. Later
Hood in [51] extended Bowen’s definition to uniformly continuous self-maps of
arbitrary uniform spaces and in particular to continuous endomorphisms of (not
necessarily metrizable) locally compact groups.
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On the other hand, Virili [80] extended the notion of algebraic entropy
to continuous endomorphisms of locally compact abelian groups, inspired by
Bowen’s definition of topological entropy (based on the use of Haar measure).
As mentioned in [20], his definition can be extended to continuous endomor-
phisms of arbitrary locally compact groups.

Our aim here is to show that both entropies can be obtained from our general
scheme in the case of measure preserving topological automorphisms of locally
compact groups. To this end we recall first the definitions of htop and halg in
locally compact groups. Let G be a locally compact group, let C(G) be the
family of all compact neighborhoods of 1 and µ be a right Haar measure on G.
For a continuous endomorphism φ : G→ G, U ∈ C(G) and a positive integer n,
the n-th cotrajectory Cn(φ,U) = U ∩ φ−1(U) ∩ . . . ∩ φ−n+1(U) is still in C(G).
The topological entropy htop is intended to measure the rate of decay of the
n-th cotrajectory Cn(φ,U). So let

Htop(φ,U) = lim sup
n→∞

− logµ(Cn(φ,U))

n
, (5)

which does not depend on the choice of the Haar measure µ. The topological
entropy of φ is

htop(φ) = sup{Htop(φ,U) : U ∈ C(G)}.

If G is discrete, then C(G) is the family of all finite subsets of G containing 1,
and µ(A) = |A| for subsets A of G. So Htop(φ,U) = 0 for every U ∈ C(G),
hence htop(φ) = 0.

To define the algebraic entropy of φ with respect to U ∈ C(G) one uses the
n-th φ-trajectory Tn(φ,U) = U · φ(U) · . . . · φn−1(U) of U , that still belongs to
C(G). It turns out that the value

Halg(φ,U) = lim sup
n→∞

logµ(Tn(φ,U))

n
(6)

does not depend on the choice of µ. The algebraic entropy of φ is

halg(φ) = sup{Halg(φ,U) : U ∈ C(G)}.

The term “algebraic” is motivated by the fact that the definition of Tn(φ,U)
(unlike Cn(φ,U)) makes use of the group operation.

As we saw above (6) is a limit when G is discrete. Moreover, if G is compact,
then halg(φ) = Halg(φ,G) = 0.

In the sequel, G will be a locally compact group. We fix also a measure
preserving topological automorphism φ : G→ G.
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To obtain the entropy htop(φ) via semigroup entropy fix some V ∈ C(G)
with µ(V ) ≤ 1. Then consider the subset

C0(G) = {U ∈ C(G) : U ⊆ V }.

Obviously, C0(G) is a monoid with respect to intersection, having as neutral
element V . To obtain a pseudonorm v on C0(G) let v(U) = − logµ(U) for any
U ∈ C0(G). Then φ defines a semigroup isomorphism φ# : C0(G) → C0(G) by
φ#(U) = φ−1(U) for any U ∈ C0(G). It is easy to see that φ# : C0(G)→ C0(G)
is a an automorphism in S∗ and the semigroup entropy hS∗(φ

#) coincides with
htop(φ) since Htop(φ,U) ≤ Htop(φ,U

′) whenever U ⊇ U ′.
To obtain the entropy halg(φ) via semigroup entropy fix some W ∈ C(G)

with µ(W ) ≥ 1. Then consider the subset

C1(G) = {U ∈ C(G) : U ⊇W}

of the set C(G). Note that for U1, U2 ∈ C1(G) also U1U2 ∈ C1(G). Thus C1(G)
is a semigroup. To define a pseudonorm v on C1(G) let v(U) = logµ(U) for any
U ∈ C1(G). Then φ defines a semigroup isomorphism φ# : C1(G) → C1(G) by
φ#(U) = φ(U) for any U ∈ C1(G). It is easy to see that φ# : C1(G)→ C1(G) is
a morphism in S∗ and the semigroup entropy hS∗(φ#) coincides with halg(φ),
since C1(G) is cofinal in C(G) and Halg(φ,U) ≤ Halg(φ,U

′) whenever U ⊆ U ′.
Remark 4. We asked above the automorphism φ to be “measure preserv-

ing”. In this way one rules out many interesting cases of topological automor-
phisms that are not measure preserving (e.g., all automorphisms of R beyond
± idR). This condition is imposed in order to respect the definition of the mor-
phisms in S∗. If one further relaxes this condition on the morphisms in S∗

(without asking them to be contracting maps with respect to the pseudonorm),
then one can obtain a semigroup entropy that covers the topological and the
algebraic entropy of arbitrary topological automorphisms of locally compact
groups (see [26] for more details).

3.7 Algebraic i-entropy

For a ring R we denote by mod R the category of right R-modules and R-
module homomorphisms. We consider here the algebraic i-entropy introduced
in [70], giving a functor subi : mod R → SL, to find enti from the general
scheme. Here i : mod R → R+ is an invariant of mod R (i.e., i(0) = 0 and
i(M) = i(N) whenever M ∼= N). Consider the following conditions:

(a) i(N1 +N2) ≤ i(N1) + i(N2) for all submodules N1, N2 of M ;

(b) i(M/N) ≤ i(M) for every submodule N of M ;
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(b∗) i(N) ≤ i(M) for every submodule N of M .

