Totally umbilical CMC hypersurfaces of a conformally recurrent manifold

M. Tarafdar
Department of Pure Mathematics, University of Calcutta, Calcutta 700019, India

R. Sharma
Department of Mathematics, University of New Haven, West Haven, CT 06514, USA

Received: 25 January 2001; accepted: 25 January 2001.

Abstract. It has been shown that a non-degenerate totally umbilical constant mean curvature hypersurface of a conformally recurrent pseudo-Riemannian manifold is conformally recurrent.

Keywords: totally umbilical hypersurface, constant mean curvature, conformally recurrent.

MSC 2000 classification: 53B20, 53B25

Introduction

By a conformally recurrent manifold, we mean (see Adati and Miyazawa [1]) a pseudo-Riemannian manifold with a non-degenerate metric g satisfying $\nabla C = p \otimes C$, where p is a 1-form, ∇ the Levi-Civita connection and C the Weyl conformal curvature tensor of g. Such manifolds of dimension 4 and with Lorentzian metric g were completely classified within the framework of Lorentzian geometry by McLenaghan and Leroy [6] as a subclass of the class of complex recurrent spacetimes (defined by the condition that the self-dual part of C is recurrent with a complex recurrent vector). Complex recurrent (in particular, conformally recurrent) manifolds also seem to be important in the study of Huygens’ principle [5]. A conformally recurrent manifold with $p = 0$ is known as a conformally symmetric manifold and was studied by Chaki and Gupta [3] and also by Sharma [7] assuming the existence of a 1-parameter group of proper conformal motions. The purpose of this paper is to prove the following result and state its consequences.

Theorem 1. Let M (dim. > 3) be a totally umbilical hypersurface of a pseudo- Riemannian conformally recurrent manifold. If M has constant mean curvature (CMC), then it is conformally recurrent with recurrence vector as the tangential component of the recurrence vector of the ambient space.
An odd-dimensional Riemannian manifold M is said to be a Sasakian manifold if it admits a global unit Killing vector field satisfying

$$ R(x, y)\xi = g(y, \xi)x - g(x, \xi)y $$

where x, y denote arbitrary vector fields on M and R the curvature tensor of the Riemannian metric g (see Blair [2] for details).

Corollary 1. Under the hypothesis of the above theorem, if M is a Sasakian manifold, then it is locally isometric to a unit sphere.

Corollary 2. Let M (dim. > 3) be a closed orientable hypersurface of an orientable Riemannian conformally recurrent manifold \overline{M} with a homothetic vector field V which is nowhere tangential to M. If M has CMC and the Ricci curvature of \overline{M} along the normal vector field is non-negative on M, then M is conformally recurrent and the tangential component of V is Killing on M.

1 Preliminaries

We assume both M and \overline{M} orientable and denote their inner product by $<, >$. Let N denote the unit normal vector field such that $< N, N > = \epsilon = \pm 1$. Then the Gauss’ and Weingarten’s formulas are

$$ \nabla_x y = \nabla_x y + B(x, y)N, \quad \nabla_x N = -\epsilon Ax $$

where x, y are arbitrary vector fields tangent to M; $\nabla, \overline{\nabla}$ denote Levi-Civita connections of M and \overline{M} respectively, B the second fundamental form and A the Weingarten operator such that $B(x, y) = \epsilon < Ax, y >$. Let R, S, Q, r and C denote the curvature tensor, Ricci tensor, Ricci operator, scalar curvature and Weyl conformal curvature tensor of M and the same letters with overbars denote the corresponding objects of \overline{M}. By hypothesis, $B(x, y) = k < x, y >$, for a constant k. The Gauss’ and Codazzi equations are therefore

$$ \overline{R}(x, y, z, w) = R(x, y, z, w) - \epsilon k^2(\langle y, z \rangle < x, w \rangle - \langle x, z \rangle < y, w \rangle) $$

$$ \overline{R}(x, y)N = 0, \quad \overline{S}(x, N) = 0 $$

$$ \overline{S}(x, y) - \epsilon < \overline{R}(N, x)y, N > = S(x, y) + \epsilon k(k - n + 1) < x, y > $$

