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Abstract. Almost semi-invariant submanifolds of framed metric manifolds and S-manifolds
are studied, where the ambient manifolds generalize almost Hermitian, Kaehler, almost con-
tact metric and Sasakian manifolds while the submanifolds generalize/imply several known
classes of submanifolds including CR, semi-invariant, holomorphic, totally real and slant sub-
manifolds. Integrability conditions for certain natural distributions on almost semi-invariant
submanifolds of S-manifolds are investigated. Parallelism of the operators arising naturally
in the study is investigated leading to a flowchart connecting them. Totally umbilical, totally
geodesic and totally contact geodesic submanifolds are studied. Some relations between al-
most semi-invariant submanifolds of a framed metric manifold and other submanifolds are
investigated. Submanifolds of principal toroidal bundles are also studied.
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Introduction

Framed metric structures were introduced by Yano ([54]) as a generaliza-
tion of almost contact metric structures and almost Hermitian structures. Blair
([3]) introduced the concept of an S-manifold equipped with a normal framed
metric structure satisfying certain relations. The S-structure is analogous to the
Kaehler structure in the almost Hermitian case and to the Sasakian structure
in the almost contact case. For geometry of framed metric structures we refer
to [54] and related references cited therein.

∗The paper was presented at the Conference on Mathematics - 2000, held at the Department
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Recently in [47] the study of almost semi-invariant submanifolds of an ε-
framed metric manifold was initiated. In this paper we study almost semi-
invariant submanifolds of framed metric manifolds and S-manifolds, where the
ambient manifolds generalize almost Hermitian, Kaehler, almost contact metric
and Sasakian manifolds while the submanifolds generalize/imply several known
classes of submanifolds viz. CR, semi-invariant, holomorphic, totally real, slant
submanifolds etc. (see the Table in the section 1).

The paper starts with the definitions of framed metric structure, S-structure
and S-space form. Some basic results for submanifolds of framed metric man-
ifolds and S-manifolds are given in section 3. Some properties of almost semi-
invariant submanifolds of an S-manifold are presented in section 4. Among
others it is proved that for a submanifold of an S-space form M̄ (c) with c �= r
to be invariant or anti-invariant it is necessary and sufficient that the tangent
bundle of the submanifold is invariant under the action of R̄ (X, Y ) for all vector
fields X and Y on the submanifold (Theorem 2). Integrability conditions for cer-
tain natural distributions on almost semi-invariant submanifolds of S-manifolds
are the subject matter of section 5. Using Lemma 3 it is shown that the anti-
invariant distributions D0 and D0⊕E are integrable. In section 6, we investigate
certain parallel operators and distributions on submanifolds of S-manifolds. To-
tally umbilical and totally geodesic submanifolds have been studied in section 7.
It is also proved that the invariant submanifolds of S-manifolds (thus of Kaehler
and Sasakian manifolds) are minimal (Theorem 17). Section 8 deals with totally
contact geodesic submanifolds. The main result of this section is that the second
fundamental form of a totally contact geodesic submanifold of an S-manifold
is r-contact parallel; and moreover, if the ambient manifold is also an S-space
form with c �= −3r, then the totally contact geodesic submanifold is invariant or
anti-invariant. In the last section, we investigate some relations between almost
semi-invariant submanifolds of a framed metric manifold and other submani-
folds. This section is mainly devoted to the study of submanifolds of principal
toroidal bundles.

1 Preliminaries

1. 1 Framed metric manifolds

Let M̄ be a (2n + r)-dimensional framed metric manifold [54] (or almost
r-contact metric manifold [49]) with a framed metric structure (J, ξα, ηα, g),
α ∈ {1, . . . , r}, that is, J is a (1,1) tensor field defining an f -structure of rank
2n; ξ1, . . . , ξr are r vector fields; η1, . . . , ηr are r 1-forms and g is a Riemannian
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metric on M̄ such that

J2 = −I + ηα ⊗ ξα, ηα (ξβ) = δα
β , J (ξα) = 0, ηα ◦ J = 0, (1)

g (JX, JY ) = g (X, Y ) −
∑
α

ηα (X) ηα (Y ) , (2)

Ω (X, Y ) ≡ g (X, JY ) = −Ω (Y, X) , g (X, ξα) = ηα (X) (3)

for all X, Y ∈ TM̄ and α, β ∈ {1, . . . , r} [54].

A framed metric structure is called normal [54] if

[J, J ] + 2dηα ⊗ ξα = 0, (4)

and an S-structure [3] if it is normal and

Ω = dηα, α ∈ {1, . . . , r} . (5)

When r = 1, a framed metric structure is an almost contact metric structure,
while an S-structure is a Sasakian structure. When r = 0, a framed metric
structure is an almost Hermitian structure, a normal framed metric structure
is a Hermitian structure (integrable almost Hermitian structure) while an S-
structure is a Kaehler structure.

If a framed metric structure on M̄ is an S-structure then it is known [3] that(
∇̄XJ

)
Y =

∑
α

(
g (JX, JY ) ξα + ηα (Y )J2X

)
, (6)

∇̄ξα = −J, α ∈ {1, . . . , r} . (7)

The converse may also be proved. In case of Sasakian structure (that is r = 1),
(6) implies (7). In Kaehler case (that is r = 0), we get ∇̄J = 0.

It is known [11] that in an S-manifold of constant J-sectional curvature c

R̄ (X, Y )Z =
∑
α,β

(
ηα (X) ηβ (Z)J2Y − ηα (Y ) ηβ (Z)J2X− (8)

−g (JX, JZ) ηα (Y ) ξβ + g (JY, JZ) ηα (X) ξβ)

+
c + 3r

4
(
−g (JY, JZ)J2X + g (JX, JZ)J2Y

)
+

c − r

4
(g (X, JZ)JY − g (Y, JZ)JX + 2g (X, JY )JZ)

for all X, Y, Z ∈ TM̄ , where R̄ is the curvature tensor of M̄ . Such an S-manifold
is called an S-space form M̄ (c).
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When r = 0, an S-space form M̄ (c) becomes a complex space form and (8)
moves to

4R̄ (X, Y )Z = c (g (Y, Z)X − g (X, Z)Y (9)
+g (X, JZ)JY − g (Y, JZ)JX + 2g (X, JY )JZ) .

When r = 1, an S-space form M̄ (c) reduces to a Sasakian space form M̄ (c)
and (8) reduces to

R̄ (X, Y ) Z =
c + 3

4
(g(Y, Z)X − g(X, Z)Y ) (10)

+
c − 1

4
(η(X)η(Z)Y − η(Y )η(Z)X

+g(X, Z)η(Y )ξ − g(Y, Z)η(X)ξ
+g(X, JZ)JY − g(Y, JZ)JX + 2g(X, JY )JZ),

where ξ1 ≡ ξ and η1 ≡ η.