The invariant i is called subadditive if (a) and (b) hold, and it is called preadditive
if (a) and (b∗) hold.

For M ∈ mod R denote by L(M) the lattice of all submodules of M . The
operations are intersection and sum of two submodules, the bottom element is
{0} and the top element is M . Now fix a subadditive invariant i of mod R and
for a right R-module M let

Fi(M) = {submodules N of M with i(M) <∞},

which is a subsemilattice of L(M) ordered by inclusion. Define a norm on Fi(M)
setting

v(H) = i(H)

for every H ∈ Fi(M). The norm v is not necessarily monotone (it is monotone
if i is both subadditive and preadditive).

For every homomorphism φ : M → N in mod R,

Fi(φ) : Fi(M)→ Fi(N), defined by Fi(φ)(H) = φ(H), is a morphism in SL.

Moreover the norm v makes the morphism Fi(φ) contractive by the property
(b) of the invariant. Therefore, the assignments M 7→ Fi(M) and φ 7→ Fi(φ)
define a covariant functor

subi : mod R → SL .

We can conclude that, for a ring R and a subadditive invariant i of mod R,

hsubi
= enti .

If i is preadditive, the functor subi sends monomorphisms to embeddings
and so enti is monotone under taking submodules. If i is both subadditive and
preadditive then for every R-module M the norm of subi(M) is s-monotone, so
enti satisfies also the Logarithmic Law. In general this entropy is not monotone
under taking quotients, but this can be obtained with stronger hypotheses on i
and with some restriction on the domain of subi.

A clear example is given by vector spaces; the algebraic entropy entdim for
linear transformations of vector spaces was considered in full details in [36]:

Example 4. Let K be a field. Then for every K-vector space V let Fd(M)
be the set of all finite-dimensional subspaces N of M .

Then (Fd(V ),+) is a subsemilattice of (L(V ),+) and v(H) = dimH defines
a monotone norm on Fd(V ). For every morphism φ : V →W in mod K
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the map Fd(φ) : Fd(V )→ Fd(W ), defined by H 7→ φ(H), is a morphism in SL.

Therefore, the assignments M 7→ Fd(M) and φ 7→ Fd(φ) define a covariant
functor

subd : mod K → SL .

Then

hsubd
= entdim .

Note that this entropy can be computed ad follows. Every flow φ : V → V of
mod K can be considered as a K[X]-module Vφ letting X act on V as φ. Then
hsubd

(φ) coincides with the rank of the K[X]-module Vφ.

3.8 Adjoint algebraic entropy

We consider now again the category Grp of all groups and their homomor-
phisms, giving a functor sub⋆ : Grp→ SL such that the entropy defined using
this functor coincides with the adjoint algebraic entropy ent⋆ introduced in [24].

For a group G denote by C(G) the family of all subgroups of finite index in
G. It is a subsemilattice of (L(G),∩). For N ∈ C(G), let

v(N) = log[G : N ];

then

(C(G), v) is a normed semilattice,

with neutral element G; moreover the norm v is monotone.

For every group homomorphism φ : G→ H

the map C(φ) : C(H)→ C(G), defined by N 7→ φ−1(N), is a morphism in S.

Then the assignments G 7→ C(G) and φ 7→ C(φ) define a contravariant functor

sub⋆ : Grp→ SL .

Moreover

hsub⋆ = ent⋆ .

There exists also a version of the adjoint algebraic entropy for modules,
namely the adjoint algebraic i-entropy ent⋆i (see [79]), which can be treated
analogously.
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3.9 Topological entropy for totally disconnected compact groups

Let (G, τ) be a totally disconnected compact group and consider the filter
base VG(1) of open subgroups of G. Then

(VG(1),∩) is a normed semilattice

with neutral element G ∈ VG(1) and norm defined by vo(V ) = log[G : V ] for
every V ∈ VG(1).

For a continuous homomorphism φ : G→ H between compact groups,

the map VH(1)→ VG(1), defined by V 7→ φ−1(V ), is a morphism in SL.

This defines a contravariant functor

sub⋆o : TdCGrp→ SL,

which is a subfunctor of sub⋆.
Then the entropy hsub⋆

o
coincides with the restriction to TdCGrp of the

topological entropy htop.
This functor is related also to the functor cov : TdCGrp → S. Indeed,

let G be a totally disconnected compact group. Each V ∈ VG(1) defines a
cover UV = {x · V }x∈G of G with vo(V ) = v(UV ). So the map V 7→ UV
defines an isomorphism between the normed semilattice sub⋆o(G) = VG(1) and
the subsemigroup covs(G) = {UV : V ∈ VG(1)} of cov(G).

3.10 Bridge Theorem

In Definition 1 we have formalized the concept of Bridge Theorem between
entropies h1 : X1 → R+ and h2 : X2 → R+ via functors ε : X1 → X2. Obviously,
the Bridge Theorem with respect to the functor ε is available when each hi has
the form hi = hFi

for appropriate functors Fi : Xi → S (i = 1, 2) that commute
with ε (i.e., F1 = F2ε), that is

h2(ε(φ)) = h1(φ) for all morphisms φ in X1.

