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Helices through 3 or 4 points?
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Abstract. How many points in space are needed to define a circular helix? We show here
that given 3 distinct points in space there exist continuous families of helices passing through
these points. Given 4 generic distinct points there is no helix. However, a discrete family of
helices through 3 points can be specified if an additional property of the helix is prescribed.
In particular, the case where the helical radius is specified is studied in detail.

1 Introduction

A classical problem of Cartesian geometry is to obtain a curve or a surface
containing a given set of points. The first part of the problem is to identify the
minimum number of points leading to either a unique solution, or a discrete
family of solutions. For instance, we learn in school that, with the usual re-
strictions to avoid singular configurations, 2 points are needed for a line, and 3
points are needed to define a plane. Other classical results are that, generically,
one needs 3 points to define a unique circle and 4 points for a sphere. Similarly,
but not commonly known, there exists up to 6 cylinders through 5 points in
space [1]. The case of 6 cylinders can be obtained by locating the points at the
vertices of a bipyramid obtained by identifying the faces of two regular tetra-
hedra. The second part of the problem is to obtain a complete characterization
of the object of interest and to provide a simple way of deriving its equation.
There exist elegant formulas for planes, lines, circles, and spheres. The case of
cylinders requires however the solution of algebraic equations but it still leads
to a simple algorithmic procedure.

Helices with their constant curvature and torsion are arguably the simplest
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non-planar curves in the three-dimensional Euclidean space. Clearly, the elemen-
tary problem of finding the number of points necessary to define a helix begs for
a solution. However, since this problem can be answered with classical analytical
geometry, it does not seem worth the attention or time of the modern profes-
sional mathematician and, indeed, it does not seem to have been addressed.
Helices are also ubiquitous in many scientific fields [2] such as biochemistry [3],
elementary particle physics [4], computer sciences (finite element codes [5] or
visualization [6]), and, to date, there exist many sophisticated techniques to
find the best fitting helix through a cloud of points [7, 8, 9]. Nevertheless, the
problem of finding the number of points necessary to define a single helix has
not been addressed in these fields either. The main reason may be that there
is no simple solution to the problem. Indeed, we show here that there exists
a one-parameter family of helices passing through 3 points but that no helix
passes through 4 generic points in space. However, these results can be used
constructively in three ways. First, we show that there exists a countable set of
helices passing through 3 points lying on a cylinder defined by 4 points. Second,
we show that there exists a countable set of helices through three points of a
given (large enough) radius. Third, for 2 points, there exists a discrete family
of helices containing the 2 points and with a prescribed tangent, normal and
binormal vectors at one of the points. This last property has been exploited
by the authors to identify sequences of helical segments through n points in a
related paper [10] and will not be discussed here.

2 Definitions

2.1 Geometry of helices

Before proceeding with the construction of helices, we recall some basic prop-
erty of helical geometry. First, we consider a curve r(s) = (x(s), y(s), z(s)), of
class C3, parametrized by its arc length s in a fixed reference frame {ex, ey, ez}.
From the curve, we can define the Frenet basis, that is a local orthonormal
basis on r defined by the tangent vector t = r′ as the arc-length derivative of
r, the normal n = t′/|t′| and the binormal b = t × n (the prime ( )′ denotes
differentiation with respect to s ). The changes in the orientation of this frame
along s are specified by the Frenet equations in terms of two local quantities
the curvature κ(s) and torsion τ(s):

r′ = t, (1)

t′ = κn, (2)

n′ = τb− κt, (3)
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Figure 1. A helix characterized by a radius R, and a pitch 2πP . The local Frenet frame
is shown at one particular point. The angle θ is the angle between the tangent vector
t and the helix axis ez.

b′ = −τn. (4)

A circular helix or simply a helix is defined as a curve with constant curvature
and torsion. To relate the curvature and torsion to the usual radius and pitch
of a helix, without loss of generality, we can study a helix along the z-axis

r = (R cos(δs), R sin(δs), P δs) , where δ =
1√

P 2 +R2
. (5)