1. 2 Submanifolds of a Riemannian manifold

Let M be a submanifold of a Riemannian manifold M̄ with a Riemannian
metric g. Then Gauss and Weingarten formulae are given respectively by

∇̄XY = ∇XY + h (X, Y ) , (11)

∇̄XV = −AV X + ∇⊥
XV (12)

for all X, Y ∈ TM and V ∈ T⊥M , where ∇̄, ∇ and ∇⊥ are respectively the
Riemannian, induced Riemannian and induced normal connections in M̄ , M and
the normal bundle T⊥M of M respectively, and h is the second fundamental
form related to A by

g(h(X, Y ), V ) = g(AV X, Y ). (13)

Moreover, if J is a (1,1) tensor field on M̄ , for X, Y ∈ TM and V ∈ T⊥M we
put

JX = PX + FX, PX ∈ TM, FX ∈ T⊥M, (14)

JV = tV + fV, tV ∈ TM, fV ∈ T⊥M. (15)

In this case we have [47]

(∇̄XJ)Y = ((∇XP )Y − AFY X − th(X, Y )) (16)
+((∇XF )Y + h(X, PY ) − fh(X, Y )),
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and

(∇̄XJ)V = ((∇Xt)V − AfV X + PAV X) (17)
+((∇Xf)V + h(X, tV ) + FAV X),

where

(∇XP )Y ≡ ∇XPY − P∇XY, (∇XF )Y ≡ ∇⊥
XFY − F∇XY,

(∇Xt)V ≡ ∇XtV − t∇⊥
XV, (∇Xf)V ≡ ∇⊥

XfV − f∇⊥
XV.

Let R̄ (resp. R) be the curvature tensor of M̄ (resp. M). Then the equations
of Gauss and Codazzi are given by

g(R̄(X, Y )Z, W ) = g(R(X, Y )Z, W ) − g(h(X, W ), h(Y, Z)) (18)
+g(h(X, Z), h(Y, W )),

(R̄(X, Y )Z)⊥ = (∇Xh)(Y, Z) − (∇Y h)(X, Z), (19)

respectively, where (R̄(X, Y )Z)⊥ is the normal component of R̄(X, Y )Z, and

(∇Xh)(Y, Z) = ∇⊥
Xh(Y, Z) − h(∇XY, Z) − h(Y,∇XZ). (20)

The submanifold M is said to be totally geodesic in M̄ if h = 0, minimal
if H ≡ trace (h) /dim (M) = 0, and totally umbilical if h (X, Y ) = g (X, Y )H.
A differential distribution D on M is said to be D′-parallel if ∇XY ∈ D for
all X ∈ D′ and Y ∈ D, where D′ is a differentiable distribution on M . D is
said to be autoparallel (resp. parallel) if it is D-parallel (resp. TM -parallel).
The submanifold M is said to be (D,D′)-mixed totally geodesic if h (D,D′) = 0,
D-totally geodesic if h (D,D) = 0, and D-umbilical if for all X, Y ∈ D we have
h (X, Y ) = g (X, Y )K for some normal vector field K ∈T⊥M .

2 Almost semi-invariant submanifolds of framed
metric manifolds

Let M be a submanifold of a framed metric manifold M̄ . Then the operator
P 2

x is symmetric (that is g
(
P 2X, Y

)
= g

(
X, P 2Y

)
) on TxM and therefore

its eigenvalues are real and it is diagonalizable. Moreover, its eigenvalues are
bounded by −1 and 0.

Now let all ξα’s ∈ TM = E ⊕ E⊥, where E denotes the distribution spanned
by ξ1 . . . ξr and E⊥ is the complementary orthogonal distribution to E in M . For
each x ∈ M we may set

Dλ
x = ker

(
P 2|E⊥ + λ2 (x) I

)
x
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where I is the identity transformation and λ (x) belongs to the closed interval
[0, 1] such that −λ2 (x) is an eigenvalue of

(
P 2|E⊥

)
x
. Since

(
P 2|E⊥

)
x

is symmetric
and diagonalizable, there is some integer q such that −λ2

1 (x) , . . . ,−λ2
q (x) are

distinct eigenvalues of
(
P 2|E⊥

)
x

and E⊥
x can be decomposed as the direct sum

of the mutually orthogonal P-invariant eigenspaces, that is

E⊥
x = Dλ1

x ⊕ · · · ⊕ Dλq
x .

If λi (x) > 0 then Dλi
x is even-dimensional. Note that D1

x = ker (Fx) and D0
x =

ker (Px). Here D1
x is the maximal J-invariant while D0

x is the maximal anti-J-
invariant subspace of E⊥

x . For more details we refer to [41, 45, 47].

Now, we recall the definition of almost semi-invariant submanifolds of a
framed metric manifold [47, 45].

Definition 1. A submanifold M of a framed metric manifold M̄ with all
ξα’s ∈ TM , is called an almost semi-invariant submanifold of M̄ if there are k
functions λ1, . . . , λk defined on M with values in the open interval (0, 1) such
that the following two conditions hold:
(i) −λ2

1 (x) , . . . ,−λ2
k (x) are distinct eigenvalues of P 2|E⊥at x ∈ M with

TxM = D1
x ⊕D0

x ⊕Dλ1
x ⊕ · · · ⊕ Dλk

x ⊕ Ex,

where D1
x = ker (Fx), D0

x = ker (Px) and Dλi
x = ker

(
P 2 + λ2

i (x) I
)
x
, i ∈

{1, . . . , k},
(ii) the dimensions of D1

x, D0
x, Dλ1

x , . . . ,Dλk
x are independent of x ∈ M .

If in addition, each λi is constant, then M is called an almost semi-invariant∗

submanifold. If k = 0 (that is, in (i) TxM = D1
x ⊕D0

x ⊕Ex) then (i) implies (ii).
Condition (ii) in the above definition enables one to define P-invariant mu-

tually orthogonal distributions

Dλ =
⋃

x∈M

Dλ
x , λ ∈ {0, 1, λ1, . . . , λk} ,

on M such that

TM = D1 ⊕D0 ⊕Dλ1 ⊕ · · · ⊕ Dλk ⊕ E .

In view of the study of Nomizu [39], these distributions are differentiable.

For X ∈ TM we write

X = U1X + U0X + Uλ1X + · · · + UλkX + ηα (X) ξα, (21)

where U1, U0, Uλ1 , . . . , Uλk are orthogonal projection operators of TM on D1,
D0, Dλ1 , . . . , Dλk respectively.
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For an almost semi-invariant submanifold M of M̄ we have

T⊥M =D
1 ⊕ D

0 ⊕ D
λ1 ⊕ · · ·⊕ D

λk
,

where D
1
= ker (t), D

0
= ker (f), FDλ =D

λ
and t D

λ
= Dλ, λ ∈ {0, λ1, . . . , λk}.

Here, we give an example of an almost semi-invariant∗ submanifold of E2n+r.
Example 1. Let E2n+r = Cn × Rr be the (2n+r)-dimensional Euclidean

space endowed with the framed metric structure (J, ξα, ηα, g) defined by

J(x1, . . . , x2n, t1, . . . , tr) = (−x2, x1, . . . ,−x2n, x2n−1, 0, . . . , 0),

ηα = dtα, ξα =
∂

∂tα
,

with α ∈ {1, . . . , r} and 1 < h1 < h2 < h1 + h2 < n. The product M1 ×
M2 ×M3 ×Rr, where M1 is a complex submanifold of Ch1 , M2 is a totally real
submanifold of Ch2 and M3 is a proper slant submanifold of Cn−h1+h2 , is an
almost semi-invariant∗ submanifold of E2n+r (for definitions and examples of
slant submanifolds we refer to B.-Y. Chen’s book [17]).