Actually, it is sufficient that Fi commute with ε “modulo hS” (i.e., hSF1 =
hSF2ε) to obtain this conclusion:

X1

ε

��

F1

))SSSSSSSS

h1

��
S hS

// R+

X2
F2

55llllllll

h2

@@

(7)
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In particular the Pontryagin duality functor ̂: AbGrp → CAbGrp con-
nects the category of abelian groups and that of compact abelian groups so
connects the respective entropies halg and htop by a Bridge Theorem. Taking
the restriction to torsion abelian groups and the totally disconnected compact
groups one obtains:

Theorem 6 (Weiss Bridge Theorem). [85] Let K be a totally disconnected
compact abelian group and φ : K → K a continuous endomorphism. Then
htop(φ) = ent(φ̂).

Proof. Since totally disconnected compact groups are zero-dimensional, every
open finite cover U of K admits a refinement consisting of clopen sets in K.
Moreover, since K admits a local base at 0 formed by open subgroups, it is
possible to find a refinement of U of the form UV for some open subgroup V.
This proves that covs(K) is cofinal in cov(K). Hence, we have

htop(φ) = hS(cov(φ)) = hS(covs(φ)).

Moreover, we have seen above that covs(K) is isomorphic to sub⋆o(K), so one
can conclude that

hS(covs(φ)) = hS(sub⋆o(φ)).

Now the semilattice isomorphism L → F(K̂) given by N 7→ N⊥ preserves the
norms, so it is an isomorphism in S. Hence

hS(sub⋆o(φ)) = hS(sub(φ̂))

and consequently

htop(φ) = hS(sub(φ̂)) = ent(φ̂).

QED

The proof of Weiss Bridge Theorem can be reassumed by the following
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diagram.

(K̂, φ̂)
sub//

hsub

��

((F(K̂),+); sub(φ̂))

̂
��

hS

RRRRRRRRRRR

))RRRRRRRRRRR((sub⋆o(K),∩); sub⋆o(φ))

γ

��
R+

((covs(K),∨);φ)
� _

ι
��

(K,φ)

̂

>>

cov
//

hcov

AA

((cov(K),∨); cov(φ))

hSkkkkkkkkkkkk

55kkkkkkkkkkkk

Similar Bridge Theorems hold for other known entropies; they can be proved
using analogous diagrams (see [27]). The first one that we recall concerns the
algebraic entropy ent and the adjoint algebraic entropy ent⋆:

Theorem 7. Let φ : G → G be an endomorphism of an abelian group.
Then ent⋆(φ) = ent(φ̂).

The other two Bridge Theorems that we recall here connect respectively the
set-theoretic entropy h with the topological entropy htop and the contravariant
set-theoretic entropy h∗ with the algebraic entropy halg.

We need to recall first the notion of generalized shift, which extend the
Bernoulli shifts. For a map λ : X → Y between two non-empty sets and a fixed
non-trivial group K, define σλ : KY → KX by σλ(f) = f ◦ λ for f ∈ KY . For
Y = X, λ is a self-map of X and σλ was called generalized shift of KX (see
[3, 5]). In this case

⊕
X K is a σλ-invariant subgroup of KX precisely when λ

is finitely many-to-one. We denote σλ ↾⊕
X K by σ⊕λ .

Item (a) in the next theorem was proved in [5] (see also [20, Theorem 7.3.4])
while item (b) is [20, Theorem 7.3.3] (in the abelian case it was obtained in [3]).

Theorem 8. [5] Let K be a non-trivial finite group, let X be a set and
λ : X → X a self-map.

(a) Then htop(σλ) = h(λ) log |K|.

(b) If λ is finite-to-one, then halg(σ
⊕
λ ) = h∗(λ) log |K|.

In terms of functors, fixed a non-trivial finite group K, let FK : Set →
TdCGrp be the functor defined on flows, sending a non-empty set X to KX ,
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∅ to 0, a self-map λ : X → X to σλ : KY → KX when X 6= ∅. Then the pair
(h, htop) satisfies (BTFK

) with constant log |K|.
Analogously, let GK : Setfin → Grp be the functor defined on flows sending

X to
⊕

X K and a finite-to-one self-map λ : X → X to σ⊕λ :
⊕

X K →
⊕

X K.
Then the pair (h∗, halg) satisfies (BTGK

) with constant log |K|.
Remark 5. At the conference held in Porto Cesareo, R. Farnsteiner posed

the following question related to the Bridge Theorem. Is htop studied in non-
Hausdorff compact spaces?

The question was motivated by the fact that the prime spectrum Spec(A)
of a commutative ring A is usually a non-Hausdorff compact space. Related
to this question and to the entropy hλ defined for endomorphisms φ of local
Noetherian rings A (see §2.5), one may ask if there is any relation (e.g., a
weak Bridge Theorem) between these two entropies and the functor Spec; more
precisely, one can ask whether there is any stable relation between htop(Spec(φ))
and hλ(φ).

4 Algebraic entropy and its specific properties

In this section we give an overview of the basic properties of the algebraic
entropy and the adjoint algebraic entropy. Indeed, we have seen that they
satisfy the general scheme presented in the previous section, but on the other
hand they were defined for specific group endomorphisms and these definitions
permit to prove specific features, as we are going to briefly describe. For further
details and examples see [19], [24] and [20].

