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Abstract. For a given smooth manifold M we will consider the ideals I of C*°(M) such
that C*°/I is a Weil algebra of order k; the set of these ideals is the disjoint union of several
A-jets manifolds; by fixing dim C*° /I we will immerse the above mentioned set into a Grass-
mann bundle of the k-th cotangent bundle of M, explicitly showing the equations of such an
immersion. Finally, in a particular case, we will see how the aforesaid A-jets manifolds are
placed.
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Introduction

The theory of Weil bundles [5], describes in an elegant and powerful way an
ample class of objects of the global analysis and differential geometry, comprised
such ones as the bundles of (m, r)-velocities and iterated tangent bundles (see [3,
4]); moreover, that notion recovers the old and useful idea of S. Lie of considering
not only the points of a manifold themselves but also infinitesimal manifolds or
‘valued points’.

On the other hand, given a Weil bundle M4, where A is a Weil algebra, was
proved in [1] that, roughly speaking, the quotient under the action of the group
Aut A is a manifold JAM which consists of the kernels of the corresponding
A-points (see below); when A is the algebra of polynomials of order < k in
m undetermined, R’ﬁn, we obtain the well-known (m, k)-jet spaces of M which
constitute a decisive tool when studying partial differential equations (see, for
example, [3, 4] and references therein).

One can easily deduce the interest of knowing the properties of the bundles
JAM; in [2] some affine properties are obtained; in [1] was deduced the tangent
structure and also an immersion of JAM into certain Grasmann bundle.

*Partially founded by Junta de Castilla y Leén under contract SA30/00B
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Here, we are concerned with a different aspect. First, being the elements of
each JAM ideals of the ring C°°(M) we will study here the spaces of ideals (of
a suitable type), obtaining the equations defining this space into the aforemen-
tioned Grasmann bundle. Second, we will study in a particular case how the
several manifolds JAM are distributed into each one of those spaces of ideals.

1 Preliminaries

A Weil algebra, A, is a finite dimensional local rational R-algebra; let us
denote by m A its maximal ideal, m = dimm4 /m? %, and k the integer such that
mith =0, mk # 0; we will call k the order of A.

Remark 1. If the classes of fi,..., fm, € ma generate my/m?, then any ele-
ment of A can be obtained as a polynomial in the f;, that is, A =R [f1,..., fi].

Examples of Weil algebras are R, R[e] /e or, more in general RE, =

Rlet,...,em]/ (€1, ..., em)*! and the tensor products R @ ® ]anr.

Let us fix a n-dimensional smooth manifold M.

Definition 1. The set M of the R-algebra morphisms
Ao (M) — A

is the so-called space of A-points of M associated to A; we have a map M4 5 M

A
which sends p# to the point p € M corresponding to the composition C* (M) 7,
A — A/my =R. In fact, M4 can be endowed with a smooth structure such that
7 becomes a fiber bundle which is known as the Weil bundle on M associated to
A. We will say that a A-point p? is regular if it is surjective; the set of regular

A-points M4 is a dense open set of M4 (see [3, 4]).

Examples of Weil bundles are the very M = MR, the tangent bundle TM =
MPE1, the iterated tangent bundles TT---TM = MRi®®Ri the frame bundle
R(M) = MEn, ete.

Definition 2. The kernel of a regular A-point p? will be called the jet of
p? and we will denote it by p4 = Ker(p?). The set JAM comprised by the jets
of regular A-points will be called space of A-jets of M.

Proposition 1. The set JAM can be endowed with an smooth manifold

structure in such a way that the map Ker : M4 — JAM becomes a principal
fiber bundle with structural group Aut A.

Proof. See [1] QED
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Let p be the jet of p?, which projects onto p € M; in particular, p# is
an ideal of the ring C°>°(M) containing m’;‘H, where m,, is the maximal ideal
of the functions vanishing at p and k is the order of A. Therefore we have
mptt CpA Cmy,

Definition 3. An ideal I C C*°(M) such that mi*! C I Cm,, mk ¢ I, for
a point p € M, will be called a Weil ideal of order k at p € M.

Observe that a Weil ideal of order k defines a Weil algebra of order k,
C>®(M)/I; also observe that such a I is completely determined by its class

modulo m’;H.