In 1996, Tripathi and Singh defined and initiated the study of almost semi-
invariant submanifolds of an ε-framed metric manifold [47]. Here in the spe-
cial case of framed metric structures the ambient manifolds generalize almost
Hermitian and almost contact metric manifolds while the submanifolds gen-
eralize/imply several known classes of submanifolds viz. CR, semi-invariant,
holomorphic, totally real, slant submanifolds etc. Some of the particular sub-
manifolds have been even defined after 1996. Denoting framed metric by FM,
almost contact metric by ACM and almost Hermitian by AH, we present the
following Table.
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r k D1 D0 Manifold Submanifold

FM
almost semi-invariant

[47, 45]
0 FM CR [36, 13]
0 FM semi-invariant [29]
0 �= {0} �= {0} FM proper semi-invariant [29]
0 {0} FM invariant [31]
0 {0} FM anti-invariant [12]
0 JD0 = T⊥M FM generic CR [1]

1 ACM almost semi-invariant [46]
1 0 ACM contact CR [53]
1 0 ACM semi-invariant [1]
1 0 �= {0} �= {0} ACM proper semi-invariant [1]
1 0 {0} ACM invariant [1]
1 0 {0} ACM anti-invariant [1, 52]

1
1 &

λ1=const. {0} {0} ACM (proper) slant [8]

1
1 &

λ1=const. �= {0} {0} ACM semi-slant [7]

0 AH generic [41]
0 0 AH CR [1, 53]
0 0 �= {0} �= {0} AH proper CR [1]
0 0 {0} AH invariant [54]
0 0 {0} AH anti-invariant [1, 52]
0 0 JD0 = T⊥M AH anti-holomorphic [1]
0 0 JD0 = T⊥M AH generic [53]

0
1 &

λ1=const. {0} {0} AH (proper) slant [17]

0
1 &

λ1=const. �= {0} {0} AH semi-slant [40]

0
1 &

λ1 = λ1(x) �= {0} {0} AH quasi-slant [19]

The class of almost semi-invariant submanifold [46] of an almost contact
metric manifold contains the almost semi-invariant, generic, almost CR and
generalized CR submanifolds in the sense of [2], [43], [34] and [35] respectively.
The class of generic submanifold [41] of an almost Hermitian manifold also
generalizes the generic submanifolds in the sense of [16] (or f-submanifold in the
sense of [50]) and generalized CR-submanifold in the sense of [38]. The slant
submanifolds given in [32] are different from the slant submanifolds given in [7].
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3 Some basic results

It is easy to verify the following
Lemma 1. Let M be a submanifold of a framed metric manifold M̄ such

that all ξα’s ∈ TM . Then

P (ξα) = 0 = F (ξα), (22)

ηα ◦ P = 0 = ηα ◦ F, (23)

P 2 + tF = −I + ηα ⊗ ξα, (24)

FP + fF = 0, (25)

tf + Pt = 0, (26)

f2 + Ft = −I, (27)

g(PX, Y ) = −g(X, PY ), (28)

g(FX, V ) = −g(X, tV ), (29)

g(U, fV ) = −g(fU, V ). (30)

Now let all ξα’s ∈ TM , and let TM = E ⊕ E⊥, where E = span{ξ1, . . . , ξr}
and E⊥ is the complementary orthogonal distribution to E in M . Then the
Lemma 1 leads to the following

Proposition 1. If M is a submanifold of a framed metric manifold M̄ such
that all ξα’s ∈ TM then at every x ∈ M

ker (Px) = ker
(
P 2

x

)
= ker (tF + I − ηα ⊗ ξα)x , (31)

ker (Fx) = ker (tF )x = ker
(
P 2 + I − ηα ⊗ ξα

)
x
, (32)

ker (tx) = ker (Ft)x = ker
(
f2 + I

)
x
, (33)

ker (fx) = ker
(
f2
)
x

= ker (Ft + I)x . (34)

Consequently, on E⊥
x

ker (P |E⊥)x = ker
(
P 2|E⊥

)
x

= ker (tF |E⊥ + I)x , (35)

ker (F |E⊥)x = ker (tF |E⊥)x = ker
(
P 2|E⊥ + I

)
x
. (36)

Proof. Equations (31)-(34) follow from (24)-(27) and (28)-(30). Since

ηα(X) = 0 for X ∈ E⊥,

(35) and (36) are implied by (31) and (32) respectively. QED
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Proposition 2. Let M be a submanifold of a framed metric manifold sat-
isfying (7). Then for X, ξα ∈ TM , and V ∈ T⊥M we have

P = −∇ξα, (37)

FX = −h (X, ξα) (⇐⇒ AV ξα = tV ) . (38)

Consequently,
ηα (AV X) = −g (FX, V ) . (39)

Proof. Using (11) and (14) we have

∇Xξα + h (X, ξα) = −PX − FX, X ∈ TM.

Equating tangential and normal parts in the above equation we get (37) and
(38) respectively. Lastly,

ηα (AV X) = g (AV X, ξα) = g (h (X, ξα) , V ) = −g (FX, V ) ,

which is (39). QED

Proposition 3. Let M be a submanifold of a framed metric manifold sat-
isfying (7). Then for ξβ ∈ T⊥M we have

Aξβ
= P, (40)

∇⊥ξβ = −F. (41)

Proof. Using (12) and (14) we have

−Aξβ
X + ∇⊥

Xξβ = −PX − FX, X ∈ TM, ξβ ∈ T⊥M.

Equating tangential and normal parts in the above equation we get equations
(40) and (41) respectively. QED

Proposition 4. Let M be a submanifold of an S-manifold with all ξα’s
∈ TM . Then for all X, Y ∈ TM and V ∈ T⊥M we get

(∇XP )Y − AFY X − th(X, Y ) =
∑
α

(
g(JX, JY )ξα + ηα(Y )J2X)

)
, (42)

(∇XF )Y + h(X, PY ) − fh(X, Y ) = 0, (43)

(∇Xt)V − AfV X + PAV X = 0, (44)

(∇Xf)V + h(X, tV ) + FAV X = 0. (45)

Consequently,
(∇P )ξα = P 2, (46)
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(∇F )ξα = FP, (47)

∇ξαP = 0, (48)

∇ξαF = 2FP = −2fF, (49)

∇ξαt = 2tf = −2Pt, (50)

∇ξαf = 0, (51)

P [X, Y ] = (∇XPY −∇Y PX + AFXY − AFY X) (52)

+
∑
α

(
ηα(X)J2Y − ηα(Y )J2X

)
,

F [X, Y ] = ∇⊥
XFY −∇⊥

Y FX + h(X, PY ) − h(PX, Y ), (53)

(∇Xh)(Y, ξα) = −(∇XF )Y + h(PX, Y ). (54)

Proof. Using (6) and (14) in (16) and equating tangential and normal parts
we get (42) and (43) respectively. Similarly using (6), (15) and ηα(V ) = 0 in
(17) and equating tangential and normal parts we get (44) and (45) respectively.

Putting Y = ξα in (42) and using (22), (38), (1), (3), (23) and (24) we get
(46). Similarly we get (47) - (51). Equations (52) and (53) follow from (42) and
(43) respectively. Lastly, putting Z = ξα in (20) and using (37) and (38) we get
(54). QED

Theorem 1. If M is a submanifold of a framed metric manifold satisfying
(5) such that at least one ξβ is normal to M then M is anti-invariant.