4.1 Definition and basic properties

Let G be a group and φ : G → G an endomorphism. For a finite subset F
of G, and for n ∈ N+, the n-th φ-trajectory of F is

Tn(φ, F ) = F · φ(F ) · . . . · φn−1(F );

moreover let

γφ,F (n) = |Tn(φ, F )|. (8)

The algebraic entropy of φ with respect to F is

Halg(φ, F ) = lim
n→∞

log γφ,F (n)

n
;

This limit exists as Halg(φ, F ) = hS(H(φ), F ) and so Theorem 1 applies (see
also [20] for a direct proof of the existence of this limit and [19] for the abelian
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case). The algebraic entropy of φ : G→ G is

halg(φ) = sup{Halg(φ, F ) : F finite subset of G} = hS(H(φ)).

Moreover

ent(φ) = sup{Halg(φ, F ) : F finite subgroup of G}.
If G is abelian, then ent(φ) = ent(φ ↾t(G)) = halg(φ ↾t(G)).

Moreover, halg(φ) = ent(φ) if G is locally finite, that is every finite subset of
G generates a finite subgroup; note that every locally finite group is obviously
torsion, while the converse holds true under the hypothesis that the group is
abelian (but the solution of Burnside Problem shows that even groups of finite
exponent fail to be locally finite).

For every abelian group G, the identity map has halg(idG) = 0 (as the
normed semigroup H(G) is arithmetic, as seen above). Another basic example
is given by the endomorphisms of Z, indeed if φ : Z→ Z is given by φ(x) = mx
for some positive integer m, then halg(φ) = logm. The fundamental example
for the algebraic entropy is the right Bernoulli shift:

Example 5. (Bernoulli normalization) Let K be a group.

(a) The right Bernoulli shift βK : K(N) → K(N) is defined by

(x0, . . . , xn, . . .) 7→ (1, x0, . . . , xn, . . .).

Then halg(βK) = log |K|, with the usual convention that log |K| = ∞
when K is infinite.

(b) The left Bernoulli shift Kβ : K(N) → K(N) is defined by

(x0, . . . , xn, . . .) 7→ (x1, . . . , xn+1, . . .).

Then halg(Kβ) = 0, as Kβ is locally nilpotent.

The following basic properties of the algebraic entropy are consequences of
the general scheme and were proved directly in [20].

Fact 1. Let G be a group and φ : G→ G an endomorphism.

(a) [Invariance under conjugation] If φ = ξ−1ψξ, where ψ : H → H is an
endomorphism and ξ : G→ H isomorphism, then halg(φ) = halg(ψ).

(b) [Monotonicity] If H is a φ-invariant normal subgroup of the group G, and
φ : G/H → G/H is the endomorphism induced by φ, then halg(φ) ≥
max{halg(φ ↾H), halg(φ)}.
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(c) [Logarithmic Law] For every k ∈ N we have halg(φ
k) = k · halg(φ); if φ is

an automorphism, then halg(φ) = halg(φ
−1), so halg(φ

k) = |k| ·halg(φ) for
every k ∈ Z.

(d) [Continuity] If G is direct limit of φ-invariant subgroups {Gi : i ∈ I}, then
halg(φ) = supi∈I halg(φ ↾Gi

).

(e) [Weak Addition Theorem] If G = G1 × G2 and φi : Gi → Gi is an
endomorphism for i = 1, 2, then halg(φ1 × φ2) = halg(φ1) + halg(φ2).

As described for the semigroup entropy in the previous section, and as noted
in [20, Remark 5.1.2], for group endomorphisms φ : G→ G it is possible to define
also a “left” algebraic entropy, letting for a finite subset F of G, and for n ∈ N+,

T#
n (φ, F ) = φn−1(F ) · . . . · φ(F ) · F,

H#
alg(φ, F ) = lim

n→∞

log |T#
n (φ, F )|
n

and
h#
alg(φ) = sup{H#

alg(φ, F ) : F finite subset of G}.
Answering a question posed in [20, Remark 5.1.2], we see now that

halg(φ) = h#
alg(φ).

Indeed, every finite subset of G is contained in a finite subset F of G such that
1 ∈ F and F = F−1; for such F we have

Halg(φ, F ) = H#
alg(φ, F ),

since, for every n ∈ N+,

Tn(φ, F )−1 = φn−1(F )−1 · . . . · φ(F )−1 · F−1 =

φn−1(F−1) · . . . · φ(F−1) · F−1 = T#
n (φ, F )

and so |Tn(φ, F )| = |Tn(φ, F )−1| = |T#
n (φ, F )|.

4.2 Algebraic Yuzvinski Formula, Addition Theorem and Uni-

queness

We recall now some of the main deep properties of the algebraic entropy
in the abelian case. They are not consequences of the general scheme and are
proved using the specific features of the algebraic entropy coming from the
definition given above. We give here the references to the papers where these
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results were proved, for a general exposition on algebraic entropy see the survey
paper [20].

The next proposition shows that the study of the algebraic entropy for
torsion-free abelian groups can be reduced to the case of divisible ones. It
was announced for the first time by Yuzvinski [91], for a proof see [19].

Proposition 1. Let G be a torsion-free abelian group, φ : G → G an en-
domorphism and denote by φ̃ the (unique) extension of φ to the divisible hull
D(G) of G. Then halg(φ) = halg(φ̃).

Let f(t) = ant
n + a1t

n−1 + . . .+ a0 ∈ Z[t] be a primitive polynomial and let
{λi : i = 1, . . . , n} ⊆ C be the set of all roots of f(t). The (logarithmic) Mahler
measure of f(t) is

m(f(t)) = log |an|+
∑

|λi|>1

log |λi|.

