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Onset of convection in porous layers
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Abstract. For a porous layer heated from below and salted from above and below, the non
existence of subcritical instabilities and conditions of global stability - for special values of the
Prandtl numbers - are found.
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1 Introduction and aims

A porous medium is schematized via a body (generally rigid and called skele-
ton) having interconnected pores everywhere. Generally, the fluid occupying the
pores is a mixture since are dissolved in chemical species (“salts”) and the layer
is embedded in a temperature field.

The behaviour of convective-diffusive fluid mixtures in porous layer presents
a picture of behaviours increasing with the number of components. Although the

subject of double-diffusive convection is still a very active research area [1]-[22],
the same subject with more than two components, although more difficult – in
the past as nowadays has also attracted the attention of many authors [23]-[30].

The present paper is concerned with an horizontal layer heated from below
and salted by two salts, either from below (“salt 1”) or from above (“salt 2”).
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Denoting by





T = temperature field, Ci = concentration field of the “salt i” , (i = 1, 2)

v = seepage velocity, p = pressure field,
(1)

in the case of the boundary conditions





T (0) = T1, T (d) = T2, T1 − T2 > 0,

Ci(0) = Cil, Ci(d) = Ciu, (i = 1, 2),

v · k = 0, at z = 0, z = d,

(2)

it follows that the perturbations (u,Φ1,Φ2,Π) to the conduction solution {cfr.
[29]}, with 




u = perturbation to v,
Φi = perturbation to Ci,
Π = perturbation to p,

(3)

are governed by





∇Π = −u+ (Rθ −R1Φ1 −R2Φ2)k,

∇ · u = 0,

θt + u · ∇θ = Rω +∆θ,

P1(Φ1t + u · ∇Φ1) = R1ω +∆Φ1,

P2(Φ2t + u · ∇Φ2) = −R2ω +∆Φ2,

(4)

ω = θ = Φ1 = Φ2 = 0, on z = 0, z = 1, (5)

with 



ω = u · k,
R = Rayleigh thermal number,
Ri = Rayleigh concentration number of “salt i”.

(6)

Assuming - as it is normally done - that

i) u = (u, v, ω), θ,Φ1,Φ2 are periodic in the x and y directions respectively
of periods 2π/ax, 2π/ay;

ii) Ω = [0, 2π/ax]× [0, 2π/ay]× [0, 1] is the periodicity cell;
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iii) u, θ,Φ1,Φ2 belong to W 2,2(Ω) and are such that all their first derivatives
and second spatial derivatives can be expanded in Fourier series uniformly
convergent in Ω,

our aim - according to the results obtained in {[29]-[30],[33] } - is to show that
when the layer is salted from below by “salt 1” and from above by “salt 2”,
then

1) do not exist subcritical instabilities;

2) exist physically relevant values of the “salts” Prandtl numbers such that
the triply diffusive-convection can be reduced rigorously to the double
diffusive-convection and the global stability condition is given by R2 < R2

C

with




R2
c = min

[
R2

1 −
R2

2

P2
+ 4π2

(
1 +

1

P2

)
, R2

1 −R2
2 + 4π2

]
,

when P1 = 1
(7)





R2
c = min

[
R2

1

P1
−R2

2 + 4π2
(
1 +

1

P1

)
, R2

1 −R2
2 + 4π2

]
,

when P2 = 1,
(8)





R2
c = min

[
1

P
(R2

1 −R2
2) + 4π2

(
1 +

1

P

)
, R2

1 −R2
2 + 4π2

]
,

when P1 = P2 = P.
(9)

Section 2 is devoted to the boundary value problem of the problem at stake.
The (Routh Hurwitz) conditions of linear stability are found in the subsequent
Section while Sections 4-5 are devoted to the non existence of subcritical insta-
bilities. Finally, (7)-(9) are shown in Section 6.

2 The boundary value problem at stake

We recall here a basic theorem - which proof is given either in [29] or [31] -
concerned with the main boundary value problem (4)1-(4)2-(5).

Theorem 1. Let (u, θ,Φ1,Φ2) be solution of the b.v.p.





∇Π = −u+ (Rθ −R1Φ1 −R2Φ2)k,

∇ · u = 0,
(10)
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ω = θ = Φ1 = Φ2 = 0, z = 0, 1, (11)

then:

i) (u, θ,Φ1,Φ2) is solution of the b.v.p.