Let us denote d (1) I dim I/m];“; the set of Weil ideals of order < k at

a point p with fixed d = d(I) will be denoted by I éip; the same way we put

k _ k
Id - H Id7p.
peEM

Each ideal I € I U]l‘:’p can be identified with a d-dimensional subspace of
m,, /mh L that is, Ig?p is a subset of the Grassmann manifold Gr(d, m,/mi*!).
More in general, we have a natural inclusion

I% C Gr(d, T** M) (1)

where T**M is the k-th cotangent fiber bundle of M (the fiber of T*FM at
peMisTp*M = m,,/mhtL).
In Section 2 we will obtain the equations of that inclusions.

On the other hand, let A be the set of non isomorphic Weil algebras A such
that there exists at least a Weil ideal I with A ~ C>(M)/I; then,

IF = 11 JAMm 2
d AcA ()

How do the jet manifolds JAM are distributed into I 5’ and hence, into
Gr(d, mp/mi+!)? In Section 3 we will completely solve this problem in a par-
ticular situation: dim M = d = k = 2; we hope the results of this example can
give same light about the general situation.

2 The equations of the space of Weil ideals

Let V be a K-vector space, E C V a d-dimensional vector subspace and ¢ an
endomorphism of V. Later we will need to obtain the conditions for ¢ (F) C E.
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Let wg € /\d V' be a representative element of E; that is, if {e1,...,eq} is a
basis of E we take the exterior product wg =e; A --- A eq. Let us consider the
K-derivation

d d
D¢:/\V—>/\V (3)

induced by ¢; in other words, if c =v1 A--- Avg € /\d V then

def
DSO(J) = Zm/\---/\vi,l/\cp(vi)/\viﬂ/\.../\vd
%

Proposition 2. A vector subspace E of V' is stable by an endomorphism ¢
(i.e. o(E) C E) if and only if there is an scalar A such that

waE = )\wE (4)

for a representative element wg € /\dV of E. In such a case, X is the trace of
@ when restricted to E.

ProOOF. If (F) C E then trivially Dowrp = Awg. For the converse let
us suppose that Dyowg = Awg, where wgp = e1 A --- A eq for a given basis
B ={ei,...,eq} of E. If, for example, p(e1) = v ¢ E, we have,

Dw(wE):v/\eg/\~~/\ed—i—61/\Z(eg/\"-/\ej_l/\go(ej)/\ej+1/\-~/\ed)
Jj=>2

then, e; A Dy(wg) # 0 but ey Awg = 0. We deduce that D, (wg) cannot be
proportional to wg. QED

Now we will apply the result above to the following problem: when does a
vector subspace F, with m’;“ C E Cmy, is an ideal?

Lemma 1. Let (z1,... ,%) be local coordinates around p € M and E a
vector subspace with mﬁ“ C E Cmy; then, E is an ideal of C*°(M) if and only
if

(x; —x;(p))-ECE, i=1,...,n

PROOF. Let us suppose the condition (v; — z;(p))-ECE, i=1,...,n,is
satisfied. Each function f(x) € C*°(M) can be written as f(z) = P(z) + f(z),
where P(z) is a polynomial in the (z; — 2;(p)), and f € m];“; obviously f-E C
m’;H C E and, by hypothesis, P(x) - E C E; then E is an ideal. The converse
is trivial. QED
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Proposition 3. Let E be as above, E = E/mktt C m, /mb L and denote by

@i mp/mitt — my, /mitt the endomorphisms defined as i[f] = [(zi—zi(p))- f],
i=1,...,n, where f € my, and [ | means the class modm;ﬁ“. Then, E is an
ideal if and only if

Dy,wg =0, i=1,...,n. (5)

PROOF. By Lemma 1, E is an ideal if and only if E is stable by the ;.
According to Proposition 2, that is equivalent to Dy,,wr = \jwg; in this case,
each \; € R is the trace of y; when restricted to E. But, obviously, the endo-
morphisms ¢; are nilpotent and hence they have no trace. QED

We will use the above characterization to getting the equations of the sub-

space [ 5 , comprised by the points of Gr(d,my/ m’;“) that represent Weil ideals.

Let us fix a local chart {U, (z1,...,2,)}, p € U, and denote T; = x; — z;(p).

d
Let us take the products 7% =) it T o = (a1,...,a,) € N, o = a1 +
-+ ap < k. The classes [2%] = Z% mod m’l‘ﬁ“ define a basis of the vector space
def

V= m,/mhtt
Now we order the indexes a according to the lexicographic rule: let o =
(a1,...,an), B = (b1,...,by); then we say that o < f if and only if |« < |3] or

la] = |B] and a1 = by,...a;—1 = bj—1,a; > b;, for some i. For example, if n = 2,
we have (1,0) < (0,1) < (2,0) < (1,1) < (0,2) < ---.
For any ordered multi-index H = (aq,...,ay) (ie., a1 < ag < ---), we form

the d-vector J
er & @M A A E e AV (6)

The collection {ey} provides a basis of /\d V. Thus, each point P € Gr(d, V)
C P(AYV) (where P(A® V) is the projective space associated to A® V) is rep-
resented in the following way,

d
ep =Y Aapen € \V; (7)
H

where the coefficients Ag;, € R are the homogeneous coordinates of P € IP( /\d V)
and verify the Plucker relations.