The Mahler measure plays an important role in number theory and arith-
metic geometry and is involved in the famous Lehmer Problem, asking whether
inf{m(f(t)) : f(t) ∈ Z[t] primitive,m(f(t)) > 0} > 0 (for example see [31] and
[50]).

If g(t) ∈ Q[t] is monic, then there exists a smallest positive integer s such
that sg(t) ∈ Z[t]; in particular, sg(t) is primitive. The Mahler measure of g(t) is
defined as m(g(t)) = m(sg(t)). Moreover, if φ : Qn → Qn is an endomorphism,
its characteristic polynomial pφ(t) ∈ Q[t] is monic, and the Mahler measure of
φ is m(φ) = m(pφ(t)).

The formula (9) below was given a direct proof recently in [37]; it is the
algebraic counterpart of the so-called Yuzvinski Formula for the topological
entropy [91] (see also [54]). It gives the values of the algebraic entropy of
linear transformations of finite dimensional rational vector spaces in terms of
the Mahler measure, so it allows for a connection of the algebraic entropy with
Lehmer Problem.

Theorem 9 (Algebraic Yuzvinski Formula). [37] Let n ∈ N+ and φ : Qn →
Qn an endomorphism. Then

halg(φ) = m(φ). (9)

The next property of additivity of the algebraic entropy was first proved for
torsion abelian groups in [28], while the proof of the general case was given in
[19] applying the Algebraic Yuzvinski Formula.

Theorem 10 (Addition Theorem). [19] Let G be an abelian group, φ : G→
G an endomorphism, H a φ-invariant subgroup of G and φ : G/H → G/H the
endomorphism induced by φ. Then

halg(φ) = halg(φ ↾H) + halg(φ).
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Moreover, uniqueness is available for the algebraic entropy in the category of
all abelian groups. As in the case of the Addition Theorem, also the Uniqueness
Theorem was proved in general in [19], while it was previously proved in [28]
for torsion abelian groups.

Theorem 11 (Uniqueness Theorem). [19] The algebraic entropy

halg : FlowAbGrp → R+

is the unique function such that:

(a) halg is invariant under conjugation;

(b) halg is continuous on direct limits;

(c) halg satisfies the Addition Theorem;

(d) for K a finite abelian group, halg(βK) = log |K|;

(e) halg satisfies the Algebraic Yuzvinski Formula.

4.3 The growth of a finitely generated flow in Grp

In order to measure and classify the growth rate of maps N→ N, one need
the relation � defined as follows. For γ, γ′ : N → N let γ � γ′ if there exist
n0, C ∈ N+ such that γ(n) ≤ γ′(Cn) for every n ≥ n0. Moreover γ ∼ γ if γ � γ′
and γ′ � γ (then ∼ is an equivalence relation), and γ ≺ γ′ if γ � γ′ but γ 6∼ γ′.

For example, for every α, β ∈ R≥0, n
α ∼ nβ if and only if α = β; if p(t) ∈ Z[t]

and p(t) has degree d ∈ N, then p(n) ∼ nd. On the other hand, an ∼ bn for
every a, b ∈ R with a, b > 1, so in particular all exponentials are equivalent with
respect to ∼.

So a map γ : N→ N is called:

(a) polynomial if γ(n) � nd for some d ∈ N+;

(b) exponential if γ(n) ∼ 2n;

(c) intermediate if γ(n) ≻ nd for every d ∈ N+ and γ(n) ≺ 2n.

Let G be a group, φ : G → G an endomorphism and F a non-empty finite
subset of G. Consider the function, already mentioned in (8),

γφ,F : N+ → N+ defined by γφ,F (n) = |Tn(φ, F )| for every n ∈ N+.

Since
|F | ≤ γφ,F (n) ≤ |F |n for every n ∈ N+,
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the growth of γφ,F is always at most exponential; moreover, Halg(φ, F ) ≤ log |F |.
So, following [22] and [20], we say that φ has polynomial (respectively, exponen-
tial, intermediate) growth at F if γφ,F is polynomial (respectively, exponential,
intermediate).

Before proceeding further, let us make an important point here. All prop-
erties considered above concern practically the φ-invariant subgroup Gφ,F of
G generated by the trajectory T (φ, F ) =

⋃
n∈N+

Tn(φ, F ) and the restriction
φ ↾Gφ,F

.

Definition 8. We say that the flow (G,φ) in Grp is finitely generated if
G = Gφ,F for some finite subset F of G.

Hence, all properties listed above concern finitely generated flows in Grp.
We conjecture the following, knowing that it holds true when G is abelian or
when φ = ifG: if the flow (G,φ) is finitely generated, and if G = Gφ,F and
G = Gφ,F ′ for some finite subsets F and F ′ of G, then γφ,F and γφ,F ′ have the
same type of growth.
In this case the growth of a finitely generated flow Gφ,F would not depend on
the specific finite set of generators F (so F can always be taken symmetric).
In particular, one could speak of growth of a finitely generated flow without
any reference to a specific finite set of generators. Nevertheless, one can give in
general the following.

Definition 9. Let (G,φ) be a finitely generated flow in Grp. We say that
(G,φ) has

(a) polynomial growth if γφ,F is polynomial for every finite subset F of G;

(b) exponential growth if there exists a finite subset F of G such that γφ,F is
exponential;

(c) intermediate growth otherwise.