The choice P > 0 (resp. P < 0) defines a right-handed helix (resp. left-handed)
as shown in Fig. 1. The height or pitch (along the z-axis) per turn of the helix
is p = 2π|P |, the radius R, and the length of the curve per turn is 2π/δ. We
can now build the Frenet triad for the helix. The normal vector n is obtained
by further differentiating and normalizing the tangent vector and the binormal
vector b is simply constructed by taking the cross product b = t× n.

t = (−Rδ sin δs,Rδ cos δs, Pδ) , (6)

n = (− cos δs,− sin δs, 0) , (7)

b = (Pδ sin δs,−Pδ cos δs,Rδ) . (8)
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The curvature, κ and torsion, τ , are obtained by considering the norm of t′ and
n′ and are found to be

κ = Rδ2 =
R

P 2 +R2
, τ = Pδ2 =

P

P 2 +R2
, (9)

which implies δ2 = κ2 + τ2 and

R = κ/δ2 =
κ

κ2 + τ2
, P = τ/δ2 =

τ

κ2 + τ2
, (10)

The helix angle θ is the angle between the axis and the tangent vector defined
in the interval [0, π] by

θ = arccos(t · ez) = arccos(Pδ) = arccos(τ/δ). (11)

Similarly, the pitch angle θ̂ is the angle between the tangent and the plane
normal to the axis, that is θ̂ = π/2− θ. The sign of the pitch angle (or, equiva-
lently, the sign of the torsion) defines the handedness of the helix (right-handed
for positive pitch angles, left-handed, otherwise). The pitch angle is related to
the pitch and radius by

cos θ̂ = Rδ, sin θ̂ = Pδ. (12)

Finally, the cylindrical coordinates of points on the helix will be of some
use. Given a reference point A and a point B on the helix separated by an arc
length sB, the cylindrical coordinates (R,ϕ, z) of the point B with respect to A
are given by

sA = 0, ZA = 0, ϕA = 0, (13)

ZB = Z(sB) = sB cos θ, ϕB = ϕ̂(sB) mod 2π (14)

where ϕ̂(sB) =
sB
R sin θ. Therefore, the equation of a helix in cylindrical coordi-

nates is simply a straight line with

Z =
R

tan θ
ϕ̂ = Pϕ̂, (15)

that is a straight line in the (ϕ̂, Z)-plane with slope P .
Note that given 2 points on a cylinder, there exists a countable set of helices

passing through these points. The best way to visualize a helix on a cylinder
is to consider the (ϕ̂, Z)-plane which corresponds to cutting the cylinder along
the line parallel to its axis and passing through the point A, unrolling it, and
extending periodically the strip along the ϕ̂ axis. On that plane, a helix is a
straight line through the points (ϕA, ZA) = (0, 0) and (ϕB, ZB) with a slope
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Figure 2. Two points on a cylinder define a discrete family of helices. Three helices
passing by the points A = (1, 0, 0) and B = (1/

√
2, 1/
√
2, 5) and corresponding to the

choices k = 0, 1, 2. In the (ϕ,Z)-plane, each helix corresponds to a straight line through
the points (0, 0) and (π/4 + 2kπ, 5).
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P = ZB/ϕB. However, since the angle ϕ is given up to an arbitrary multiple
of 2π, there exists a countable set of straight lines through the points (ϕA, ZA)
and (ϕB +2kπ, ZB), k an integer, with slopes P = ZB/(ϕB +2kπ) (See Fig. 2).
This construction provides a simple test to verify whether there exists a helix
through a set of points on a cylinder.

Lemma 1. A set of n > 2 points on a cylinder with cylindrical coordi-
nates (R,ϕi, Zi), i = 0, . . . , n − 1 lie on a helix if there exist (n − 1) integers
k1, . . . , kn−1 such that the points (ϕi + 2πki, Zi), i = 0, . . . , n − 1 with k0 = 0
are colinear in the (ϕ̂, Z)-plane.

Accordingly, a helix passes through n points on a cylinder if (n−2) conditions
are satisfied (up to an integer lattice). Whenever two, three, or four points are
given and we look for a helix through these points, we define the principal helix
as the helix corresponding to ki = 0 for all i, that is, the helix with the smaller
angular increase between the first and last points. In the case of a cylinder and
two points, the principal helix corresponds to the choice k1 = 0.

3 Helices through 4 points

We first consider the case of 4 points in space. Our first result is negative.

