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Abstract. For a given smooth manifold M we will consider the ideals I of C∞(M) such
that C∞/I is a Weil algebra of order k; the set of these ideals is the disjoint union of several
A-jets manifolds; by fixing dim C∞/I we will immerse the above mentioned set into a Grass-
mann bundle of the k-th cotangent bundle of M , explicitly showing the equations of such an
immersion. Finally, in a particular case, we will see how the aforesaid A-jets manifolds are
placed.
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Introduction

The theory of Weil bundles [5], describes in an elegant and powerful way an
ample class of objects of the global analysis and differential geometry, comprised
such ones as the bundles of (m, r)-velocities and iterated tangent bundles (see [3,
4]); moreover, that notion recovers the old and useful idea of S. Lie of considering
not only the points of a manifold themselves but also infinitesimal manifolds or
‘valued points’.

On the other hand, given a Weil bundle MA, where A is a Weil algebra, was
proved in [1] that, roughly speaking, the quotient under the action of the group
Aut A is a manifold JAM which consists of the kernels of the corresponding
A-points (see below); when A is the algebra of polynomials of order ≤ k in
m undetermined, Rk

m, we obtain the well-known (m, k)-jet spaces of M which
constitute a decisive tool when studying partial differential equations (see, for
example, [3, 4] and references therein).

One can easily deduce the interest of knowing the properties of the bundles
JAM ; in [2] some affine properties are obtained; in [1] was deduced the tangent
structure and also an immersion of JAM into certain Grasmann bundle.
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Here, we are concerned with a different aspect. First, being the elements of
each JAM ideals of the ring C∞(M) we will study here the spaces of ideals (of
a suitable type), obtaining the equations defining this space into the aforemen-
tioned Grasmann bundle. Second, we will study in a particular case how the
several manifolds JAM are distributed into each one of those spaces of ideals.

1 Preliminaries

A Weil algebra, A, is a finite dimensional local rational R-algebra; let us
denote by mA its maximal ideal, m = dimmA/m2

A, and k the integer such that
mk+1

A = 0, mk
A �= 0; we will call k the order of A.

Remark 1. If the classes of f1, . . . , fm ∈ mA generate mA/m2
A, then any ele-

ment of A can be obtained as a polynomial in the fi, that is, A = R [f1, . . . , fm].

Examples of Weil algebras are R, R [ε] /ε2 or, more in general, Rk
m

def
=

R [ε1, . . . , εm] / (ε1, . . . , εm)k+1 and the tensor products Rk1
m1

⊗ · · · ⊗ Rkr
mr

.

Let us fix a n-dimensional smooth manifold M .

Definition 1. The set MA of the R-algebra morphisms

pA : C∞ (M) → A

is the so-called space of A-points of M associated to A; we have a map MA π→ M

which sends pA to the point p ∈ M corresponding to the composition C∞ (M)
pA

→
A → A/mA = R. In fact, MA can be endowed with a smooth structure such that
π becomes a fiber bundle which is known as the Weil bundle on M associated to
A. We will say that a A-point pA is regular if it is surjective; the set of regular
A-points M̌A is a dense open set of MA (see [3, 4]).

Examples of Weil bundles are the very M = MR, the tangent bundle TM =
MR

1
1 , the iterated tangent bundles TT

r· · ·TM = MR
1
1⊗···⊗R

1
1 , the frame bundle

R(M) = M̌R
1
n , etc.

Definition 2. The kernel of a regular A-point pA will be called the jet of
pA and we will denote it by pA = Ker(pA). The set JAM comprised by the jets
of regular A-points will be called space of A-jets of M .

Proposition 1. The set JAM can be endowed with an smooth manifold
structure in such a way that the map Ker : M̌A → JAM becomes a principal
fiber bundle with structural group Aut A.

Proof. See [1] QED
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Let pA be the jet of pA, which projects onto p ∈ M ; in particular, pA is
an ideal of the ring C∞(M) containing mk+1

p , where mp is the maximal ideal
of the functions vanishing at p and k is the order of A. Therefore we have
mk+1

p ⊆ pA ⊆ mp.

Definition 3. An ideal I ⊂ C∞(M) such that mk+1
p ⊆ I ⊆ mp, mk

p � I, for
a point p ∈ M , will be called a Weil ideal of order k at p ∈ M .