∆ω = ∆1(Rθ −R1Φ1 −R2Φ2), in Ω,

u = θ = Φ1 = Φ2 = 0, on z = 0, 1,

∆1 =
∂2

∂x2
+

∂2

∂y2
.

(12)

ii) a complete orthogonal system of solutions of (10) is given by





ω̃n = ηn(Rθ̃n −R1Φ̃1n −R2Φ̃2n),

un =
1

a2

(
∂2ω̃n

∂x∂z
i+

∂2ω̃n

∂y∂z
j

)
+ ω̃nk,

(13)

with 



a2 = a2x + a2y, ξn = a2 + n2π2, ηn =
a2

ξn
,

ω =
∞∑

1

ω̃n =
∞∑

1

ωn(x, y, t) sin(nπz),

u =
∞∑

1

un =
∞∑

1

(ũni+ ṽnj+ ω̃nk),

θ =
∞∑

1

θ̃n =
∞∑

1

θn(x, y, t) sin(nπz),

Φi =
∞∑

1

Φ̃in =
∞∑

1

Φin(x, y, t) sin(nπz).

(14)

Remark 1. By virtue of theorem 1 the independent scalar unknown fields
(u, v, ω, θ,Φ1,Φ2) are reduced to (θ,Φ1,Φ2).

3 Linear instability

Linearizing (4) and taking into account that by virtue of theorem 1, it turns
out that

∆ϕ = −
∞∑

1

ξnϕn, ϕ ∈ (θ,Φ1,Φ2), (15)
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one obtains 



θt =
∑∞

n=1(a1nθn + a2nΦ1n + a3nΦ2n),

Φ1t =
∑∞

n=1(b1nθn + b2nΦ1n + b3nΦ2n),

Φ2t =
∑∞

n=1(c1nθn + c2nΦ1n + c3nΦ2n),

(16)

with





a1n = R2ηn − ξn, a2n = −RR1ηn, a3n = −RR2ηn,

b1n =
RR1

P1
ηn, b2n = −(R2

1ηn + ξn)

P1
, b3n = −R1R2

P1
ηn,

c1n = −RR2

P2
ηn, c2n =

R1R2

P2
ηn, c3n =

R2
2ηn − ξn
P2

.

(17)

Setting 



θn = ξ0n(t)F (x, y) sin(nπz),

Φin = ξin(t)F (x, y) sin(nπz),
(18)

by virtue of
∫ 1

0
sin(nπz) sin(mπz)d z =

{
0, n 6= m
1

2
, n = m

(19)

(16) implies 



dξ0n
dt

= a1nξ0n + a2nξ1n + a3nξ2n,

dξ1n
dt

= b1nξ0n + b2nξ1n + b3nξ2n,

dξ2n
dt

= c1nξ0n + c2nξ1n + c3nξ2n.

(20)

Setting

Ln =




a1n a2n a3n
b1n b2n b3n
c1n c2n c3n




it easily follows that the characteristic equation of the Ln eigenvalues λn is

λ3n − I1nλ
2
n + I2nλn − I3n = 0, (21)
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with I1n, I2n, I3n given by





I1n = a1n + b2n + c3n = λ1n + λ2n + λ3n,

I2n =

∣∣∣∣
a1n a2n
b1n b2n

∣∣∣∣+
∣∣∣∣
a1n a3n
c1n c3n

∣∣∣∣+
∣∣∣∣
b2n b3n
c2n c3n

∣∣∣∣ ,

I3n =

∣∣∣∣∣∣

a1n a2n a3n
b1n b2n b3n
c1n c2n c3n

∣∣∣∣∣∣
.

(22)

By virtue of the Routh-Hurwitz stability-conditions [31], the following theorem
holds.

Theorem 2. The conduction solution is linearly stable if and only if, ∀n ∈
N, the inequalities

I1n < 0, I3n < 0, I1nI2n − I3n < 0, (23)

hold.