Theorem 1. Generically, there is no helix passing through 4 or more points
in R

3.

Proof. We consider 4 points Pi ∈ R
3, i = 0, 1, 2, 3. We identify the Cartesian

coordinates of a point P = (a, b, c) with the components of the vector P =
(a, b, c) from the origin to the point P in the canonical basis. We choose, without
loss of generality, P0 = (0, 0, 0) and define the plane

Π : α1x1 + α2x2 + α3x3 = 0, (16)

as the plane passing through the origin and perpendicular to the unit vector
α = (sin ξ cos η, sin ξ sin η, cos ξ) where ξ ∈ [0, π] and η ∈ [0, π].

In order to find a helix through these 4 points, we consider their projections
on the plane Π and require that all 4 points lie on a circle in the plane. This
provide a first condition on the coefficient α. The projections of the 4 points
are

Qi = Pi − Ziα, Zi = α ·Pi, i = 0, . . . , 3, (17)

where Zi is the Z-cylindrical coordinates of Pi with respect to the plane Π.
The condition that the 4 points {Q0,Q1,Q2,Q3} lie on a circle is provided by
Ptolemy’s theorem which states that a necessary and sufficient condition for a
convex quadrilateral to be inscribed in a circle is that the sum of the products
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Figure 3. The projection of 3 points P1,P2,P3 on the particular plane Π chosen such
that the projected points Q1,Q2,Q3 lie on a circle passing through P0 = Q0. The four
points on the plane Π define a quadrilateral.
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of the two pairs of opposite sides equal the product of the diagonals [11]. In our
case, we consider the quadrilateral defined by the vertices {Q0,Q1,Q2,Q3} on
Π and we let dij be the distance between vertices Qi and Qj. Ptolemy’s theorem
states that the condition for the points to lie on a circle is

C1
def
= d01d23 − d03d12 − d02d13 = 0. (18)

This condition provides a relationship on the angles ξ and η, that is, it defines
a one-parameter family of cylinders containing the four points. According to
Lemma 1, on any given cylinder, a helix passes through the 4 points Pi, i =
0, . . . , 3 if two conditions are satisfied, which, together with condition C1 provide
three independent conditions for the two free parameters ξ and η. We conclude
that, generically, there is no helix through 4 points in space. QED

Unfortunately, there is no simple condition such as Ptolemy’s theorem to
guarantee that 4 points in space lie on a helix. Such a result would be highly
desirable since the fitting of helices through points in space is an important
problem in many scientific fields. To test whether 4 points lie on a helix, we can
first construct a helix through 3 points lying on cylinder containing 4 points,
then check whether the fourth points is also on the helix. This is based on the
following result.

Proposition 1. Given 4 points in R
3, there exists a countable set (possibly

empty) of cylinders containing the 4 points and a helix passing through 3 of the
points.

Proof. The proof follows directly from the previous construction. The condition
C1 provides a one-parameter family of cylinder containing the 4 points Pi, i =
0, . . . , 3. Now, consider, without loss of generality, the three points Pi, i =
0, . . . , 2. The further condition that they lie on a helix provides for each pair
of integers (k1, k2) a unique relationship on the free parameters ξ, η in the one-
parameter family. However, the existence of solutions for these transcendental
equations cannot be guaranteed and the solution set may be empty. QED

4 Helices through 3 points

Since 4 points provide too many conditions to define a helix, the next logical
step is to consider 3 points. However, 3 points do not provide enough conditions
to define a discrete family of helices.

Theorem 2. There exists an uncountable set of helices through 3 non-
colinear points in R

3.
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Proof. We follow the construction in the previous section and consider the pro-
jection of three points in a plane through the origin. For almost all ξ and η the
three points on the plane Π define a circle and a cylinder of axis α. The colinear-
ity condition on the variable (ϕ,Z) that the three points lie on a helix provide
for each pair of integer (k1, k2) one relationship between the free parameters ξ
and η. We conclude that there exists a discrete set of one-parameter families of
helices through three points in space. QED

This result cannot be used for an explicit construction of helices through
three points. However, if we further restrict the helices passing through the
points by specifying one of the helical parameters, we can obtain some interest-
ing results. Many different properties could be specified such as torsion, curva-
ture, pitch, or radius. Here we consider the case of fixed radius.