Observe that a Weil ideal of order k defines a Weil algebra of order k,
C∞(M)/I; also observe that such a I is completely determined by its class
modulo mk+1

p .

Let us denote d (I)
def
= dim I/mk+1

p ; the set of Weil ideals of order ≤ k at
a point p with fixed d = d(I) will be denoted by Ik

d,p; the same way we put
Ik
d =

∐
p∈M

Ik
d,p.

Each ideal I ∈ Ik
d,p can be identified with a d-dimensional subspace of

mp/mk+1
p ; that is, Ik

d,p is a subset of the Grassmann manifold Gr(d, mp/mk+1
p ).

More in general, we have a natural inclusion

Ik
d ⊆ Gr(d, T ∗,kM) (1)

where T ∗,kM is the k-th cotangent fiber bundle of M (the fiber of T ∗,kM at
p ∈ M is T ∗,k

p M = mp/mk+1
p ).

In Section 2 we will obtain the equations of that inclusions.

On the other hand, let A be the set of non isomorphic Weil algebras A such
that there exists at least a Weil ideal I with A � C∞(M)/I; then,

Ik
d = 	

A∈A
JAM (2)

How do the jet manifolds JAM are distributed into Ik
d , and hence, into

Gr(d, mp/mk+1
p )? In Section 3 we will completely solve this problem in a par-

ticular situation: dimM = d = k = 2; we hope the results of this example can
give same light about the general situation.

2 The equations of the space of Weil ideals

Let V be a K-vector space, E ⊂ V a d-dimensional vector subspace and ϕ an
endomorphism of V . Later we will need to obtain the conditions for ϕ (E) ⊆ E.
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Let ωE ∈
∧d V be a representative element of E; that is, if {e1, . . . , ed} is a

basis of E we take the exterior product ωE = e1 ∧ · · · ∧ ed. Let us consider the
K-derivation

Dϕ :
d∧

V →
d∧

V (3)

induced by ϕ; in other words, if σ = v1 ∧ · · · ∧ vd ∈
∧d V then

Dϕ(σ)
def
=

∑

i

v1 ∧ · · · ∧ vi−1 ∧ ϕ(vi) ∧ vi+1 ∧ · · · ∧ vd

Proposition 2. A vector subspace E of V is stable by an endomorphism ϕ
(i.e. ϕ(E) ⊆ E) if and only if there is an scalar λ such that

DϕωE = λωE (4)

for a representative element ωE ∈
∧d V of E. In such a case, λ is the trace of

ϕ when restricted to E.

Proof. If ϕ(E) ⊆ E then trivially DϕωE = λωE . For the converse let
us suppose that DϕωE = λωE , where ωE = e1 ∧ · · · ∧ ed for a given basis
B = {e1, . . . , ed} of E. If, for example, ϕ(e1) = v /∈ E, we have,

Dϕ(ωE) = v ∧ e2 ∧ · · · ∧ ed + e1 ∧
∑

j≥2

(e2 ∧ · · · ∧ ej−1 ∧ ϕ(ej) ∧ ej+1 ∧ · · · ∧ ed)

then, e1 ∧ Dϕ(ωE) �= 0 but e1 ∧ ωE = 0. We deduce that Dϕ(ωE) cannot be
proportional to ωE . QED

Now we will apply the result above to the following problem: when does a
vector subspace E, with mk+1

p ⊆ E ⊆ mp, is an ideal?

Lemma 1. Let (x1, . . . , xn) be local coordinates around p ∈ M and E a
vector subspace with mk+1

p ⊆ E ⊆ mp; then, E is an ideal of C∞(M) if and only
if

(xi − xi(p)) · E ⊂ E, i = 1, . . . , n

Proof. Let us suppose the condition (xi − xi(p)) · E ⊂ E, i = 1, . . . , n, is
satisfied. Each function f(x) ∈ C∞(M) can be written as f(x) = P (x) + f(x),
where P (x) is a polynomial in the (xi −xi(p)), and f ∈ mk+1

p ; obviously f ·E ⊂
mk+1

p ⊂ E and, by hypothesis, P (x) · E ⊂ E; then E is an ideal. The converse
is trivial. QED
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Proposition 3. Let E be as above, E
def
= E/mk+1

p ⊂ mp/mk+1
p and denote by

ϕi : mp/mk+1
p → mp/mk+1

p the endomorphisms defined as ϕi[f ] = [(xi−xi(p))·f ],
i = 1, . . . , n, where f ∈ mp and [ ] means the class mod mk+1

p . Then, E is an
ideal if and only if

DϕiωE = 0, i = 1, . . . , n. (5)