Let us express the equations of Proposition 3 in terms of the coordinates
Amp- Recall that ¢;[f] = [z; f]; in particular, ¢;[z°] = [z7" - -fiiﬂ cee TN =
[z*T¢], where ¢; = (0,...,1%...,0). Therefore,

Dy.en = Z[f“l] A AT A A [T, (8)
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If we denote by H + eg the ordered multi-index obtained from (o, ...
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a5+

€y ...,Qq) by means of a suitable number o(H, ef) of permutations, we get

Do =3 (~1)7De, .

J

Finally, the equations determining I C’f into Gr(d, m,/ mk“) are

S C1r g, —o

Htel=K

From the local chart {U, (z1, ...

coordinates {Ag} on the bundle P(AT**M) =

by the rule

Au(P) =

K|=d+1;i=1,...,n (9)

,xn)}; U C M, we define homogeneous fiber

Uperr PN mp/mitt) — M,

AH,p(P)

where P projects onto p € Y C M and Ap,, is defined by (7).

Proposition 4. With the above notation, the local equations of the space of
ideals 1% into Gr(d, T**M) C P(\CT** M), are

> (~1)7HDry =0,

Htel=K

K|=d+1;i=1,...

3 The structure of [M, dim M = 2.

In that follows we will fix a 2-dimensional manifold M.
Consider a local chart {U,(z = x1,y = x2)}. For each p € U we obtain a

basis {e1, €9, €3, 4, €5} of mp/mg defined as follows: e; =
es = [7%], where, T =  — x(p) and ¥ = y — y(p) (in this case we have

es = [T7],

[f], €2 = [g]a €3 = [52]7

simplified the notation by removing multi-indexes).

From relations

Tey = e3 Tep = ey

yer=eq Yez =e5

we obtain

Dg(el A 62) = —exgNesg+eNey

Dz(e1 Nes) =

D§(61 A 64) =e3/Ney

Dz(e1 Nes) =e1 Nes

Dg(eg A 63) = —e3Ney

DE(@Q AN 64) =

Dg(eg A 65) =e4 N\ ej5

Dz(e; Nej) =0, 4,5 >3

Teg = xey = Tes =0
yes = yey =yYes =0

Dg(el A 62) = —exNeqg+eNes

Dy(e1 Ne3) = —63 A ey

Dg(el A 64)

Dyz(eg Nes) =

DzE€2 VAN 63; = —e3 N\ es (10)
Dy(eg AN 64) —64 N es

Dg(eg AN 65) =

Dy(ei Nej) = >3
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where Dz = D,, and Dy = D, (see the notation in Proposition 3).

Let P € Gr(d, T**M) which projects to p € M and is represented by the
2-vector
ep = Z /\ije,- A e;
1<i<j<5

By applying (10) we see that the equations of Proposition 3 are, in this case,

0= Dzep = —Ai2ea A ez + Aaer Aes + Ages A ey
+ Ase3 A es — dageg A eq + Aaseq A es
0= Dyep = —A12ea A eg + Age1 Aes — Aizes A ey

+ Aseq A es — dages A es — Aggeq A €5
From which we get: )\12 = )\13 = )\14 = A15 = )\23 = /\24 = )\25 =0 and so
ep = Azqe3 A eg + Azsez A es + Agseq A es; (11)

in particular, the Pliicker relations are automatically satisfied by such a ep
(because ep € A*(ez.e4,€5)).
For simplicity, let us denote

a = )\34, b= )\357 Cc = )\45; (12)
this way, the vector subspace (and also ideal, as we know) associated to ep is
Ip = {cses + caeq + cses [/ ccg — bey +acs =0, ¢; € R} C my, (13)

Now, we want to describe the possible structures of the Weil algebra A =
C®(M)/Ip ~ R[z,y]/Ip. If ms denotes the maximal ideal of A, we have
m% = 0 and dim A = dim(R[Z,7]/m}) — dim(l4/m}) = 6 — 2 = 4. Besides,
dim(my/m%) = 2; in fact, that dimension must be lower or equal than 2, if
dim(ma/m?%) = 1, then there exist an f € my such that A = R[f] and hence
dim A < 3, which is contradictory.