Since (23) requires I2n > 0, in view of





I1n =

[
R2 − R2

1

P1
+
R2

2

P2
−
(
1 +

1

P1
+

1

P2

)
ξn
ηn

]
ηn,

I2n =

[(
1

P1
+

1

P2
+

1

P1P2

)
ξn
ηn

+
1

P1

(
1 +

1

P2

)
R2

1 −
1

P2

(
1 +

1

P1

)
R2

2+

−
(

1

P1
+

1

P2

)
R2

]
ξnηn,

I3n =
1

P1P2

(
R2 −R2

1 +R2
2 −

ξn
ηn

)
ηnξ

2
n,

inf
(a2,n)∈R+×N

ξn
ηn

= 4π2,

(24)
it follows that

Theorem 3. The conduction solution is linearly stable only if

R2
Ci
> 0, (i = 1, 2, 3), R2 < R2

C , (25)
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with




R2
C1

=
R2

1

P1
− R2

2

P2
+ 4π2

(
1 +

1

P1
+

1

P2

)
,

R2
C2

=
1

P1 + P2

[
(1 + P2)R

2
1 − (1 + P1)R

2
2 + 4π2(1 + P1 + P2)

]
,

R2
C3

= R2
1 −R2

2 + 4π2, R2
C = min(R2

C1
, R2

C2
, R2

C3
).

(26)

4 Preliminaries to nonexistence of subcritical insta-
bilities

Lemma 1. Let λ1 be a real eigenvalue of the matrix

L =




α11 α12 α13

α21 α22 α23

α31 α32 α33


 ,

(
αij = const ∈ R)
i, j = 1, 2, 3

)
(27)

and let Ũ = (1, Ũ2, Ũ3) be an associated eigenvector. Then the transformation

X = L1Z, (28)

with

X = (X1, X2, X3)
T , Z = (Z1, Z2, Z3)

T , L1 =




1 0 0

Ũ2 1 0

Ũ3 0 1


 (29)

reduces the ternary system
dX

dt
= LX+ F, (30)

with (F)X=0 = 0, to
dZ

dt
= L̃Z+ F̃, (31)

L̃ =




λ1 α̃12 α̃13

0 α̃22 α̃23

0 α̃32 α̃33


 , F̃ = (F̃1, F̃2, F̃3)

T . (32)

{
Z1 = X1, Z2 = X2 − Ũ2X1, Z3 = X3 − Ũ3X1,

F̃1 = F, F̃2 = F2 − Ũ2F1, F̃3 = F3 − Ũ3F1
(33)
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α̃12 = α12, α̃13 = α13,

α̃22 = α22 − Ũ2α12, α̃23 = α23 − Ũ2α13,

α̃32 = α32 − Ũ3α12, α̃33 = α33 − Ũ3α13

(34)

α̃22 + α̃33 = λ2 + λ3, α̃22α̃33 − α̃23α̃32 = λ2λ3, (35)

λ2, λ3 being other eigenvalues of L.

Proof. The proof, based on [32, pp.194-197], can be found in [30], [33].

Lemma 2. Let the eigenvalues λi, (i = 1, 2, 3) of

L =




α11 α12 α13

α21 α22 α23

α31 α32 α33


 (36)

have negative real part and let λ1 < 0 and

Ψ = (Ã1Z2 − Ã3Z3)F̃2 + (Ã2Z3 − Ã3Z2)F̃3 + Z1F̃1 = 0, (37)

with 



Ã1 = λ2λ3 + α̃2
32 + α̃2

33, Ã2 = λ2λ3 + α̃2
22 + α̃2

23,

Ã3 = α̃22α̃32 + α̃23α̃33.

(38)

Then the function

W̃ =
1

2

[
Z2
1 + λ2λ3(Z

2
2 + Z2

3 ) + (α̃22Z3 − α̃32Z2)
2 + (α̃23Z3 − α̃33Z2)

2
]
, (39)

has - along
dZ

dt
= L̃Z + F̃, (40)

the temporal derivative given by

dW̃

dt
=

1

2

[
λ1Z

2
1 + (λ2 + λ3)λ2λ3(Z

2
2 + Z2

3 )
]
< 0. (41)

The null solution of (40) and hence of (30) is globally stable and subcritical
instabilities do not exist.

Proof. A detailed proof can be found in [30], [33].

Remark 2. The eigenvalues of the matrix



a11 a12 a13
0 a22 a23
0 a32 a33
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have negative real part if and only if

a11 < 0, I = a22 + a33 < 0, A = a22a33 − a32a23.

(cfr. Remark 2.5 of [30]).