Proof. We have

g (X, JY ) = Ω (X, Y ) = dηβ (X, Y ) = 0, X, Y ∈ TM,

and hence P = 0. QED

4 Some properties of almost semi-invariant
submanifolds

Proposition 5. If M is an almost semi-invariant or semi-invariant sub-
manifold of an S-manifold M̄ , then

AFXY − AFY X =
∑
α

(
ηα(Y )J2X − ηα(X)J2Y

)
, X, Y ∈ D0 ⊕ E . (55)
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Proof. For X, Y ∈ D0 ⊕E , Z ∈ TM in view of (13), (29), (42) and (1) we
have

g(AFXY, Z) = g(h(Y, Z), FX) = −g(th(Y, Z), X)
= −g((∇ZPY − P∇ZY − AFY Z

−
∑
α

(g(JZ, JY )ξα + ηα(Y )J2Z)), X)

= −g(∇ZY, PX) + g(AFY Z, X)

−g

(∑
α

(
g(JZ, JY )ξα + ηα(Y )J2Z

)
, X

)

= g(AFY X, Z) +
∑
α

ηα(Y )g(J2Z, X)

+g

(∑
α

ξα, X

)
g(−J2Y, Z)

= g

(
AFY X +

∑
α

(
ηα(Y )J2X − ηα(X)J2Y

)
, Z

)
,

which implies (55). QED

This proposition leads to the following

Corollary 1. For an almost semi-invariant or semi-invariant submanifold
of an S-manifold M̄ it follows that

AFXY − AFY X = 0 X, Y ∈ D0. (56)

Proposition 6. If M is an almost semi-invariant submanifold of an S-
manifold, then for all X ∈ D1 ⊕ E , Y ∈ TM, V ∈ D̄1

g(Jh(X, Y ), V ) = g(h(PX, Y ), V ). (57)

Proof. For X ∈ D1 ⊕ E = ker(F ), Y ∈ TM, V ∈ D̄1 = ker(t) in view of
(43) and (29), we obtain

g(fh(X, Y ), V ) = g(∇⊥
Y FX − F∇Y X + h(Y, PX), V )

= g(∇Y X, tV ) + g(h(PX, Y ), V )
= g(h(PX, Y ), V ),

which provides (57). QED

The above proposition immediately implies the following.



Submanifolds of framed metric manifolds and S-manifolds 147

Corollary 2. For an almost semi-invariant submanifold M of an S-mani-
fold we get

(h(PX, Y ) − h(X, PY )) ⊥ D̄1, X, Y ∈ D1 ⊕ E . (58)

In particular, if M is a semi-invariant submanifold then

f (h(PX, Y ) − h(X, PY )) = 0.

Next, we prove the following proposition.

Proposition 7. Let M be an almost semi-invariant submanifold of an S-
manifold. Then direct sum D of a subfamily of {D1,D0,Dλ1 , . . . ,Dλk} is E-
parallel.

Proof. First we note that

g(∇ξαX, ξβ) = −g(X,∇ξαξβ) = g(X, Pξα) = 0, X ∈ E⊥. (59)

For X ∈ Dλ and Y ∈ Dµ, λ, µ ∈ {1, 0, λ1, . . . , λk} and λ �= µ, we obtain

−µ2g(∇ξαX, Y ) =g(∇ξαX,−µ2Y ) = g(∇ξαX, P 2Y )
= − g(P∇ξαX, PY ) = −g(∇ξαPX, PY )
=g(PX,∇ξαPY ) = g(PX, P∇ξαY )

= − g(P 2X,∇ξαY ) = λ2g(X,∇ξαY ) = −λ2g(∇ξαX, Y ),

which together with (59) leads to ∇ξαX ∈ Dλ and the proof is achieved. QED

Remark 1. Since for X ∈ Dλ we have ∇ξαX ∈ Dλ hence

−λ2∇ξαX = P 2∇ξαX = ∇ξαP 2X = −∇ξα(λ2X) = −(∇ξαλ2)X − λ2(∇ξαX),

from which it follows that ∇ξα(λ2) = 0.

Corollary 3. For X belonging to direct sum D of a subfamily of {D1, D0,
Dλ1 , . . . ,Dλk} on an almost semi-invariant submanifold of an S-manifold, we
have [X, ξα] ∈ D.

Proof. For X ∈ D we have [X, ξα] = ∇Xξα − ∇ξαX = −PX − ∇ξαX ∈
D. QED

Let M be a submanifold of an S-space form M̄(c) with all ξα’s ∈ TM . If
M is invariant or anti-invariant then it is easy to verify that TM and T⊥M are
invariant under the action of R̄(X, Y ) for all X, Y ∈ TM , that is R̄(X, Y )Z ∈
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TM and R̄(X, Y )V ∈ T⊥M for all X, Y, Z ∈ TM and V ∈ T⊥M . If c �= r and
TM is invariant under the action of R̄(X, Y ) then

R̄(X, Y )X =
∑
α,β

(ηα(X)ηβ(X)J2Y − ηα(Y )ηβ(X)J2X

−g(JX, JX)ηα(Y )ξβ + g(JY, JX)ηα(X)ξβ)

+
c + 3r

4
(−g(JY, JX)J2X + g(JX, JX)J2Y )

−3(c − r)
4

g(JX, Y )JX

which implies that g(JX, Y )JX ∈ TM , i. e. either JX ∈ TM or g(JX, Y ) = 0.
Since J is linear, M is either invariant or anti-invariant.

Thus we are able to state (see [10] also)

Theorem 2. Let M be a submanifold of an S-space form M̄(c) with c �= r.
Then M is invariant or anti-invariant if and only if R̄(X, Y )Z ∈ TM for all
X, Y, Z ∈ TM .

The above theorem implies the following

Corollary 4. If M is an almost semi-invariant submanifold of an S-space
form M̄(c) such that D0 �= {0} �= D1 ⊕Dλ1 ⊕ · · · ⊕ Dλk , then R̄(X, Y )Z ∈ TM
for all X, Y, Z ∈ TM if and only if c = r.

5 Integrability conditions

Lemma 2. If M is a submanifold of an S-manifold, tangent to all ξα’s,
then

g(∇XY, ξα) = ∇Xηα(Y ) + g(PX, Y ), X, Y ∈ TM. (60)

Consequently,

g([X, Y ], ξα) = ∇Xηα(Y ) −∇Y ηα(X) + 2g(PX, Y ), X, Y ∈ TM, (61)

g(∇XY, ξα) = g(PX, Y ), X ∈ TM, Y ∈ E⊥, (62)

g([X, Y ], ξα) = 2g(PX, Y ), X, Y ∈ E⊥. (63)

Proof. For X, Y ∈ TM , using (3), (4), (42), we get

g(∇XY, ξα) = ∇Xg(Y, ξα) − g(Y,∇Xξα) = ∇Xηα(Y ) + g(PX, Y ).

The rest of the proof is straightforward. QED
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Theorem 3. For a submanifold M of an S-manifold M̄ with all ξα’s ∈ TM ,
E⊥ is integrable if and only if M is anti-invariant.

Proof. The proof follows easily from (63). QED

Theorem 4. . Let M be an almost semi-invariant submanifold of an S-
manifold. Neither the direct sum D of a subfamily of {D1,Dλ1 , . . . ,Dλk} nor
D ⊕D0 is integrable.