Lemma 2. Let B be a Weil algebra of dimension 4 and dim(mp/m%) = 2.
Let us denote s the mazimum number of linearly independent (modulo m2B)
solutions of the equation f?> =0, f € mp. The following isomorphisms holds:

(1) If s =0, then B ~R[t,7]/(t?> — 72, tT)
(2) If s =1, then B ~ Rt 7]/(t?,tT,m3)

(3) If s =2, then B ~ Rt 7]/(t?,7%)
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where t, T are undetermined and m denotes the maximal ideal that they generate.

PROOF. Let f,g € mp be such that their classes generate mB/mQB; in par-
ticular, B = R[f, g].

Case 1) s = 0. If the functions f2, fg, g generate (over R) a vector subspace
of dimension greater than one, then dim B > 5; so, two of them are proportional
to the third one; subcase 1.1) there exist A, u € R such that fg = \f?, g% = uf?;
we deduce f(g — Af) = 0; hence, we can suppose A = 0; on the other hand, if
p <0 we have 0 = g% — uf? = (9 — v/—puf)? and then s # 0; therefore u > 0
and we can take \/uf as a new f; that is, we can suppose that the relations are
fg =0 and f? — g> = 0; subcase 1.2) there exist A, u € R such that f2 = \fg,
g% = pufg; necessarily, A, ;1 # 0 because s = 0; then have fg = %fz, = %fQ
which correspond to 1.1; subcase 1.3) there exist A, u € R such that fg = \g?,
f? = ug?; changing the rules of f and g we are once again in the situation 1.1.
Then, we can define the surjective morphism R[t, 7]/(t?> — 72,t7) — B = R[f, g]
sending t — f, 7 +— g, taking into account the respective dimensions we deduce
that this map is an isomorphism.

Case 2) s = 1. We can suppose that f is the unique independent solution of
f? = 0. Because dim B = 4, vectors 1, f, g, g%, fg cannot be linearly indepen-
dents; thus, there exist a non trivial relation

g%+ Aafg+ Asf + Mg+ As1 = 0;

first observe that A5 = 0 (if not, 1 € mp); moreover A3f + A\yg = 0 mod mQB,
which is impossible if A3, A4 are not identically vanishing; thus, the above
relation reduces to A\1g? + Aafg = 0; if A\; # 0 we can suppose A\; = 1 and
then g?+ Xafg = (g + %f)2 = 0, which contradicts the assumption s = 1. As
a consequence A\; = 0 and Ay fg = 0, where Ay # 0; that is, fg = 0. Now we
define the surjective morphism R[t, 7]/(¢2,t7,m3) — B = R[f, g] sending t + f,
T +— g; by computing dimensions we conclude.

Case 3) s = 2. In this situation we can suppose that two independent so-
lutions are f,g; that is, f2 = ¢g?> = 0; we finish the proof as in the previous
cases. QED

Let us denote the three Weil algebras appearing in Lemma 2 by Bg, s =

0,1,2. We will apply this result to classify the algebra C*°(M)/Ip, depending
of the parameters a, b, c. Recall that

Ip = {63524-04@—1—65?2 / cc3 —beg +acs =0, ¢; € R}

If, for example, b # 1, Ip will be generated by vectors Z2 + ;7Y and 7+ 7Ty
Now we search for the number of solutions of f2 = 0, with f = A\[Z] + u[y] €
C>®(M)/Ip (here, symbol [ | means the class mod Ip). Taking into account rela-
tions 72 + £7y, ¥? + $Ty = 0 mod Ip, we have f? = N2 [Z?] + Au[zy] + p2[y%] =
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— g N[@g] + 22u[Ty) - §pP[Ty] = (5N + 22 — §u?)[Ty); then f2 = 0 if and
only if eA? — 2bAp — ap? = 0.

The number of independent solutions of the last equation is 0, 1 or 2 if
A <0, A=0or A >0, respectively, where A def b2 — ac. The same conclusion
is easily obtained if we suppose instead a # 0 or ¢ # 0.

Therefore, by applying Lemma 2 we have finally,

Theorem 1. Ifdim M = 2, then
M =JBoM1JBMILJP2M  Gr(2,T**M)
Moreover, with the above notation,

JBOM:{ /\%5—)\34)\45<0; /\ij:O,z‘§2 }
JPM = { N5 — Asadas =0; A =0, <2}
JBzM:{ /\%5—)\34)\45>0; /\ij:O,z‘SQ }
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