5 Nonexistence of subcritical instabilities and global
stability

Following [33], we set

S(θ)
m =

m∑

n=1

θn, S
(Φi)
m =

m∑

n=1

Φin, Um =
m∑

n=1

un, (42)

θ = lim
m→∞

S(θ)
m , Φi = lim

m→∞
S(Φi)
m , (i = 1, 2). (43)

The nonexistence of subcritical instabilities and the global stability is guaran-
teed by showing that the asymptotic stability of the null solution of





d

dt
S(θ)
m =

m∑

n=1

(a1nθn + a2nΦ1n + a3nΦ2n)−Um · ∇S(θ)
m ,

d

dt
S(Φ1)
m =

m∑

n=1

(b1nθn + b2nΦ1n + b3nΦ2n)−Um · ∇S(Φ1)
m ,

d

dt
S(Φ2)
m =

m∑

n=1

(c1nθn + c2nΦ1n + c3nΦ2n)−Um · ∇S(Φ2)
m ,

(44)

θn = Φ1n = Φ2n = 0, ∀n ∈ {1, ...,m} for z = 0, 1. (45)

θn(0) = θ(0)n , Φin(0) = Φ
(0)
in , i = 1, 2, n ∈ {1, ...,m}. (46)

∀m ∈ N, is guaranteed by (23). On the other hand, introducing the evolution
system governing the n-th component of the of the perturbation (θ,Φ1,Φ2)





∂

∂t
θn = a1nθn + a2nΦ1n + a3nΦ2n −Um · ∇θn,

∂

∂t
Φ1n = b1nθn + b2nΦ1n + b3nΦ2n)−Um · ∇Φ1n,

∂

∂t
Φ2n = c1nθn + c2nΦ1n + c3nΦ2n)−Um · ∇Φ2n,

(47)
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Um =
m∑

n=1

un,un =
1

a2

(
∂2ωn

∂x∂z
i+

∂2ωn

∂y∂z
j+ ωnk

)
,

ωn = ω̃n(x, y, t) sin(nπz), θn = θ̃n(x, y, t) sin(nπz),

Φin = Φ̃in(x, y, t) sin(nπz), i = 1, 2, n ∈ {1, ...,m}

(48)

(44) are immediately obtained by adding with respect to n from n = 1 to n = m
each equations of (47). Therefore the nonexistence of subcritical instabilities and
the global stability is guaranteed by showing that (23) imply the asymptotic
stability of the null solution of (45)-(48) ∀m ∈ N.

Theorem 4. Let (23) hold. Then, for any m ∈ N, the zero solution of
(45)-(48) is asymptotically stable for any initial data

Proof. Denoting by λni, (i = 1, 2, 3), the roots of (21), (23) guarantee that
λni have negative real part and at least one - say λn1 - be a negative real number.
Then denoting by Ũn = (1, Ũn2, Ũn3) an eigenvector associated to λn1, Lemma
1 can be applied by setting





Zn1 = θn, Zn2 = Φ1n − Ũn2θn, Zn3 = Φ2n − Ũn3θn,

F1 = Um · ∇θn, F2 = Um · ∇Φ1n, F3 = Um · ∇Φ2n,

F̃1 = F1, F̃2 = F2 − Ũn2F1, F̃3 = F3 − Ũn3F1

(49)

Let

Ṽn =

∫

Ω
W̃ndΩ, (50)

with W̃n given by (39) with λni at the place of λi. Then - instead of (41) - one
has to show that

Ψ̃ =< Ã1nZn2 − Ã3nZn3, F̃2 > + < Ã2nZn3 − Ã3nZn2, F̃3 > + < Zn1, F̃1 >= 0,
(51)

with Ã1n, Ã2n, Ã3n constants.
In view of (49) it follows that Zni, (i = 1, 2, 3)), is of the kind

Zni = Z̃ni(x, y, t) sin(nπz), (52)

Um · ∇θn =
m∑

p=1

[
pπ

a2

(
∂ω̃p

∂x

∂θ̃n
∂x

+
∂ω̃p

∂y

∂θ̃p
∂x

)
cos(pπz) sin(nπz)+

nπω̃pθ̃p sin(pπz) cos(nπz)
]

(53)
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and hence

< Zm, F̃1 >=<
Z̃n1 sin(nπz)

U∗
n1

,Um · ∇θn > . (54)

Since it easily turns out that

∫ 1

0
sin(qπz) cos(pπz) sin(nπz)dz = 0, for p+ q 6= n. (55)

But one easily verifies that all the other scalar products appearing in Ψ̃ are
linear combinations of terms of kind (54) (with Φin at the place of θn) and
hence by virtue of (55) it turn out that Ψ̃ = 0.