Proof. By Lemma 1, E is an ideal if and only if E is stable by the ϕi.
According to Proposition 2, that is equivalent to DϕiωE = λiωE ; in this case,
each λi ∈ R is the trace of ϕi when restricted to E. But, obviously, the endo-
morphisms ϕi are nilpotent and hence they have no trace. QED

We will use the above characterization to getting the equations of the sub-
space Ik

d,p comprised by the points of Gr(d, mp/mk+1
p ) that represent Weil ideals.

Let us fix a local chart {U , (x1, . . . , xn)}, p ∈ U , and denote xi = xi −xi(p).

Let us take the products xα def
= xa1

1 · · ·xan
n , α = (a1, . . . , an) ∈ Nn, |α| = a1 +

· · · + an ≤ k. The classes [xα] ≡ xα mod mk+1
p define a basis of the vector space

V
def
= mp/mk+1

p .
Now we order the indexes α according to the lexicographic rule: let α =

(a1, . . . , an), β = (b1, . . . , bn); then we say that α < β if and only if |α| < |β| or
|α| = |β| and a1 = b1, . . . ai−1 = bi−1, ai > bi, for some i. For example, if n = 2,
we have (1, 0) < (0, 1) < (2, 0) < (1, 1) < (0, 2) < · · · .

For any ordered multi-index H = (α1, . . . , αn) (i.e., α1 < α2 < · · · ), we form
the d-vector

eH
def
= [xα1 ] ∧ · · · ∧ [xαn ] ∈

d∧
V ; (6)

The collection {eH} provides a basis of
∧d V . Thus, each point P ∈ Gr(d, V )

⊆ P(
∧d V ) (where P(

∧d V ) is the projective space associated to
∧d V ) is rep-

resented in the following way,

eP =
∑

H

λH,peH ∈
d∧

V ; (7)

where the coefficients λH,p ∈ R are the homogeneous coordinates of P ∈ P(
∧d V )

and verify the Plücker relations.

Let us express the equations of Proposition 3 in terms of the coordinates
λH,p. Recall that ϕi[f ] = [xif ]; in particular, ϕi[xα] = [xα1

1 · · ·xαi+1
i · · ·xαn

n ] =
[xα+εi ], where εi = (0, . . . , 1i, . . . , 0). Therefore,

DϕieH =
∑

j

[xα1 ] ∧ · · · ∧ [xαi+1] ∧ · · · ∧ [xαd ]. (8)
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If we denote by H + εj
i the ordered multi-index obtained from (α1, . . . , αj +

εi, . . . , αd) by means of a suitable number σ(H, εj
i ) of permutations, we get

DϕieH =
∑

j

(−1)σ(H,εj
i )e

H+εj
i
.

Finally, the equations determining Ik
d,p into Gr(d, mp/mk+1

p ) are
∑

H+εj
i =K

(−1)σ(H,εj
i )λH,p = 0, |K| = d + 1; i = 1, . . . , n. (9)

From the local chart {U , (x1, . . . , xn)}; U ⊆ M , we define homogeneous fiber
coordinates {λH} on the bundle P(

∧d T ∗,kM) =
⋃

p∈M P(
∧d mp/mk+1

p ) → M ,
by the rule

λH(P ) = λH,p(P )

where P projects onto p ∈ U ⊆ M and λH,p is defined by (7).
Proposition 4. With the above notation, the local equations of the space of

ideals Ik
d into Gr(d, T ∗,kM) ⊆ P(

∧d T ∗,kM), are
∑

H+εj
i =K

(−1)σ(H,εj
i )λH = 0, |K| = d + 1; i = 1, . . . , n.