We denote by Pol and Exp the classes of finitely generated flows in Grp of
polynomial and exponential growth respectively. Moreover, M = Pol ∪ Exp is
the class of finitely generated flows of non-intermediate growth.

This notion of growth generalizes the classical one of growth of a finitely
generated group given independently by Schwarzc [72] and Milnor [56]. Indeed,
if G is a finitely generated group and X is a finite symmetric set of generators of
G, then γX = γidG,X is the classical growth function of G with respect to X. For
a connection of the terminology coming from the theory of algebraic entropy
and the classical one, note that for n ∈ N+ we have Tn(idG, X) = {g ∈ G :
ℓX(g) ≤ n}, where ℓX(g) is the length of the shortest word w in the alphabet
X such that w = g (see §2.5 (c)). Since ℓX is a norm on G, Tn(idG, X) is the
ball of radius n centered at 1 and γX(n) is the cardinality of this ball.
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Milnor [58] proposed the following problem on the growth of finitely gener-
ated groups.

Problem 1 (Milnor Problem). [58] Let G be a finitely generated group and
X a finite set of generators of G.

(i) Is the growth function γX necessarily equivalent either to a power of n or
to the exponential function 2n?

(ii) In particular, is the growth exponent δG = lim supn→∞
log γX(n)

logn either a
well defined integer or infinity? For which groups is δG finite?

Part (i) of Problem 1 was solved negatively by Grigorchuk in [42, 43, 44, 45],
where he constructed his famous examples of finitely generated groups G with
intermediate growth. For part (ii) Milnor conjectured that δG is finite if and only
if G is virtually nilpotent (i.e., G contains a nilpotent finite-index subgroup).
The same conjecture was formulated by Wolf [89] (who proved that a nilpotent
finitely generated group has polynomial growth) and Bass [6]. Gromov [47]
confirmed Milnor’s conjecture:

Theorem 12 (Gromov Theorem). [47] A finitely generated group G has
polynomial growth if and only if G is virtually nilpotent.

The following two problems on the growth of finitely generated flows of
groups are inspired by Milnor Problem.

Problem 2. Describe the permanence properties of the class M.

Some stability properties of the class M are easy to check. For example,
stability under taking finite direct products is obviously available, while stability
under taking subflows (i.e., invariant subgroups) and factors fails even in the
classical case of identical flows. Indeed, Grigorchuk’s group G is a quotient of a
finitely generated free group F , that has exponential growth; so (F, idF ) ∈ M,
while (G, idG) 6∈ M. Furthermore, letting G = G × F , one has (G, idG) ∈ M,
while (G, idG) 6∈ M, so M is not stable even under taking direct summands.
On the other hand, stability under taking powers is available since (G,φ) ∈M
if and only if (G,φn) ∈M for n ∈ N+.

Problem 3.

(i) Describe the finitely generated groups G such that (G,φ) ∈ M for every
endomorphism φ : G→ G.

(ii) Does there exist a finitely generated group G such that (G, idG) ∈M but
(G,φ) 6∈ M for some endomorphism φ : G→ G?
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In item (i) of the above problem we are asking to describe all finitely gen-
erated groups G of non-intermediate growth such that (G,φ) has still non-
intermediate growth for every endomorphism φ : G→ G. On the other hand, in
item (ii) we ask to find a finitely generated group G of non-intermediate growth
that admits an endomorphism φ : G→ G of intermediate growth.

The basic relation between the growth and the algebraic entropy is given by
below Proposition 2. For a finitely generated group G, an endomorphism φ of
G and a pair X and X ′ of finite generators of G, one has γφ,X ∼ γφ,X′ . Never-
theless, Halg(φ,X) 6= Halg(φ,X

′) may occur; in this case (G,φ) has necessarily
exponential growth. We give two examples to this effect:

Example 6. (a) [20] Let G be the free group with two generators a
and b; then X = {a±1, b±1} gives Halg(idG, X) = log 3 while for X ′ =
{a±1, b±1, (ab)±1} we have Halg(idG, X

′) = log 4.

(b) Let G = Z and φ : Z → Z defined by φ(x) = mx for every x ∈ Z and
with m > 3. Let also X = {0,±1} and X ′ = {0,±1, . . . ± m}. Then
Halg(φ,X) ≤ log |X| = log 3, while Halg(φ,X

′) = halg(φ) = logm.

Proposition 2. [20] Let (G,φ) be a finitely generated flow in Grp.

(a) Then halg(φ) > 0 if and only if (G,φ) has exponential growth.

(b) If (G,φ) has polynomial growth, then halg(φ) = 0.

In general the converse implication in item (b) is not true even for the
identity. Indeed, if (G,φ) has intermediate growth, then halg(φ) = 0 by item
(a). So for Grigorchuk’s group G, the flow (G, idG) has intermediate growth yet
halg(idG) = 0. This motivates the following

Definition 10. Let G be a class of groups and Φ be a class of morphisms.
We say that the pair (G,Φ) satisfies Milnor Paradigm (briefly, MP) if no finitely
generated flow (G,φ) with G ∈ G and φ ∈ Φ can have intermediate growth.

In terms of the class M,

(G,Φ) satisfies MP if and only if (G,Φ) ∈M (∀G ∈ G)(∀φ ∈ Φ).

Equivalently, (G,Φ) satisfies MP when halg(φ) = 0 always implies that (G,φ)
has polynomial growth for finitely generated flows (G,φ) with G ∈ G and φ ∈ Φ.