4.1 Helices through 3 points with given radius

Proposition 2. Given a strictly positive real number R and 3 points in R3,
there exists a discrete set (possibly empty) of helices with radius R and passing
through the points.

Proof. Following the previous result, we consider the projection of three points
in a plane through the origin. For almost all ξ and η the three points on the
plane Π define a circle and a cylinder of axis α with two free parameters. A
countable set of solutions for these parameters is obtained as the set of solution
of the system formed by the colinearity condition and the condition that the
circle on the plane Π has radius R. The fact that the set of solution is possibly
empty for a given radius should be clear when one consider the circle on the
plane Π passing through the projection Q1,Q2,Q3 of the 3 points P1,P2,P3.
By contradiction, unless the three points P1,P2,P3 lie on a line, the circle will
have a radius R > Rmin > 0. Therefore, there exist radii R < Rmin for which
no helix exists. QED

On the contrary, choosing a radius sufficiently large always guarantees the
existence of helices.

Proposition 3. For 3 non-colinear points in R3, there exists a real number
Rmax such that for all R > Rmax, there exists a discrete set of helices with radius
R and passing through the points.

Proof. The strategy of the proof is as follows. Without loss of generality, we
choose the three points to be P0 = (0, 0, 0), P1 = (1, 0, 0), and P2 = (a, b, 0).
We consider the projection Q0 = P0, Q1 and Q2 of these points in a plane close
to the plane perpendicular to the z = 0 plane by choosing the vector α to be
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α = (sin ξ cos η, sin ξ sin η, cos ξ) with ξ = π
2−ǫ, η = π

2−Aǫ, and ǫ > 0 sufficiently
small. The vector α is then α = (Aǫ, 1, ǫ) + O(ǫ2). As ǫ → 0 the radius of the
circle passing through {Q0,Q1,Q2} becomes unbounded. We then show that
there exists arbitrary small values of ǫ such that the points {P0,P1,P2} lie on
a helix.

Explicitly, the projected points are

Q1 = (1,−Aǫ, 0) +O(ǫ2), (19)

Q2 = (a− bAǫ,−Aaǫ,−bǫ) +O(ǫ2). (20)

The radius R of the circle through {Q0,Q1,Q2} is

R =
|a(a− 1)|

2|b|ǫ +O(1), (21)

which establishes the fact that R becomes unbounded as ǫ → 0. It remains to
show that for R sufficiently large there exists a helix. The cylindrical coordinates
(Z1, ϕ1) of P1 and (Z2, ϕ2) of P2 with respect to the projection plane are

Z1 = Aǫ+O(ǫ2), ϕ1 = arg

(
1 + i

2bǫ

a(a− 1)

)
+O(ǫ2), (22)

Z2 = b+Aaǫ+O(ǫ2), ϕ2 = arg

(
1− i 2bǫ

1− a

)
+O(ǫ2), (23)

with

arg(z) =

{
Arg(z) if ℑ(z) ≥ 0

2π +Arg(z) otherwise,
(24)

and Arg(z) is the principal argument of the complex number z and arg(z) ∈
[0; 2π). Without loss of generality, we look at the case a < 0 and b > 0 where
ϕ1 =

2bǫ
a(a−1) and ϕ2 = 2π− 2bǫ

1−a . The condition for the three points P0, P1, and
P2 to lie on a helix is then

−2bk1π + 2

(
Aπ(1− ak1 + k2)−

b2

a(a− 1)

)
ǫ+O(ǫ2) = 0. (25)

This condition is valid for ǫ sufficiently small and can be satisfied by choosing
k1 = 0, k2 6= 0 and A = b2/(a(a− 1)(k2 + 1)π). Therefore, we conclude that for
all ǫ sufficiently small, there exists a helix passing through three non-colinear
points. The smallest corresponding radius Rmax corresponds to the largest pos-
sible value of ǫ guaranteeing the convergence of all the series involved in the
computation. QED
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Figure 4. Right: The three points P0,P1,P2 are projected on a plane Π through the
origin and perpendicular to the vector α. The projected points are labeled Q0,Q1,Q2.
Note that P0 lies at the origin and hence is Q0 = P0. Right: A helix passing through
the points (0, 0, 0), (1, 0, 0), and (−1/2, 3/2, 0) with (k1, k2) = (0, 0). The projected
points and the projected circle are also shown. The projection vector (and helix axis)
is α ≃ (0.12, 0.47, 0.88) which means ξ ≃ 0.50 and η ≃ 1.32 radians, the radius is
R ≃ 1.12.