3 The structure of I2
2M , dim M = 2.

In that follows we will fix a 2-dimensional manifold M .
Consider a local chart {U , (x = x1, y = x2)}. For each p ∈ U we obtain a

basis {e1, e2, e3, e4, e5} of mp/m3
p defined as follows: e1 = [x], e2 = [y], e3 = [x2],

e4 = [xy], e5 = [y2], where, x = x− x(p) and y = y − y(p) (in this case we have
simplified the notation by removing multi-indexes).

From relations
xe1 = e3 xe2 = e4 xe3 = xe4 = xe5 = 0
ye1 = e4 ye2 = e5 ye3 = ye4 = ye5 = 0

we obtain
Dx(e1 ∧ e2) = −e2 ∧ e3 + e1 ∧ e4 Dy(e1 ∧ e2) = −e2 ∧ e4 + e1 ∧ e5

Dx(e1 ∧ e3) = 0 Dy(e1 ∧ e3) = −e3 ∧ e4

Dx(e1 ∧ e4) = e3 ∧ e4 Dy(e1 ∧ e4) = 0
Dx(e1 ∧ e5) = e1 ∧ e5 Dy(e1 ∧ e5) = 0
Dx(e2 ∧ e3) = −e3 ∧ e4 Dy(e2 ∧ e3) = −e3 ∧ e5

Dx(e2 ∧ e4) = 0 Dy(e2 ∧ e4) = −e4 ∧ e5

Dx(e2 ∧ e5) = e4 ∧ e5 Dy(e2 ∧ e5) = 0
Dx(ei ∧ ej) = 0, i, j ≥ 3 Dy(ei ∧ ej) = 0, i, j ≥ 3

(10)
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where Dx = Dϕ1 and Dy = Dϕ2 (see the notation in Proposition 3).

Let P ∈ Gr(d, T ∗,kM) which projects to p ∈ M and is represented by the
2-vector

eP =
∑

1≤i<j≤5

λijei ∧ ej

By applying (10) we see that the equations of Proposition 3 are, in this case,

0 = DxeP = −λ12e2 ∧ e3 + λ12e1 ∧ e5 + λ14e3 ∧ e4

+ λ15e3 ∧ e5 − λ23e3 ∧ e4 + λ25e4 ∧ e5

0 = DyeP = −λ12e2 ∧ e4 + λ12e1 ∧ e5 − λ13e3 ∧ e4

+ λ15e4 ∧ e5 − λ23e3 ∧ e5 − λ24e4 ∧ e5

From which we get: λ12 = λ13 = λ14 = λ15 = λ23 = λ24 = λ25 = 0 and so

eP = λ34e3 ∧ e4 + λ35e3 ∧ e5 + λ45e4 ∧ e5; (11)

in particular, the Plücker relations are automatically satisfied by such a eP

(because eP ∈
∧2〈e3,e4, e5〉).

For simplicity, let us denote

a = λ34, b = λ35, c = λ45; (12)

this way, the vector subspace (and also ideal, as we know) associated to eP is

IP = {c3e3 + c4e4 + c5e5 / cc3 − bc4 + ac5 = 0, ci ∈ R} ⊂ mp (13)

Now, we want to describe the possible structures of the Weil algebra A =
C∞(M)/IP � R[x, y]/IP . If mA denotes the maximal ideal of A, we have
m3

A = 0 and dimA = dim(R[x, y]/m3
p) − dim(IA/m3

p) = 6 − 2 = 4. Besides,
dim(mA/m2

A) = 2; in fact, that dimension must be lower or equal than 2, if
dim(mA/m2

A) = 1, then there exist an f ∈ mA such that A = R[f ] and hence
dimA ≤ 3, which is contradictory.

Lemma 2. Let B be a Weil algebra of dimension 4 and dim(mB/m2
B) = 2.

Let us denote s the maximum number of linearly independent (modulo m2
B)

solutions of the equation f2 = 0, f ∈ mB. The following isomorphisms holds:

(1) If s = 0, then B � R[t, τ ]/(t2 − τ2, tτ)

(2) If s = 1, then B � R[t, τ ]/(t2, tτ, m3)

(3) If s = 2, then B � R[t, τ ]/(t2, τ2)
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where t, τ are undetermined and m denotes the maximal ideal that they generate.
Proof. Let f, g ∈ mB be such that their classes generate mB/m2

B; in par-
ticular, B = R[f, g].