6 Proof of (7)

In the case P1 = 1, (4) reduces to




∇p = −u+ (Rθ −R1Φ1 −R2Φ2)k,

θt = Rω +∆θ − u · ∇θ,

Φ1t = R1ω +∆Φ1 − u · Φ1,

Φ2t = −
R2

P2
ω +

1

P2
∆Φ1 −

u

P2
· Φ2.

(56)

Setting

ϕ = R1θ −RΦ1 = 0⇔ Φ1 =
1

R
(R1θ − ϕ), (57)

it follows that

∇p = −u+

(
R2 −R2

1

R
θ +

R1

R
ϕ−R2Φ2

)
k, (58)





ϕt = ∆ϕ− u · ∇ϕ,

θt = Rω +∆θ − u · ∇θ,

Φ2t = −
R2

P2
ω +

1

P2
∆Φ2 −

u · ∇Φ2

P2
.

(59)

In view of theorem 1, one obtains

ω̃n = ηn

(
R2 −R2

1

R
θ̃n +

R1

R
ϕ̃n −R2Φ̃2n

)
, (60)
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and hence




ϕt =
∞∑

1

(ᾱ1nϕn + ᾱ2nθn + ᾱ3nΦ2n)− u · ∇ϕ,

θt =
∞∑

1

(
β̄1nϕn + β̄2nθn + β̄3nΦ2n

)
− u · ∇θ,

Φ2t =
∞∑

1

(γ̄1nϕn + γ̄2nθn + γ̄3nΦ2n)− u · ∇Φ2,

(61)

with




ᾱ1n = −ξn, ᾱ2n = ᾱ3n = 0,

β̄1n = R1ηn, β̄2n = (R2 −R2
1)ηn − ξn, β̄3n = −RR2ηn,

γ̄1n = −R1R2

RP2
ηn, γ̄2n = −R2(R

2 −R2
1)

RP2
ηn, γ̄3n =

R2
2ηn − ξn
P2

.

(62)

The auxiliary system, governing the n−th component of the fields (ϕ, θ,Φ2n)
analogous to (47), can easily found to be





∂

∂t
ϕn = −ξnϕn + 0 + 0 −Um · ∇ϕn,

∂

∂t
θn = β̄1nϕn + β̄2nθn + β̄3nΦ2n −Um · ∇θn,

∂

∂t
Φ2n = γ̄1nϕn + γ̄2nθn + γ̄3nΦ2n −Um · ∇Φ2n.

(63)

Setting





In = β̄2n + γ̄3n = ηn

[
R2 −R2

1 +
R2

2

P2
−
(
1 +

1

P2

)
ξ2n
a2

]
,

An = β̄2nγ̄3n + β̄3nγ̄2n = ηnξn

[
−(R2 −R2

1)−R2
2 −

ξ2n
a2

]
,

(64)

Ṽn =
1

2

∫

Ω

{
ϕ2
n +An(θ

2
n +Φ2

2n) + (β̄2nΦ2n − γ̄2nθn)2 + (β̄3nΦ2n − γ̄2nθn)2
}
ds

(65)
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it follows that

dṼn
dt
≤ 1

2

∫

Ω

[
−ξnϕ2

n + InAn(θ
2
n +Φ2

2n)
]
dΩ (66)

with
ξn = a2 + n2π2 ≥ π2. (67)

Therefore 



In < 0⇔ R2 < R2
1 −

R2
2

P2
+ 4π2

(
1 +

1

P2

)

An > 0⇔ R2 < R2
1 −R2

2 + 4π2

(68)

i.e. (7) guarantee the global stability.

Remark 3. We remark that:

1) The same procedure can be applied for obtaining (8)-(9) [29];

2) in the cases P2 ≥ 1, P1 ≤ 1, (7)-(8) reduce to

R2
C = R2

1 −R2
2 + 4π2. (69)
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