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Abstract. It has been shown that a non-degenerate totally umbilical constant mean cur-
vature hypersurface of a conformally recurrent pseudo-Riemannian manifold is conformally
recurrent.
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Introduction

By a conformally recurrent manifold, we mean (see Adati and Miyazawa
[1]) a pseudo-Riemannian manifold with a non-degenerate metric g satisfy-
ing ∇C = p ⊗ C, where p is a 1-form, ∇ the Levi-Civita connection and C
the Weyl conformal curvature tensor of g. Such manifolds of dimension 4 and
with Lorentzian metric g were completely classified within the framework of
Lorentzian geometry by McLenaghan and Leroy [6] as a subclass of the class of
complex recurrent spacetimes (defined by the condition that the self-dual part
of C is recurrent with a complex recurrent vector). Complex recurrent (in par-
ticular, conformally recurrent) manifolds also seem to be important in the study
of Huygens’ principle [5]. A conformally recurrent manifold with p = 0 is known
as a conformally symmetric manifold and was studied by Chaki and Gupta [3]
and also by Sharma [7] assuming the existence of a 1-parameter group of proper
conformal motions. The purpose of this paper is to prove the following result
and state its consequences.

Theorem 1. Let M (dim. > 3) be a totally umbilical hypersurface of a
pseudo- Riemannian conformally recurrent manifold. If M has constant mean
curvature (CMC), then it is conformally recurrent with recurrence vector as the
tangential component of the recurrence vector of the ambient space.



90 M. Tarafdar, R. Sharma

An odd-dimensional Riemannian manifold M is said to be a Sasakian man-
ifold if it admits a global unit Killing vector field satisfying

R(x, y)ξ = g(y, ξ)x − g(x, ξ)y

where x, y denote arbitrary vector fields on M and R the curvature tensor of
the Riemannian metric g (see Blair [2] for details).

Corollary 1. Under the hypothesis of the above theorem, if M is a Sasakian
manifold, then it is locally isometric to a unit sphere.

Corollary 2. Let M (dim. > 3) be a closed orientable hypersurface of an
orientable Riemannian conformally recurrent manifold M with a homothetic
vector field V which is nowhere tangential to M . If M has CMC and the Ricci
curvature of M along the normal vector field is non-negative on M , then M is
conformally recurrent and the tangential component of V is Killing on M .

1 Preliminaries

We assume both M and M orientable and denote their inner product by
<, >. Let N denote the unit normal vector field such that < N, N >= ε = ±1.
Then the Gauss’ and Weingarten’s formulas are

∇xy = ∇xy + B(x, y)N, ∇xN = −εAx

where x, y are arbitrary vector fields tangent to M ; ∇,∇ denote Levi-Civita
connections of M and M respectively, B the second fundamental form and
A the Weingarten operator such that B(x, y) =< Ax, y >. Let R, S, Q, r and
C denote the curvature tensor, Ricci tensor, Ricci operator, scalar curvature
and Weyl conformal curvature tensor of M and the same letters with overbars
denote the corresponding objects of M . By hypothesis, B(x, y) = k < x, y >,
for a constant k. The Gauss’ and Codazzi equations are therefore

R(x, y, z, w) = R(x, y, z, w) − εk2(< y, z >< x, w > − < x, z >< y, w >)

R(x, y)N = 0, S(x, N) = 0

S(x, y) − ε < R(N, x)y, N >= S(x, y) + εk(k − n + 1) < x, y >

2 Proof of the Theorem

Differentiating (1) along the hypersurface gives

(∇vR)(x, y, z, w) = (∇vR)(x, y, z, w) (1)
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for an arbitrary vector field v tangent to M . Next, differentiating the expression
for Weyl tensor C of M along v and using the conformal recurrence hypothesis,
we find

(∇vR)(X, Y, Z, W ) = p(v)C(X, Y, Z, W ) +
1

n − 2
[(∇vS)(Y, Z) < X, W >

− (∇vS)(X, Z) < Y, W > +(∇vS)(X, W ) < Y, Z >

− (∇vS)(Y, W ) < X, Z > − vr

n − 1
(< Y, Z >< X, W >

− < X, Z >< Y, W >)] (2)

where n−1 is the dimension of M and X, Y, Z, W denote arbitrary vector fields
on M . From (4) and (5) one obtains

(∇vR)(x, y, z, w) = p(v)R(x, y, z, w) +
1

n − 2
[T (y, z) < x, w > −

T (x, z) < y, w > +T (x, w) < y, z > −T (y, w) < x, z >]−
(f + εk2p(v))(< y, z >< x, w > − < x, z >< y, w >) (3)

where T = ∇vS − p(v)S and f = vr−p(v)r
(n−1)(n−2) . Now equations (1) and (4) yield

(∇vR)(x, y, z, w) = p(v)R(x, y, z, w) + (∇vR)(x, y, z, w) − p(v)(R(x, y, z, w)
+ εk2(< y, z >< x, w > − < x, z >< y, w >)). (4)

At this point we let (ei) denote a local orthonormal basis of the tangent
space of M . Hence (ei, N) is a local orthonormal basis of the tangent space of
M at points of M . Substituting y = z = ei, in (7), multiplying by (ei, ei) = εi,
summing over i, using (5) with X = x, W = w, Y = Z = N , and (3) gives

(n − 2)t(x, w) = (n − 3)T (x, w) − εT (N, N) < x, w > +
[(n − 2)f − ε(n − 2)2p(V )k2] < x, w > (5)

where t = ∇vS − p(v)S. Substituting x = w = ei, multiplying by εi, summing
over i, gives

2εT (N, N) = p(v)r − vr + (n − 1)(n − 2)(f − εp(v)k2) (6)

using this in (8) provides

(n − 3)T (x, w) = (n − 2)t(x, w) +
1
2

< x, w > [(n − 2)(n − 3)f

− vr + p(v)r + ε(n − 2)(n − 3)p(v)k2] (7)
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Finally, using this in (6) we obtain ∇C = p ⊗ C, completing the proof.
Corollary 1 follows from the following result of Ghosh and Sharma [4]: A

conformally recurrent Sasakian manifold is locally isometric to a unit sphere.
Corollary 2 follows from the following result of Yano [9]: Let M be a closed
orientable hypersurface of an orientable Riemannian manifold M with a ho-
mothetic vector field which is nowhere tangent to M . If M has constant mean
curvature and the Ricci curvature of M along the normal N is non-negative
on M , then M is totally umbilical, and the well-known fact that a homothetic
vector field on a compact orientable manifold without boundary, is necessarily
Killing (see Yano [8]).
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