Proof. Choosing an X ∈ D such that PX �= 0 by (63), we have 0 �=
2g(PX, PX) = g([X, PX], ξα). QED

Lemma 3. . Let M be an almost semi-invariant submanifold of a framed
metric manifold. Then D0 and D0 ⊕ E are integrable if and only if

dΩ(X, Y, Z) = 0, Y, Z ∈ D0, X ∈ TM. (64)

Proof. For X ∈ TM, Y, Z ∈ D0, we have

3dΩ(X, Y, Z) = −g([Y, Z], JX) = g(P [Y, Z], X),

which implies the proof. QED

This Lemma leads to the following two obstructions for almost semi-invariant
submanifolds.

Theorem 5. Let M̄ be a framed metric manifold with dΩ = Ω ∧ ω for
some 1-form ω on M̄ . Then in order that M is an almost semi-invariant or
semi-invariant submanifold it is necessary that D0 ⊕ E is integrable.

Proof. Let X ∈ TM and Y, Z ∈ D0 ⊕ E . Then Ω(X, Y ) = 0 = Ω(Y, Z).
Consequently, 0 = Ω ∧ ω(X, Y, Z) = dΩ(X, Y, Z). Hence, applying Lemma 3, it
follows that D0 ⊕ E is integrable. QED

Theorem 6. If M is a semi-invariant or almost semi-invariant submanifold
of an S-manifold then D0 and D0 ⊕ E are integrable.

Proof. Since in an S-manifold, dΩ = 0, the proof is obvious. Alternatively,
the proof follows from (55), (56) and (52). QED

In the following theorem, necessary and sufficient conditions for D1 ⊕ E to
be integrable have been obtained.

Theorem 7. If M is an almost semi-invariant submanifold of an S-mani-
fold, then D1 ⊕ E is integrable if and only if
(a) h(X, PY ) = h(PX, Y ), X, Y ∈ D1 ⊕ E, or equivalently
(b) g(h(X, PY ), FZ) = g(h(PX, Y ), FZ), X, Y ∈ D1 ⊕ E , Z ∈ TM .

Proof. In view of ker(F ) = D1 ⊕ E and (53), D1 ⊕ E is integrable if and
only if (a) holds. Since F (TM) = D̄0 ⊕ D̄λ1 ⊕ · · · ⊕ D̄λk , in view of Corollary 2,
(a) ⇔ (b). QED
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Theorem 8. On an almost semi-invariant submanifold of an S-manifold,
D1 ⊕D0 ⊕ E is integrable if and only if the following assertions hold.
(a) ∇XPY −∇Y PX ∈ D1, X, Y ∈ D1,
(b) ∇XPY + AFXY ∈ D1, X ∈ D0, Y ∈ D1.
In particular, if M is a semi-invariant submanifold, then (a) and (b) hold.

Proof. Since D0⊕E is integrable, [X, Y ] ∈ D0⊕E for X, Y ∈ D0⊕E . Since
Z ∈ D1 ⊕D0 ⊕E and PZ ∈ D1 are equivalent, in view of (52) the proof follows
immediately. QED

Theorem 9. For an almost semi-invariant submanifold of an S-manifold
the following statements are equivalent:
(a) D1 ⊕D ⊕ E is integrable,
(b)

(
∇⊥

XFY −∇⊥
Y FX + h(X, PY ) − h(PX, Y )

)
∈ D̄, X, Y ∈ D1 ⊕D ⊕ E ,

where D is direct sum of a subfamily of {Dλ1 , . . . ,Dλk} and D̄ is the direct sum
of the corresponding subfamily of {D̄λ1 , . . . , D̄λk}.

Proof. Taking account of (53) and the equivalence of Z ∈ D1 ⊕ Dλi ⊕ E
and FZ ∈ D̄λi , the proof is obvious. QED

Theorem 10. For direct sum D of a subfamily of {Dλ1 , . . . ,Dλk} on an al-
most semi-invariant submanifold of an S-manifold the following two statements
are equivalent:
(a) D0 ⊕D ⊕ E is integrable,
(a) (∇XPY − AFXY − AFY X) ∈ D, X ∈ D0, Y ∈ D.

Proof. Since D0 ⊕ E is integrable we have [X, Y ] ∈ D0 ⊕ E for X, Y ∈
D0 ⊕ E . For Y ∈ D we always have [ξα, Y ] ∈ D by Corollary 7. Thus, using
the equivalence of Z ∈ D0 ⊕ Dλi ⊕ E and PZ ∈ Dλi in (52), we get (a) ⇔
(b). QED

6 Certain parallel distributions and operators

In this section we investigate certain parallel distributions and operators on
submanifolds. First we give the following definition.

Definition 2. A submanifold M of a framed metric manifold is said to
satisfy the condition (A) if M is an almost semi-invariant ∗ submanifold, and
each of the distributions D1,D0,Dλ1 , . . . ,Dλk and E is parallel with respect to
∇, and condition (B) if M is an almost semi-invariant∗ submanifold, and each
of the subbundles D̄1, D̄0, D̄λ1 , . . . , D̄λk is parallel with respect to ∇⊥.

In view of Theorem 6.3 of [47] we have the following

Theorem 11. For a submanifold M of a framed metric manifold M̄ with
all ξα’s ∈ TM we have the following flow diagram.
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∇P = 0 ⇒ ∇(P 2) = 0 ⇔ (A) ⇐ ∇t = 0


∇f = 0 ⇒ ∇(f2) = 0 ⇔ (B) ⇐ ∇F = 0

Theorem 12. A submanifold of an S-manifold, tangent to all ξα’s, is anti-
invariant if and only if ∇P = 0.

Proof. By the Theorem 11, anti-invariantness implies ∇P = 0. Conversely,
if ∇P = 0 then by the assumption and (46), it follows that for all x ∈ M
and X ∈ TM , P 2X = 0, that is, TxM = ker(P 2)x and therefore M is anti-
invariant. QED

Theorem 13 ([48]). For a non-invariant submanifold M of an S-manifold,
tangent to all ξα’s, if ∇F = 0 then M is anti-invariant.

Remark 2. In particular, for r = 1 the Theorem 13 holds for Sasakian
manifolds. This result is stronger than the Proposition 3.3 of [55] where it has
been proved that every submanifold of a Sasakian manifold with ξ ∈ TM and
∇F = 0is semi-invariant. Moreover, this result also makes Theorems 3.5 and 3.7
of [55] redundant.

Theorem 14. For an almost semi-invariant submanifold M of an S-man-
ifold if D1 ⊕ E is autoparallel, then

h(X, PY ) = h(PX, Y ) = fh(X, Y ), X, Y ∈ D1 ⊕ E .

In particular, if M is semi-invariant submanifold, then the converse statement
also holds.

Proof. First equality follows from the integrability of D1 ⊕ E , while the
second one follows from ker(F ) = ker(tF ) = D1 ⊕ E and (43). QED

7 Totally umbilical and totally geodesic submani-
folds

We begin this section with the following lemma.
Lemma 4. Let D be a distribution on a submanifold M of an S-manifold

such that at least one ξα ∈ D. If M is D-umbilical, then M is D-totally geodesic.
Proof. If M is D-umbilical then for all X, Y ∈ D we have h(X, Y ) =

g(X, Y )K for some vector field K normal to M . But, using (3), (1) and (22) we
obtain

K = g(ξα, ξα)K = h(ξα, ξα) = −Fξα = 0,

which shows that h(X, Y ) = 0, for all X, Y ∈ D, that is M is D-totally geodesic.
QED
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Theorem 15. A totally umbilical submanifold of an S-manifold, tangent to
at least one ξα, is totally geodesic.