In these terms Milnor Problem 1 (i) is asking whether the pair (Grp, Id)
satisfies MP, where Id is the class of all identical endomorphisms. So we give
the following general open problem.

Problem 4. (i) Find pairs (G,Φ) satisfying MP.

(ii) For a given Φ determine the properties of the largest class GΦ such that
(GΦ,Φ) satisfies MP.
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(iii) For a given G determine the properties of the largest class ΦG such that
(G,ΦG) satisfies MP.

(iv) Study the Galois correspondence between classes of groups G and classes
of endomorphisms Φ determined by MP.

According to the definitions, the class GId coincides with the class of finitely
generated groups of non-intermediate growth.

The following result solves Problem 4 (iii) for G = AbGrp, showing that
ΦAbGrp coincides with the class E of all endomorphisms.

Theorem 13 (Dichotomy Theorem). [22] There exist no finitely generated
flows of intermediate growth in AbGrp.

Actually, one can extend the validity of this theorem to nilpotent groups.
This leaves open the following particular case of Problem 4. We shall see in
Theorem 14 that the answer to (i) is positive when φ = idG.

Question 1. Let (G,φ) be a finitely generated flow in Grp.

(i) If G is solvable, does (G,φ) ∈M?

(ii) If G is a free group, does (G,φ) ∈M?

We state now explicitly a particular case of Problem 4, inspired by the fact
that the right Bernoulli shifts have no non-trivial quasi-periodic points and they
have uniform exponential growth (see Example 7). In [22] group endomorphisms
φ : G → G without non-trivial quasi-periodic points are called algebraically
ergodic for their connection (in the abelian case and through Pontryagin duality)
with ergodic transformations of compact groups.

Question 2. Let Φ0 be the class of endomorphisms without non-trivial
quasi-periodic points. Is it true that the pair (Grp,Φ0) satisfies MP?

For a finitely generated group G, the uniform exponential growth rate of G
is defined as

λ(G) = inf{Halg(idG, X) : X finite set of generators of G}

(see for instance [15]). Moreover, G has uniform exponential growth if λ(G) > 0.
Gromov [48] asked whether every finitely generated group of exponential growth
is also of uniform exponential growth. This problem was recently solved by
Wilson [88] in the negative.

Since the algebraic entropy of a finitely generated flow (G,φ) in Grp can be
computed as

halg(φ) = sup{Halg(φ, F ) : F finite subset of G such that G = Gφ,F },
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one can give the following counterpart of the uniform exponential growth rate
for flows:

Definition 11. For (G,φ) be a finitely generated flow in Grp let

λ(G,φ) = inf{Halg(φ, F ) : F finite subset of G such that G = Gφ,F }.

The flow (G,φ) is said to have uniformly exponential growth if λ(G,φ) > 0.
Let Expu be the subclass of Exp of all finitely generated flows in Grp of

uniform exponential growth.

Clearly λ(G,φ) ≤ halg(φ), so one has the obvious implication

halg(φ) = 0 ⇒ λ(G,φ) = 0. (10)

To formulate the counterpart of Gromov’s problem on uniformly exponential
growth it is worth to isolate also the class W of the finitely generated flows in
Grp of exponential but not uniformly exponential growth (i.e., W = Exp \
Expu). Then W is the class of finitely generated flows (G,φ) in Grp for which
(10) cannot be inverted, namely halg(φ) > 0 = λ(G,φ).

We start stating the following problem.

Problem 5. Describe the permanence properties of the classes Expu and
W.

It is easy to check that Expu and W are stable under taking direct prod-
ucts. On the other hand, stability of Expu under taking subflows (i.e., invariant
subgroups) and factors fails even in the classical case of identical flows. Indeed,
Wilson’s group W is a quotient of a finitely generated free group F , that has
uniform exponential growth (see [15]); so (F, idF ) ∈ Expu, while (W, idW) ∈ W.
Furthermore, letting G = W×F , one has (G, idG) ∈ Expu, while (W, idW) ∈ W,
so Expu is not stable even under taking direct summands.

In the line of MP, introduced in Definition 10, we can formulate also the
following

Definition 12. Let G be a class of groups and Φ be a class of morphisms.
We say that the pair (G,Φ) satisfies Gromovr Paradigm (briefly, MP), if every
finitely generated flow (G,φ) with G ∈ G and φ ∈ Φ of exponential growth has
has uniform exponential growth.

In terms of the class W,

(G,Φ) satisfies GP if and only if (G,Φ) 6∈ M (∀G ∈ G)(∀φ ∈ Φ).

In these terms, Gromov’s problem on uniformly exponential growth asks whether
the pair (Grp, Id) satisfies GP. In analogy to the general Problem 4, one can
consider the following obvious counterpart for GP:
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Problem 6. (i) Find pairs (G,Φ) satisfying GP.

(ii) For a given Φ determine the properties of the largest class GΦ such that
(GΦ,Φ) satisfies GP.

(iii) For a given G determine the properties of the largest class ΦG such that
(G,ΦG) satisfies GP.

(iv) Study the Galois correspondence between classes of groups G and classes
of endomorphisms Φ determined by GP.

We see now in item (a) of the next example a particular class of finitely
generated flows for which λ coincides with halg and they are both positive, so
in particular these flows are all in Expu. In item (b) we leave an open question
related to Question 2.

