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Onset of convection in porous layers
salted from above and below
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Abstract. For a porous layer heated from below and salted from above and below, the non
existence of subcritical instabilities and conditions of global stability - for special values of the
Prandtl numbers - are found.
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1 Introduction and aims

A porous medium is schematized via a body (generally rigid and called skele-
ton) having interconnected pores everywhere. Generally, the fluid occupying the
pores is a mixture since are dissolved in chemical species (“salts”) and the layer
is embedded in a temperature field.

The behaviour of convective-diffusive fluid mixtures in porous layer presents
a picture of behaviours increasing with the number of components. Although the
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subject of double-diffusive convection is still a very active research area [1]-[22],
the same subject with more than two components, although more difficult — in
the past as nowadays has also attracted the attention of many authors [23]-[30].

The present paper is concerned with an horizontal layer heated from below
and salted by two salts, either from below (“salt 1”7) or from above (“salt 27).
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Denoting by

T = temperature field, C; = concentration field of the “salt i” , (i = 1,2)

v = seepage velocity, p = pressure field,

(1)

in the case of the boundary conditions
T0)=T1, T(d) =Tz, T1—T>>0,
Ci(0) = Cy, Ci(d) = C, (i=1,2), (2)
v-k=0, at z=0, z =d,
it follows that the perturbations (u, ®;, ®2,1II) to the conduction solution {cfr.
[29]}, with
u = perturbation to v,

®; = perturbation to C;, (3)
II = perturbation to p,

are governed by

VII = —u+ (R9 — R1® — Rg@g)k,
V-u=0,
0 +u- V0 = R+ AG, (4)

Pl(q)lt +u- V<I>1) = Riw + Adq,

(| P2(Poy +1u-Vdy) = —Row + Ady,

w=0=o; =Py =0, onz=0z2=1, (5)

with
w=u-k,
R = Rayleigh thermal number, (6)
R; = Rayleigh concentration number of “salt i”.

Assuming - as it is normally done - that

i) u=(u,v,w),0, Py, Py are periodic in the x and y directions respectively
of periods 2m/ag, 27 /a,;

i) @ =1[0,27/a,] x [0,27/a,] x [0,1] is the periodicity cell;
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iii) u, 6, ®1, Py belong to W22(Q) and are such that all their first derivatives
and second spatial derivatives can be expanded in Fourier series uniformly
convergent in €,

our aim - according to the results obtained in {[29]-[30],[33] } - is to show that
when the layer is salted from below by “salt 1”7 and from above by “salt 27,
then

1) do not exist subcritical instabilities;

2) exist physically relevant values of the “salts” Prandtl numbers such that
the triply diffusive-convection can be reduced rigorously to the double
diffusive-convection and the global stability condition is given by R? < R?j
with

2 [ B3 2 1 2 2 2|

R =min |R{ — == +4n" (1+ — | ,R{ — R5 + 47",

i P P |
when P =1

g2 . ]
R2 = min Fl—R§+47r2 <1+P),R%—R§+4w2 :

L1 1 i
when P, =1,

P P
when P, = P, = P.

1 1 ]
R? = min [(R?—R§)+4ﬂ2 (1+ ) , R} — R3 +4n?|

Section 2 is devoted to the boundary value problem of the problem at stake.
The (Routh Hurwitz) conditions of linear stability are found in the subsequent
Section while Sections 4-5 are devoted to the non existence of subcritical insta-
bilities. Finally, (7)-(9) are shown in Section 6.

2 The boundary value problem at stake

We recall here a basic theorem - which proof is given either in [29] or [31] -
concerned with the main boundary value problem (4);-(4)2-(5).

Theorem 1. Let (u, 0, ®1, Do) be solution of the b.v.p.

VIl = —u+ (RG — R1P1 — RQ‘I)Q)k,
(10)
V-u=0,
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w:9:<I>1:<I>2: , 2:0,1, (11)
then:
i) (u,0,®q,P2) is solution of the b.v.p.