By (38), we can state the following.
Theorem 16. A totally geodesic submanifold of an S-manifold, tangent to

at least one ξα, is invariant.
From Theorems 15 and 16 we immediately have the following
Corollary 5. A totally umbilical submanifold of an S-manifold, tangent to

at least one ξα, is invariant.
Proposition 8. Let M be a submanifold of a framed metric manifold M̄

and D be a distribution on M . For X, Y ∈ D the following statements are
equivalent:
(a) h(X, PY ) = h(PX, Y ), (b) (AV PX + PAV X) ⊥ D, V ∈ T⊥M .
Moreover, if M̄ is an S-manifold, then (a) is equivalent to each of the following
equivalent statements:
(c) (∇XF )Y − (∇Y F )X = 0, (d) F [X, Y ] = ∇⊥

XFY −∇⊥
Y FX.

Proof. In view of (13), (a) ⇔ (b). Using (43) we can prove the equivalence
of (a), (c) and (d). QED

Definition 3. For a distribution D on a submanifold M of a framed metric
manifold M̄ such that all ξα’s ∈ TM , we say that P is D-commutative if one of
the equivalent statements (a) and (b) of the above proposition holds.

Note that P is D-commutative for each distribution D on M if and only if
PAV + AV P = 0 for all V ∈ T⊥M . If M is an almost semi-invariant submani-
fold of an S-manifold, then P is E-commutative, D0-commutative and D0 ⊕ E-
commutative. Moreover, P is D1 ⊕ E-commutative if and only if D1 ⊕ E is
integrable.

For each Dλ, λ ∈ {0, 1, λ1, . . . , λk} on an almost semi-invariant submanifold
of a framed metric manifold we choose a local orthonormal basis: E1, . . . , En(λ),
where n (λ) = dim

(
Dλ
)

and put

Hλ =
∑

i

h(Ei, Ei), i ∈ {1, . . . , n (λ)} .

An almost semi-invariant submanifold of a framed metric manifold with Hλ = 0
is called Dλ-minimal ; and it is minimal if

HE + H0 + H1 + Hλ1 + · · · + Hλk
= 0, where HE =

∑
α

h(ξα, ξα).

Proposition 9. Let M be an almost semi-invariant submanifold of an S-
manifold. If P is Dλ-commutative, λ �= 0, then M is Dλ-minimal and Dλ ⊕ E-
minimal.
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Proof. We choose a local orthonormal basis for Dλ: E1, . . . , En(λ)/2, . . .,
En(λ), where E(n(λ)/2)+i = PEi/λ, (1 ≤ i ≤ n(λ)/2). Then we have

h(Ei, Ei) + h(PEi/λ, PEi/λ) = h(Ei, Ei) + h(P 2Ei, Ei)/λ2

= h(Ei, Ei) + h(−λ2Ei, Ei)/λ2 = 0.

Consequently Hλ = 0. QED

As an application of the above proposition we get the following
Theorem 17 ([31]). If M is an invariant submanifold of an S-manifold,

then M is minimal.
Proposition 10. Let M be an almost semi-invariant submanifold of an S-

manifold. If D1⊕E is integrable and M is (D1,D0⊕Dλi)-mixed totally geodesic
for 1 ≤ i ≤ k, then D1 ⊕D0 ⊕ E is integrable if and only if D1 is D0-parallel.

Proof. If D1 ⊕ E is integrable, then, using Theorem 8, D1 ⊕ D0 ⊕ E is
integrable if and only if

∇XPY + AFXY ∈ D1, X ∈ D0, Y ∈ D1.

But, for X ∈ D0, Y ∈ D1, Z ∈ D0 ⊕Dλi ⊕ E , we have

g(AFXY, Z) = −g(h(Y, Z), FX) = 0,

because M is (D1, E)-mixed totally geodesic and it is assumed that M is (D1,D0⊕
Dλi)-mixed totally geodesic, thus h(Y, Z) = 0. Therefore D1 ⊕ D0 ⊕ E is inte-
grable if and only if ∇XPY ∈ D1 for all X ∈ D0, Y ∈ D1, that is, D1 is
D0-parallel. QED

Corollary 6. If D1⊕E is integrable and M is (D1,D0)-mixed totally geodesic
on a semi-invariant submanifold of an S-manifold, then D1 is D0-parallel.

Finally, we prove the following
Theorem 18. If P is Dλ-commutative for all Dλ, λ ∈ {1, 0, λ1, . . . , λk} on

an almost semi-invariant submanifold of an S-manifold, then
(a) M is minimal if and only if M is D0-minimal,
(b) M is (Dλ,Dµ)-mixed totally geodesic if λ �= µ,
(c) D1 ⊕D0 ⊕ E is integrable iff D1 is D0-parallel.

Proof. (a) follows from Proposition 9. By the assumption, we get

0 = P 2AV X − AV P 2X = P 2AV X + λ2AV X, X ∈ Dλ, V ∈ T⊥M,

which implies that AV X ∈ Dλ. If Y ∈ Dµ, µ �= λ, then for all V ∈ T⊥M , we
have

0 = g(AV X, Y ) = g(h(X, Y ), V ),
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which implies (b). Since P is (D1 ⊕ E)-commutative, D1 ⊕ E is integrable and
(c) follows from Proposition 10. QED

8 Totally contact umbilical and totally contact
geodesic submanifolds

Let M be a submanifold of a framed metric manifold M̄ tangent to all
ξα’s. We give the following definitions, which are analogues to the definitions in
Section 2 of [55].

Definition 4. If the second fundamental form h of M satisfies

(∇Xh)(Y, Z) = r(g(PX, Y )FZ + g(PX, Z)FY ), X, Y, Z ∈ E⊥, (65)

then the second fundamental form h of M is said to be r-contact parallel.
Definition 5. M is said to be totally contact geodesic if

h(J2X, J2Y ) = 0, X, Y ∈ TM, (66)

and, respectively, totally contact umbilical if

h(J2X, J2Y ) = g(J2X, J2Y )K, X, Y ∈ TM, (67)

where K is some vector field perpendicular to M .
Example 2 ([14]). Let

R2n+r = {(x1, . . . , xn, y1, . . . , yn, z1, . . . , zr)}

be a Euclidean space. It is endowed with a framed metric structure given by

ξα = 2
∂

∂zα
, 1 ≤ α ≤ r, ηα =

1
2

(
dzα −

n∑
k=1

ykdxk

)
,

JX =
n∑

k=1

(
Y k ∂

∂xk
− Xk ∂

∂yk

)
+

(
n∑

k=1

Y kyk

)(
r∑

α=1

∂

∂zα

)
(

where X =
n∑

k=1

(
Xk ∂

∂xk
+ Y k ∂

∂yk

)
+

r∑
α=1

Zα ∂

∂zα

)
,

g =
r∑

α=1

ηα ⊗ ηα +
1
4

n∑
k=1

(dxk ⊗ dxk + dyk ⊗ dyk).