4.2 A method for constructing helices through 3 points with a
given radius

We choose the reference frame such that one of the points, say P0, is at
the origin. The two other points are labeled P1 and P2. Following the proofs,
the main idea of the construction is to consider the projection, along the di-
rection α, of these three points onto a plane Π comprising the origin. Once
the points Q0 = P0 = (0, 0, 0), Q1, and Q2 are found (See Fig. 4), we find
the circle through the three projected points. The circle and the unit vector α
define a cylinder. We obtain the cylindrical coordinates of the original points
with respect to this cylinder and enforce the colinearity condition on the cylin-
der, which together with the condition on the radius, provide a system of two
equations for the two unknown angles defining the unit vector perpendicular to
the plane.

• Step 1: Projection. First, we compute the projection on the plane, that is
Qi = Pi−Ziα with Zi = α ·Pi. where α = (α1, α2, α3) = (sin ξ cos η, sin ξ sin η,
cos ξ) is the unit vector perpendicular to the projection plane Π passing through
the origin.

• Step 2: Projected circle. Second, we compute the radius R and center C
of the circle in the plane Π passing through the points Q0,Q1,Q2. To do so, we
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introduce the vectors A1 = Q0 −Q1,A2 = Q1 −Q2,A3 = Q2 −Q0 and in the
case where none of the norm of these vectors vanishes, we obtain

R =
|A1||A2||A3|
2|A1 ×A2|

, (26)

and

C =
−1

2|A1 ×A2|2
·
(
|A3|2(A1 ·A2)Q1 + |A1|2(A2 ·A3)Q2

)
. (27)

The case where one of the norm of Ai vanishes has to be dealt separately.

• Step 3: Cylindrical coordinates. Once the center and radius are known
as a function of the vector α, we can compute the cylindrical coordinates of the
three points P0,P1,P2 with respect to an axis of orientation α passing through
the centerC. The Z coordinates of each points are Zi = α·Pi, and the remaining
missing coordinate is the angle ϕ. Let B0 = Q0−C,B1 = Q1−C,B2 = Q2−C
be the vectors from the center of the projected circle to the projected points.
The cylindrical angles ϕi are the the angles between the vectors B0 and Bi.
Computationally, it is convenient to introduce the following quantities

u1 =
1

R2
B0 ·B1, v1 =

α

R2
· (B0 ×B1), (28)

u2 =
1

R2
B0 ·B2, v2 =

α

R2
· (B0 ×B2). (29)

Then the cylindrical angles are

ϕ1 = arg(u1 + iv1), ϕ2 = arg(u2 + iv2), (30)

where arg(z) was defined in Eq. (24).

• Step 4: Colinearity condition. Once the cylindrical coordinates are known,
the condition that the three points lie on a helix is simply expressed as

(ϕ2 + 2k2π)Z1 − (ϕ1 + 2k1π)Z2 = 0. (31)

This is, again, a condition on the two arbitrary angles which, together with (26),
form for each (k1, k2) a system of 2 transcendental equations for 2 unknowns.
In general, this systems needs to be solved numerically.

• Step 5: The helix. Once the values of α have determined for a given pair
(k1, k2) and a radius R, the equation for the helix is simply

r(s) = (cos(δs)− 1)B0 + sin(δs) (α×B0) + Pδs α, (32)

where P = Z1/(ϕ1 + 2k1π), and δ = 1/
√
P 2 +R2.
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4.3 An example

We consider the points

P0 = (0, 0, 0), (33)

P1 = (1, 0, 0), (34)

P2 = (−1/2, 3/2, 0). (35)

First, we compute the projection on the plane Π, that is

Q0 = (0, 0, 0),

Q1 = (1− α2
1,−α1α2,−α1α3),

Q2 = (−1/2 + (1/2α1 − 3/2α2)α1, 3/2 + (1/2α1 − 3/2α2)α2,

(1/2α1 − 3/2α2)α3).