2 Proof of the Theorem

Differentiating (1) along the hypersurface gives

$$ (\nabla_v \overline{R})(x, y, z, w) = (\nabla_v R)(x, y, z, w) $$

(1)
for an arbitrary vector field v tangent to M. Next, differentiating the expression for Weyl tensor \overline{C} of \overline{M} along v and using the conformal recurrence hypothesis, we find

\[
(\nabla_v \mathcal{R})(X,Y,Z,W) = p(v)\overline{C}(X,Y,Z,W) + \frac{1}{n-2}[(\nabla_v \overline{S})(Y,Z) < X,W > \\
- (\nabla_v \overline{S})(X,Z) < Y,W > + (\nabla_v \overline{S})(X,W) < Y,Z > \\
- (\nabla_v \overline{S})(Y,W) < X,Z > - \frac{v^2}{n-1}(< Y,Z > < X,W > \\
- < X,Z > < Y,W >)]
\]

(2)

where $n-1$ is the dimension of M and X,Y,Z,W denote arbitrary vector fields on \overline{M}. From (4) and (5) one obtains

\[
(\nabla_v \mathcal{R})(x,y,z,w) = p(v)\mathcal{R}(x,y,z,w) + \frac{1}{n-2}T(y,z) < x,w > - \\
T(x,z) < y,w > + T(x,w) < y,z > - T(y,w) < x,z > - \\
(f + \epsilon k^2 p(v))(< y,z > < x,w > - < x,z > < y,w >)
\]

(3)

where $T = \nabla_v \overline{S} - p(v)\overline{S}$ and $f = \frac{v^2 - p(v)^2}{(n-1)(n-2)}$. Now equations (1) and (4) yield

\[
(\nabla_v \mathcal{R})(x,y,z,w) = p(v)\mathcal{R}(x,y,z,w) + (\nabla_v \mathcal{R})(x,y,z,w) - p(v)(\mathcal{R}(x,y,z,w) \\
+ \epsilon k^2(< y,z > < x,w > - < x,z > < y,w >)).
\]

(4)

At this point we let (e_i) denote a local orthonormal basis of the tangent space of M. Hence (e_i, N) is a local orthonormal basis of the tangent space of \overline{M} at points of M. Substituting $y = z = e_i$, in (7), multiplying by $(e_i, e_i) = \epsilon_i$, summing over i, using (5) with $X = x, W = w, Y = Z = N$, and (3) gives

\[
(n-2)t(x,w) = (n-3)T(x,w) - \epsilon T(N,N) < x,w > + \\
\left[(n-2)f - \epsilon (n-2)^2 p(V)k^2 \right] < x,w >
\]

(5)

where $t = \nabla_v S - p(v)S$. Substituting $x = w = e_i$, multiplying by ϵ_i, summing over i, gives

\[
2\epsilon T(N,N) = p(v)r - vr + (n-1)(n-2)(f - \epsilon p(v)k^2)
\]

(6)

using this in (8) provides

\[
(n-3)T(x,w) = (n-2)t(x,w) + \frac{1}{2} < x,w > \left[(n-2)(n-3)f \\
- vr + p(v)r + \epsilon (n-2)(n-3)p(v)k^2 \right]
\]

(7)
Finally, using this in (6) we obtain $\nabla C = p \otimes C$, completing the proof.

Corollary 1 follows from the following result of Ghosh and Sharma [4]: A conformally recurrent Sasakian manifold is locally isometric to a unit sphere. Corollary 2 follows from the following result of Yano [9]: Let M be a closed orientable hypersurface of an orientable Riemannian manifold \overline{M} with a homothetic vector field which is nowhere tangent to M. If M has constant mean curvature and the Ricci curvature of \overline{M} along the normal N is non-negative on M, then M is totally umbilical, and the well-known fact that a homothetic vector field on a compact orientable manifold without boundary, is necessarily Killing (see Yano [8]).

References