Then M = S2n−1×Rr is a totally contact umbilical semi-invariant submanifold.
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In an S-manifold it is easy to see that

g(PX, Y ) = −(∇Xηα)Y = dηα(Y, X), X, Y ∈ E⊥, and

h(J2X, J2Y ) = h(X, Y ) +
∑
α

(ηα(X)FY + ηα(Y )FX) ,

and therefore (65), (66) and (67) become equivalent to the following three equa-
tions respectively :

(∇Xh)(Y, Z) = −
∑
α

(((∇Xηα)Y )FZ + ((∇Xηα)Z)FY ) , (68)

X, Y, Z ∈ E⊥,

h(X, Y ) = −
∑
α

(ηα(X)FY + ηα(Y )FX) , X, Y ∈ TM, (69)

h(X, Y ) = g(JX, JY )K −
∑
α

(ηα(X)FY + ηα(Y )FX) , (70)

X, Y ∈ TM.

Proposition 11. If M is totally contact geodesic submanifold of an S-
manifold M̄ then h is r-contact parallel.

Proof. For X, Y, Z ∈ E⊥, by (69), we get h(Y, Z) = 0, and

h(∇XY, Z) = −
∑
α

(ηα(∇XY )FZ + ηα(Z)F (∇XY )) =
∑
α

((∇Xηα)Y )FZ,

from which (68) follows immediately. QED

Let X ∈ TM and Y ∈ D1 ⊕ E . Then (43) implies that

F∇XY = h(X, PY ) − fh(X, Y ).

If M is totally contact geodesic, we have by (69), ker(F ) = D1 ⊕ E ; by (23) we
get

F∇XY =
∑
α

ηα(Y )fFX, X ∈ TM, Y ∈ D1 ⊕ E . (71)

Thus, we have:

Theorem 19. If M is totally contact geodesic almost semi-invariant sub-
manifold of a framed metric manifold then D1⊕E is autoparallel. In particular, if
M is totally contact geodesic semi-invariant submanifold then D1⊕E is parallel
and the maximal integral submanifold of D1 ⊕ E is totally geodesic in M .
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Theorem 20. If M is a submanifold of an S-space form M̄(c) with c �= −3r
such that the second fundamental form h of M is r-contact parallel, then M is
invariant or anti-invariant.

Proof. Let X, Y, Z ∈ E⊥. From (65) we obtain

(∇Xh)(Y, Z) − (∇Y h)(X, Z) = −r (g(X, PZ)FY − g(Y, PZ)FX

+ 2g(X, PY )FZ)

and on the other hand from (8) we obtain

(R̄(X, Y )Z)⊥ =
c − r

4
(g(X, PZ)FY − g(Y, PZ)FX

+2g(X, PY )FZ),

and therefore, in view of (19) it implies that

(c + 3r) (g(X, PZ)FY − g(Y, PZ)FX + 2g(X, PY )FZ) = 0.

Putting Y = Z in the above equation we get g(X, PY )FY = 0. Thus we have
PY = 0 or FY = 0, that is M is invariant or anti-invariant. QED

Proposition 11 and Theorem 20 lead to
Theorem 21. If M is totally contact geodesic submanifold of an S-space

form M̄(c) with c �= −3r, then M is invariant or anti-invariant.
Theorem 22. If M is totally contact umbilical almost semi-invariant sub-

manifold of an S-manifold M̄ , then M is (Dλ,Dµ)-mixed totally geodesic for
λ, µ ∈ {1, 0, λ1, . . . , λk} with λ �= µ.

Proof. For X ∈ Dλ, Y ∈ Dµ from (70) we obtain

h(X, Y ) = g(JX, JY )K −
∑
α

(ηα(X)FY + ηα(Y )FX) ,

= g(JX, JY )K = g(X, Y )K = 0,

which achieves the proof. QED

9 Relations between almost semi-invariant
submanifolds of a framed metric manifold
and other submanifolds

In this section, we investigate some relations between almost semi-invariant
submanifolds of a framed metric manifold and other submanifolds. This section
is mainly devoted to the study of submanifolds of principal toroidal bundles. A
number of results about submanifolds of principal toroidal bundles are proved
in [21] and [37].
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Proposition 12. Let (M̄, g) be a framed metric manifold and M̄ × Rr be
the almost Hermitian manifold with the almost Hermitian structure φ given by

φX = JX, X ∈ E⊥, φξα =
∂

∂tα
, φ

(
∂

∂tα

)
= −ξα, α ∈ {1, . . . , r}.

Let M be a submanifold of M̄ tangent to E. Then we have

(1) M is an almost semi-invariant submanifold of M̄ if and only if it is a
generic submanifold (in the sense of Ronsse [41]) of M̄ × Rr,

(2) M is a generic submanifold (in the sense of Mihai [37]) of M̄ if and only
if it is a generic submanifold (in the sense of Chen [16]) of M̄ × Rr.

Next, we obtain relations between some submanifolds of an almost contact
metric manifold and some submanifold of a framed metric manifold.

Let M̄ be an almost contact metric manifold equipped with structure tensors
(φ, ξ, η, g). Following the notations of [51] one can prove that the horizontal
lift φh of φ with respect to the Riemannian connection of g defines a framed
structure on the tangent bundle TM̄ . One has

(φh)2 = −I + ηv ⊗ ξh + ηh ⊗ ξv, ηh(ξv) = ηv(ξh) = 1, ηv(ξv) = ηh(ξh) = 0,

where h and v denote the horizontal and vertical lifts, respectively. The Sasaki
metric G on TM̄ is adapted to φh, that is

G(φhX, φhY ) = G(X, Y ) − ηh (X) ηh (Y ) − ηv (X) ηv (Y ) , X, Y ∈ T (TM̄).

Proposition 13. Let M be a submanifold of the almost contact metric man-
ifold M̄ tangent to ξ. Then we have

(1) TM is a generic submanifold of TM̄ if and only if M is a generic sub-
manifold of M̄ ,

(2) TM is a CR-submanifold of TM̄ if and only if M is a CR-submanifold
of M̄ ,

(3) TM is an almost semi-invariant submanifold of TM̄ if and only if M is
an almost semi-invariant submanifold of M̄ .

The main part of this section is devoted to the study of submanifolds of
principal toroidal bundles.

Let M̄ be a (2n + r)-dimensional S-manifold which is the bundle space of
a principal toroidal bundle over a 2n-dimensional Kaehler manifold N̄ with
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Kaehler structure (J̃ , g̃); π̄ : M̄ → N̄ . Let M be an (m + r)-dimensional sub-
manifold of M̄ , tangent to E and N an m-dimensional submanifold of N̄ . We
assume that there exists a fibration π : M → N such that the diagram

(∗)
M

i′−→ M�π

�π̄

N
i−→ N

commutes and the immersion i′ is a diffeomorphism on the fibres.
Examples.
1. Let N be a submanifold of N̄ . Then we have the diagram

π̄−1 (N) i′−→ M� �π̄

N
i−→ N

.

2. Let us consider the commutative diagram

Mm+1 i′−→ S2n+1�π

�π̃

Nm i−→ Pn (C)

,

where π̃ is the Hopf fibration, Mm+1 and Nm are submanifolds of S2n+1 and
Pn(C), respectively, and i′ is a diffeomorphism on the fibres.