An example of a projection is given in Fig. 4

4.3.1 Minimal radius

We start by finding a lower bound on the radius by computing the cylinder
passing through the 3 given points with minimal radius. Two cases are possible,
either the 3 points are projected onto 2 points in the plane Π, in which case,
the smallest radius is simply half the distance between the points, or the 3
points are projected to 3 distinct points. For the three points given, a direct
computation shows that the minimal radius is obtained when Q1 = Q2, in
which case: α = (P2 − P1)/|P2 − P1| = (−

√
2/2,
√
2/2, 0) which implies a

minimal radius R =
√
2/4 ≃ 0.35. An example of a helix with a radius R = 0.41

close to the minimal radius is given in Fig. 5.

4.3.2 Fixed radius with two helices

Next, we fix the radius to R = 3/2 and look for helices by solving the coupled
system (26) and (31) for a given pair (k1, k2). For (k1, k2) = (0, 0), we find two
different helices (See Fig. 6). For (k1, k2) = (0, 1) we also find two different
helices, as well as in the case (k1, k2) = (1, 0). These four helices are drawn in
Fig. 7.

4.3.3 Large radius

Finally, we also compute helices with large radii. Following the Proof of
Proposition 6, we look for helices with (k1, k2) = (0, 1), ξ = π

2−ǫ and η = π
2−Aǫ,

where A = b2

a(a−1)π(k2+1) = 3
2π . An example of helices with R = 13 (ǫ ≃ 0.02),

R = 31 (ǫ ≃ 0.008), and R = 131 (ǫ ≃ 0.002) is given in Fig. 8.
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Figure 5. A helix passing through the points (0, 0, 0), (1, 0, 0), and (−1/2, 3/2, 0) with
a radius R=0.41, close to the minimal radius. The projection vector (and helix axis) is
α ≃ (−0.74, 0.66, 0.13).
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Figure 6. The two helices passing through the points (0, 0, 0), (1, 0, 0), and
(−1/2, 3/2, 0) with a radius R = 3/2 and (k1, k2) = (0, 0).
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Figure 7. Four helices passing through the points (0, 0, 0), (1, 0, 0), and (−1/2, 3/2, 0)
with a radius R = 3/2. Two helices are with (k1, k2) = (0, 1) and two with (k1, k2) =
(1, 0).
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Figure 8. Helices through the points (0, 0, 0), (1, 0, 0), and (−1/2, 3/2, 0) with (k1, k2) =
(0, 1) and radii R = 13, R = 31, and R = 131.
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5 Conclusion

The problem of identifying a countable family of helices passing through n
points is an interesting and fundamental problem of classical geometry which has
not been studied before. Here we have shown that, in general, no helix passes
through 4 points and that there exist a continuous family of helices through
3 points. To identify a countable family of helices, an extra property of the
helix, such as radius, pitch, torsion, or curvature, has to be specified. Here, we
studied in more detail the case of 3 points and a given radius and show that for
sufficiently large radii, one can always find helices through 3 points. A similar
study for helices with given pitch, curvature, or torsion would follow the same
steps. We conclude with two open problems:

Given n points in space, what is the condition for them to lie on a helix?
Given 5 points or more, one can always construct all possible cylinders on which
the points must lie and test, on each of these cylinders, whether a helix passes
through the points. The case of 4 points is more complicated. Proposition 3
offers a partial answer to this problem. Considering 4 points at a time, one can
construct the supporting cylinder and test whether there is a helix through these
points. However, there may be a countable set of such cylinders which may not
be tractable analytically.

Given three points in space, what is the shortest helical path through the
points? By performing a rotation, a translation, and a dilation, it is always
possible to find a reference frame in which the coordinates of the points are:
P0 = (0, 0, 0), P1 = (1, 0, 0), and P2 = (a, b, 0) with a, b real numbers. An
extensive numerical investigation of the shortest helical path for many values
of a and b reveals that the arc of circle connecting the points is the shortest
helical path. Therefore, we conjecture that the shortest helical arc through 3
points in space is the circular arc. An elegant proof, or a counter-example, of
this conjecture would be valuable.
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