Case 1) s = 0. If the functions f2, fg, g2 generate (over R) a vector subspace
of dimension greater than one, then dimB > 5; so, two of them are proportional
to the third one; subcase 1.1) there exist λ, µ ∈ R such that fg = λf2, g2 = µf2;
we deduce f(g − λf) = 0; hence, we can suppose λ = 0; on the other hand, if
µ ≤ 0 we have 0 = g2 − µf2 = (g − √−µf)2 and then s �= 0; therefore µ > 0
and we can take

√
µf as a new f ; that is, we can suppose that the relations are

fg = 0 and f2 − g2 = 0; subcase 1.2) there exist λ, µ ∈ R such that f2 = λfg,
g2 = µfg; necessarily, λ, µ �= 0 because s = 0; then have fg = 1

λf2, g2 = µ
λf2

which correspond to 1.1; subcase 1.3) there exist λ, µ ∈ R such that fg = λg2,
f2 = µg2; changing the rules of f and g we are once again in the situation 1.1.
Then, we can define the surjective morphism R[t, τ ]/(t2 − τ2, tτ) → B = R[f, g]
sending t �→ f , τ �→ g, taking into account the respective dimensions we deduce
that this map is an isomorphism.

Case 2) s = 1. We can suppose that f is the unique independent solution of
f2 = 0. Because dim B = 4, vectors 1, f , g, g2, fg cannot be linearly indepen-
dents; thus, there exist a non trivial relation

λ1g
2 + λ2fg + λ3f + λ4g + λ51 = 0;

first observe that λ5 = 0 (if not, 1 ∈ mB); moreover λ3f + λ4g ≡ 0 mod m2
B,

which is impossible if λ3, λ4 are not identically vanishing; thus, the above
relation reduces to λ1g

2 + λ2fg = 0; if λ1 �= 0 we can suppose λ1 = 1 and
then g2+ λ2fg = (g + λ2

2 f)2 = 0, which contradicts the assumption s = 1. As
a consequence λ1 = 0 and λ2fg = 0, where λ2 �= 0; that is, fg = 0. Now we
define the surjective morphism R[t, τ ]/(t2, tτ, m3) → B = R[f, g] sending t �→ f ,
τ �→ g; by computing dimensions we conclude.

Case 3) s = 2. In this situation we can suppose that two independent so-
lutions are f, g; that is, f2 = g2 = 0; we finish the proof as in the previous
cases. QED

Let us denote the three Weil algebras appearing in Lemma 2 by Bs, s =
0, 1, 2. We will apply this result to classify the algebra C∞(M)/IP , depending
of the parameters a, b, c. Recall that

IP =
{
c3x

2 + c4xy + c5y
2 / cc3 − bc4 + ac5 = 0, ci ∈ R

}

If, for example, b �= 1, IP will be generated by vectors x2+ c
bxy and y2+ a

b xy.
Now we search for the number of solutions of f2 = 0, with f = λ[x] + µ[y] ∈
C∞(M)/IP (here, symbol [ ] means the class mod IP ). Taking into account rela-
tions x2 + c

bxy, y2 + a
b xy ≡ 0 mod IP , we have f2 = λ2[x2] + λµ[xy] + µ2[y2] =
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− c
bλ

2[xy] + 2λµ[xy] − a
b µ2[xy] = (− c

bλ
2 + 2λµ − a

b µ2)[xy]; then f2 = 0 if and
only if cλ2 − 2bλµ − aµ2 = 0.

The number of independent solutions of the last equation is 0, 1 or 2 if
� < 0, � = 0 or � > 0, respectively, where � def

= b2 − ac. The same conclusion
is easily obtained if we suppose instead a �= 0 or c �= 0.

Therefore, by applying Lemma 2 we have finally,
Theorem 1. If dim M = 2, then

I2
2M = JB0M 	 JB1M 	 JB2M ⊂ Gr(2, T ∗,2M)

Moreover, with the above notation,

JB0M =
{

λ2
35 − λ34λ45 < 0; λij = 0, i ≤ 2

}

JB1M =
{

λ2
35 − λ34λ45 = 0; λij = 0, i ≤ 2

}

JB2M =
{

λ2
35 − λ34λ45 > 0; λij = 0, i ≤ 2

}
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