Example 7. (a) For a finite group K, consider the flow (
⊕

NK,βK).
We have seen in Example 5 that halg(βK) = log |K|. In this case we
have λ(

⊕
NK,βK) = log |K|, since a subset F of

⊕
NK generating the

flow (
⊕

NK,βK) must contain the first copy K0 of K in
⊕

NK, and
Halg(βK ,K0) = log |K|.

(b) Is it true that λ(G,φ) = halg(φ) > 0 for every finitely generated flow (G,φ)
in Grp such that φ ∈ Φ0? In other terms, we are asking whether all finitely
generated flows (G,φ) in Grp with φ ∈ Φ0 have uniform exponential
growth (i.e., are contained in Expu).

One can also consider the pairs (G,Φ) satisfying the conjunction MP & GP.
For any finitely generated flow (G,φ) in Grp one has

(G,φ) has polynomial growth
(1)
=⇒ halg(φ) = 0

(2)
=⇒ λ(G,φ) = 0. (11)

The converse implication of (1) (respectively, (2)) holds for all (G,φ) with G ∈
G and φ ∈ Φ precisely when the pair (G,Φ) satisfies MP (respectively, GP).
Therefore, the pair (G,Φ) satisfies the conjunction MP & GP precisely when
the three conditions in (11) are all equivalent (i.e., λ(G,φ) = 0⇒ (G,φ) ∈ Pol)
for all finitely generated flows (G,φ) with G ∈ G and φ ∈ Φ.

A large class of groups G such that (G, Id) satisfies MP & GP was found by
Osin [62] who proved that a finitely generated solvable group G of zero uniform
exponential growth is virtually nilpotent, and recently this result was general-
ized in [63] to elementary amenable groups. Together with Gromov Theorem
and Proposition 2, this gives immediately the following

Theorem 14. Let G be a finitely generated elementary amenable group.
The following conditions are equivalent:
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(a) halg(idG) = 0;

(b) λ(G) = 0;

(c) G is virtually nilpotent;

(d) G has polynomial growth.

This theorem shows that the pair G = {elementary amenable groups} and
Φ = Id satisfies simultaneously MP and GP. In other words it proves that the
three conditions in (11) are all equivalent when G is an elementary amenable
finitely generated group and φ = idG.

4.4 Adjoint algebraic entropy

We recall here the definition of the adjoint algebraic entropy ent⋆ and we
state some of its specific features not deducible from the general scheme, so
beyond the “package” of general properties coming from the equality ent⋆ =
hsub⋆ such as Invariance under conjugation and inversion, Logarithmic Law,
Monotonicity for factors (these properties were proved in [20] in the general
case and previously in [24] in the abelian case applying the definition).

In analogy to the algebraic entropy ent, in [24] the adjoint algebraic entropy
of endomorphisms of abelian groups G was introduced “replacing” the family
F(G) of all finite subgroups of G with the family C(G) of all finite-index sub-
groups of G. The same definition was extended in [20] to the more general
setting of endomorphisms of arbitrary groups as follows. Let G be a group
and N ∈ C(G). For an endomorphism φ : G → G and n ∈ N+, the n-th
φ-cotrajectory of N is

Cn(φ,N) = N ∩ φ−1(N) ∩ . . . ∩ φ−n+1(N).

The adjoint algebraic entropy of φ with respect to N is

H⋆(φ,N) = lim
n→∞

log[G : Cn(φ,N)]

n
.

This limit exists as H⋆(φ,N) = hS(C(φ), N) and so Theorem 1 applies. The
adjoint algebraic entropy of φ is

ent⋆(φ) = sup{H⋆(φ,N) : N ∈ C(G)}.

The values of the adjoint algebraic entropy of the Bernoulli shifts were cal-
culated in [24, Proposition 6.1] applying [34, Corollary 6.5] and the Pontryagin
duality; a direct computation can be found in [35]. So, in contrast with what
occurs for the algebraic entropy, we have:
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Example 8 (Bernoulli shifts). For K a non-trivial group,

ent⋆(βK) = ent⋆(Kβ) =∞.

As proved in [24], the adjoint algebraic entropy satisfies the Weak Addition
Theorem, while the Monotonicity for invariant subgroups fails even for torsion
abelian groups; in particular, the Addition Theorem fails in general. On the
other hand, the Addition Theorem holds for bounded abelian groups:

Theorem 15 (Addition Theorem). Let G be a bounded abelian group, φ :
G→ G an endomorphism, H a φ-invariant subgroup of G and φ : G/H → G/H
the endomorphism induced by φ. Then

ent⋆(φ) = ent⋆(φ ↾H) + ent⋆(φ).

The following is one of the main results on the adjoint algebraic entropy
proved in [24]. It shows that the adjoint algebraic entropy takes values only in
{0,∞}, while clearly the algebraic entropy may take also finite positive values.

Theorem 16 (Dichotomy Theorem). [24] Let G be an abelian group and
φ : G→ G an endomorphism. Then

either ent⋆(φ) = 0 or ent⋆(φ) =∞.

Applying the Dichotomy Theorem and the Bridge Theorem (stated in the
previous section) to the compact dual group K of G one gets that for a con-
tinuous endomorphism ψ of a compact abelian group K either ent(ψ) = 0 or
ent(ψ) =∞. In other words:

Corollary 3. If K is a compact abelian group, then every endomorphism
ψ : K → K with 0 < ent(ψ) <∞ is discontinuous.
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