Aw = Al(R9 — Rl(I)l — RQ@Q), m Q,

u=0=9o, =0, =0, onz=0,1, (12)
0* 0?
A= —+ —.
! (‘93:2+0y2

i1) a complete orthogonal system of solutions of (10) is given by

Wp, = nn(Rén - Rl(i)ln - R2é2n)a

L, P (13)
= — 1 (JJ
" 0x0z Oy 52 "
with
( a?
azza%—{—az, n:a2+n27T2, Mn = —,
&n
o0 oo
w= Zd}n = an(x,y,t) sin(nmz),
OO OO
=> u, Z Tni + Tnj + @pk), (14)

o5 s
= Z Z (z,y,t)sin(nrz),
OO ~ ! o
P, = Z d,, = Z D, (x,y,t)sin(nrz).
1 1

Remark 1. By virtue of theorem 1 the independent scalar unknown fields
(u,v,w, 0, P, Py) are reduced to (6, Py, P2).

\

3 Linear instability

Linearizing (4) and taking into account that by virtue of theorem 1, it turns
out that

_an@m 2 € (9,@1,@2), (15)
1
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one obtains
0 = Zzozl(alnen + a2, ®1n + a3nq)2n)a

@1t = Z;:O:l(blnen + an(I)ln + b3n¢2n);

¢)2t = Z;L.O:l(clnen + C?n(I)ln + 6371@271)7

with
a1n = R?np — &n, agn = —RR11),, azn = —RRamny,
bin = Rplflﬁn, bon = —(R%?ng&), b3n = —R;f? N,
S P (1 L Sl
Py Py Py
Setting

0, = Eon(t)F(x,y) sin(nnz),

D = &in(t)F(x, y) sin(nmz),

by virtue of
1
/ sin(nmz) sin(mnz)dz = {
0

(16) implies

d&on
flo = a1péon + a2néin + a3n£2na
t
d&1n
21 = blné-On + b2n€1n + b3n£2na
t
d&on
ji = c1néon + C2n£1n + 03n§2n«

Setting

163

(16)

(17)

it easily follows that the characteristic equation of the L, eigenvalues A, is

)‘i - Iln)\i + IQnAn — I3y, = 07

(21)
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with Ilna IQn, I3n given by

I = a1p + bay + 30 = A + A2p + >\3n7
I, — Q1n A2n Aln Aa3n ban,  b3n
in 2n Cin  C3n Con  C3n (22)
Q1n Aa2n Aa3n
I3, = bln b2n bSn
\ Ciln Con C3n

By virtue of the Routh-Hurwitz stability-conditions [31], the following theorem
holds.

Theorem 2. The conduction solution is linearly stable if and only if, Vn €
N, the inequalities

I, <0, I3, <0, Itplo, — I3, <0, (23)

hold.

Since (23) requires Ig, > 0, in view of

R2 R ¢
Iip = |R* - +2—<1++ > "] ns
1 [ PR PRy

11 1 \& 1\ , 1 1\
I — 4+ —(1+—= R 1 R
o [(P1+P2+P1P2>77n+P1<+P2> ! P2<+P1) 2t
1 1
2
<P1 P>R}§n%

&
<R2 R? 4+ R3 — . €2,

n

1
PP

I3, =

e &

= 471'2,
(a?,n)ERT XN T,

it follows that

Theorem 3. The conduction solution is linearly stable only if

R >0, (i=1,2,3), R®<Rg, (25)
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with
R? R? 1 1
&= h P2+7r +P1+P2 ,
1
2 2 2 2
R, = iy [(1+ P)R} — (14 PR3+ 47°(1 + P, + P)]

R%, = R} — R3 + 4n*, R, = min(RZ, , R, , RZ,).

165

(26)

4 Preliminaries to nonexistence of subcritical insta-

bilities
Lemma 1. Let A1 be a real eigenvalue of the matrix

a;j = const € R)

L= o o s =123
bl - =

1] Q12 03
’ <
Q3] Q32 (33

)

(27)

and let U = (1,Uy, Us) be an associated eigenvector. Then the transformation

X = 1,7,
with
1 0
X =(X1,X2,X3)", Z=(21,%2,23)", L= | U 1
Us 0
reduces the ternary system
dX
— =LX+F
dt +F
with (F)x—=o =0, to
dZ -
— =LZ+F
dt +
. A1 a2 iz ) o
L=| 0 ap a9 |,F=(F,F,F)".