Using the diagonal map, we define a principal bundle by the diagram

Mm+r �′
−→ Mm+1 × · · · × Mm+1�π′

�π×···×π

Nm �−→ Nm × · · · × Nm

,

where Mm+r = {(p1, . . . , pr) ∈ Mm+1 × · · · × Mm+1|π(p1) = · · · = π(pr)}.
Thus we obtain the diagram

Mm+r i′−→ H2n+r�π′
�π̄

Nm i−→ Pn (C)

,

where H2n+r = {(x1, . . . , xr) ∈ S2n+1 × . . . × S2n+1|π̃(x1) = · · · = π̃(xr)}.
We can state the following result.
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Theorem 23. (i) M is a CR-submanifold of M̄ if and only if N is a
CR-submanifold of N̄ .

(ii) M is a generic submanifold (in the sense of Mihai [37]) of M̄ if and only
if N is a generic submanifold (in the sense of Chen [16]) of N̄ .

(iii) M is an almost semi-invariant submanifold of M̄ if and only if N is a
generic submanifold (in the sense of Ronsse [41]) of N̄ .

Now, we denote by ∇̄ (resp. ∇̃) the Riemannian connections with respect
to g (resp. g̃) on M̄ (resp. N̄); and by ∇ (resp. ∇′) the induced Riemannian
connections on M (resp. N). Let h (resp. σ) be the second fundamental form
of the immersion i′ (resp. i) and A′ (resp. A) the shape operator of i′ (resp. i).

For X, Y ∈ TN , the Gauss formula implies

(∇′
XY )∗ = −J2∇X∗Y ∗, σ(X, Y )∗ = h(X∗, Y ∗).

Analogously, the Weingarten formula leads to

(A′
V X)∗ = −J2AV ∗X∗, (D′

XV )∗ = DX∗V ∗

for each V ∈ T⊥N , where we put D (resp. D′) for the normal connections
induced by ∇̄ (resp. ∇̃).

Then the following result follows.

Proposition 14. M is a minimal submanifold of the S-manifold M̄ if and
only if N is minimal in the Kaehler manifold N̄ .

On the other hand, we deduce that

((∇Xσ)(Y, Z))∗ = (∇X∗h)(Y ∗, Z∗) +
∑

g(Y ∗, JX∗)h(ξα, Z∗)

+
∑

g(Z∗, JX∗)h(ξα, Y ∗).

If we put J̃X = pX + qX, for each vector field X tangent to N , where
pX and qX are the tangential and normal components of J̃X respectively, the
above relation becomes

(∇X∗h)(Y ∗, Z∗) = ((∇Xσ)(Y, Z))∗ + r{g̃(Y, pX)qZ + g̃(Z, pX)qY }∗ .

It is easily seen that

(∇X∗h)(Y ∗, ξα) = {DX∗FY ∗ − F∇X∗Y ∗ − h(Y ∗, PX∗)},

or equivalently

(∇X∗h)(Y ∗, ξα) = {(∇Xq)Y − σ(Y, pX)}∗ .

Thus, we proved the following.
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Proposition 15. Let M̄ be an S-manifold and M (resp. N) a submanifold
of M̄ (resp. M̄/E) such that the diagram (*) is commutative. Then M is a
parallel submanifold of M̄ if and only if the second fundamental form σ of N
satisfies

(∇Xσ)(Y, Z) = −r {g̃(Y, pX)qZ + g̃(Z, pX)qY } and (∇Xq)Y = σ(Y, pX)

for any vector fields X, Y, Z tangent to N .
Corollary 7. Let M̄ be an S-manifold. Then M is a parallel submanifold

of M̄ if and only if N is a parallel submanifold of N̄ .
We denote by R and R′ the curvature tensor fields on M and N respectively.

For U ∈ T⊥N , put J̃U = bU + cU , where bU and cU are the tangential and
normal components of J̃U respectively.

Proposition 16. The normal connection D of M is flat if and only if the
f-structure c in the normal bundle of N is parallel and

R′⊥(X, Y )U = 2rg̃(X, pY )cU,

for all X, Y ∈ TN, U ∈ T⊥N .
Proof. Using Weingarten’s formula, we have

(D′
[X,Y ]U)∗ = D[X∗,Y ∗]U

∗ + 2rg(Y ∗, PX∗)fU∗

and

g(R⊥(X∗, Y ∗)U∗, V ∗) = g̃(R′⊥(X, Y )U, V ) + 2rg̃(Y, pX)G(cU, V ).

On the other hand

R̄(X∗, ξα)U∗ = −(∇̄X∗J)U∗ =
r∑

α=1

g(X∗, U∗)ξα.

From Ricci’s equation, it follows that

0 = g(R̄(X∗, ξα)U∗, V ∗) = g(R⊥(X∗, ξα)U∗, V ∗) − g([AU∗ , AV ∗ ]X∗, ξα),

where X, Y ∈ TN and U, V ∈ T⊥N .
By a straightforward computation, we obtain

g([AU∗ , AV ∗ ]X∗, ξα) = g(AV ∗X∗, tU∗) − g(AU∗X∗, tV ∗)
= g̃(A′

V X, bU) − g̃(A′
UX, bV )

= −g̃(J̃A′
V X, U) − g̃(σ(X, bV ), U)

= g̃((∇′
Xc)V, U),
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where bU is the tangential component of J̃U . If X, Y ∈ TN , we have

R(ξα, X∗, Y ∗, ξα) = g(PX∗, PY ∗)

and therefore M can not be flat if it is not anti-invariant. QED

Proposition 17. Let M and N be anti-invariant submanifolds of M̄ and
N̄ , respectively. Then M is flat if and only if N is flat. The Ricci tensors S and
S′ of M and N respectively are related by

S(X∗, Y ∗) = S′(X, Y ) − 2rg(PX∗, PY ∗), X, Y ∈ TN,

and their scalar curvatures satisfy

ρ = ρ′ − rm + r
m∑

i=1

g(FE∗
i , FE∗

i ),

where {E1, . . . , Em} is a local orthonormal basis on N .
Proposition 18. The scalar curvatures ρ of M and ρ′ of N satisfy

ρ′ − rm ≤ ρ ≤ ρ′.

Moreover, both M and N are anti-invariant if and only if ρ = ρ′ (resp. both M
and N are invariant if and only if ρ = ρ′ − rm).

Proposition 19 ([21]). If the mean curvature vector H of M is parallel,
then the mean curvature vector H′ of N is parallel too. Moreover, if f = 0 (and
so c = 0), H is parallel if and only if H′ is parallel.

Proof. For X ∈ TN , one has

(D′
XH′)∗ =

m + r

m
DX∗H .

QED

Analogously, one can prove the following.
Proposition 20. (i) M is totally contact umbilical if and only if N is

totally umbilical.

(ii) M is totally contact geodesic if and only if N is totally geodesic.
Example. Consider again the S-manifold H as a principal toroidal bundle

over Pn(C). A real projective space Pm(R) (m < n) of constant curvature 1 is
imbedded in Pn(C) as an anti-invariant and totally geodesic submanifold. The
following diagram

Pm(R) × T r−1 i′−→ H�π1

�π̄

Pm (R) i−→ Pn (C)

,
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is commutative. Then Pm(R) × T r−1 is an anti-invariant and totally contact
geodesic submanifold of H.
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