0 @32 ass

7y = X1,Z0 = Xo — U X1, Z3 = X3 — Us Xy,
Fy=F Fy=F,— Uk, F3 = F3 — Uzl

(28)

(29)

(33)



166 S. Rionero

Q13 = o2, 013 = 013, y
Qo = a2 — Upon, Qo3 = ang — Uzaus, (34)
age = azg — Ugaya, ass = agz — Uszags

Q2 + 33 = Ao + A3, Q33 — (2332 = A3, (35)

Ao, A3 being other eigenvalues of L.

Proof. The proof, based on [32, pp.194-197], can be found in [30], [33].
Lemma 2. Let the eigenvalues \;, (i = 1,2,3) of
a1 Q12 013

L= asxy a9y a3 (36)
Q31 Q32 (33

have negative real part and let Ay < 0 and
U = (A1Zo — A3Zs) Py + (AyZs — AsZs)Fs + Z1Fy =0, (37)

with R _
Ap = XMod3 4 a3, + a3, Ao = Xod3 + a3y + a3,
(38)
A3z = G22032 + G23033.
Then the function

~ 1 5 B B B
W = 5 [Z12 + )\2)\3(222 + Zg) + (a2223 — a32Z2)2 + (042323 - Oé3322)2] s (39)

has - along
dZ - -
—=LZ+F 4
= +F, (40)
the temporal derivative given by
aw 1
=5 [(MZE 4+ (A2 + A3)AoXs(Z5 + Z3)] < 0. (41)

The null solution of (40) and hence of (30) is globally stable and subcritical
instabilities do not exist.

Proof. A detailed proof can be found in [30], [33].
Remark 2. The eigenvalues of the matrix
air a2 a3

0 a2 asg
0 a3 ass



Onset of convection in porous layers salted from above and below 167

have negative real part if and only if
a1 <0, I =ag +ass <0, A= axazs — aszazs.

(cfr. Remark 2.5 of [30]).

5 Nonexistence of subcritical instabilities and global
stability

Following [33], we set

SO =00, STV =>4, Upp = > _uy, (42)
n=1 n=1 n=1
0= lim SO & = lim S®), (i=1,2). (43)
m—0o0 m—0o0

The nonexistence of subcritical instabilities and the global stability is guaran-
teed by showing that the asymptotic stability of the null solution of

d m
Zq0) _ E ) Do, ) — . VS
dtSm n:1(a1n0n + a2n,P1n + a3n 2n) U, VSm y
d m
75'((1)1) = b nen b n(I) n b n(I) n) — Um : vs(q)l)
aiom n§:1(1 + b2, P1n + 03, P2) m s (44)
d m
P oa(@2) E _ . (P2)
dt Sm n:1(cln9n + CQn(I)ln + C?m(I)Qn) Um VSm 5
O = P15, = 2, =0, Vn € {1,...,m} for z=0,1. (45)

0,(0) = 0O &;,(0) = 3

in

i=1,2,n€{l,..,m} (46)

Vm € N, is guaranteed by (23). On the other hand, introducing the evolution
system governing the n-th component of the of the perturbation (6, &1, ®2)

0

a‘gn = a1n0p + a2, P1y + a3 Pop — Uy, - Vena

0

aq)ln = blngn + b2n(1)1n + b3n(1)2n) - Um : V(I)lm (47)
0

aq)%z = Clnen + c2n®1n + CSn(I)2n) - Uy, V(I)Qna
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( m
1 [ 0%w, 9w,
U, = = — i j k
" nz:lun’un a? <6x821+ 9y T n > ’

(48)

wn = @n(x,y, t)sin(nmz), 0, = Oy (x,y,t) sin(nrz),

i = Oiy(,y,t)sin(nmwz),i=1,2,n € {1,...,m}

(44) are immediately obtained by adding with respect to n fromn =1ton =m
each equations of (47). Therefore the nonexistence of subcritical instabilities and
the global stability is guaranteed by showing that (23) imply the asymptotic
stability of the null solution of (45)-(48) Vm € N.

Theorem 4. Let (23) hold. Then, for any m € N, the zero solution of
(45)-(48) is asymptotically stable for any initial data

Proof. Denoting by \,;, (i = 1,2,3), the roots of (21), (23) guarantee that
Ani have negative real part and at least one - say A1 - be a negative real number.
Then denoting by fJn = (1, Ung, Ung) an eigenvector associated to \,1, Lemma
1 can be applied by setting

an = 977,7 Zn2 = q)ln - ~n20na ZnS = (I)Qn - ~n?:en)
n=vy,-vb, =0, V&, F3=U,, - Vd,y,, (49)

Fy=F,Fy=Fy — UpFy, F3 = F3 — UpysFy

Let
'ﬁlz(/’ﬁ@dﬁ, (50)
Q

with W, given by (39) with A,; at the place of ;. Then - instead of (41) - one
has to show that

\il =< AannQ - A3nZn37F2 >+ < AZnZnS - A’Zl3nZn27F3 >+ < anapl >= 07

. (51)
with Ay, Aoy, As, constants.
In view of (49) it follows that Z,;, (i = 1,2,3)), is of the kind
Zpi = Zm-(a:, y,t)sin(nrz), (52)
= &, 80, D, 06,
U,, Vb, = Z []:; <503j08;1: + 5:;85) cos(pmz) sin(nmz)+
P (53)

N0, sin(prz) cos(mrz)}
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and hence 5
Zp1 sin(nrz)

< I, By >=< . .U, Vo, >. (54)
Unl
Since it easily turns out that
1
/ sin(qmz) cos(prz) sin(nwz)dz = 0, for p+ q # n. (55)
0

But one easily verifies that all the other scalar products appearing in T are
linear combinations of terms of kind (54) (with ®;, at the place of 6,) and
hence by virtue of (55) it turn out that ¥ = 0.

6 Proof of (7)

In the case P, =1, (4) reduces to

( Vp =—-u-+ (R9 — Rch)l — qu)g)k,

0; = Rw+ A6 —u- Vo,

(56)
Oy = Riw +Ad; —u- &y,
Ry
Py, = — 2 A(I) - ®
2 P2w+ 1 P2 2-
Setting
1
¢:R10—Rq)1:0¢>q)1 :E(Rlﬁ—g:), (57)
it follows that
R?2 - R? R1
Vp=— S — Ry®y | k 58
D u+ < R + = RY 2 2> ) (58)
=Ap—u-Vp,
R2 1 U'V(I)Q
Py = ——= — APy — .
2 Pzw+ Pt P

In view of theorem 1, one obtains

- R?> - R?. Ry .
Wn =Tn (Rlen + }218011 - R2(I)2n) s (60)
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and hence
( [e’s)
Pt = Z (dln(pn + Qvanbyn + 653nq)2n) —u- VSO,
1
m — -— —_
0 = Z (Bln@n + /8271971 + B3nq)2n) —u- VH;
1
o
Qo = Z (ﬁlnwn + Y2nbhn + '_)’311(1)211) —u-Vo,,
\ 1
with
(a1 = —&n, Qgn = a3, = 0,

Bln = RlUmBQn = (R2 - R?)Un - gna B3n = _RR277n7

o RiRy o R(RP-RY) Ry =&
{ Yin = RP, Tn, V2n = RP, Mn, V3n = P, .

The auxiliary system, governing the n—th component of the fields (¢, 0, ®2y,)

analogous to (47), can easily found to be

0
. Pn = _fn()@n +0 + 0- Um : V‘Pm

ot
0 _ _ _
&Hn = /BlnSOn + 5271071 + B3nq)2n - Um : V@n,
L &qbn = Yn®n + :YQnen + '7371@)271 - Um : V(IDQn-
Setting
_ R2 1\ &
In: n _n:nR2_R2 —2_ 1 — 2
/32 +PY3 n I: 1+P2 < +P2>a2:|7

2 > 2
A = Bonfisn + Bsnon = [—(32 “R)-R3- ﬂ |

(63)

(64)

~ 1 ~ i
=3 / {n + An(67 + 93,) + (Bon®2n = F2n6n)” + (Bsn®2n = Yanh)*} ds
Q

(65)
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it follows that

av, 1
o [ et TaA6 + 23] a0 (66)
at =2 ),
with
€n = a® 4+ n’n? > 72 (67)
Therefore
2 , R 2 1
1, <0& RF< R — = +4n° (1 + —
P E (68)
A, >0¢ R? < R? — R2 + 4n?
i.e. (7) guarantee the global stability.
Remark 3. We remark that:
1) The same procedure can be applied for obtaining (8)-(9) [29];
2) in the cases P, > 1, P; <1, (7)-(8) reduce to
R% = R? — R34 4n°. (69)
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