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Abstract. This note contains a few introductory results on strongly Lie nilpotent rings and,
in particular, an analogue of a well known theorem of P. Hall on nilpotent groups.
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1 Introduction

Let R be an associative ring. For all a,b € R we set a o b = ab — ba. It is
well-known that (R, +,0) is a Lie ring. For all A, B C R, the additive subgroup
of R generated by all Lie products aob (a € A,b € B) is denoted by Ao B.

Now we put y1(R) = Rand foranyn € N, n>1, ~,(R)=",-1(R)oR.
If there exists ¢ € N such that v.11(R) = 0, then R is called a Lie nilpotent
7ing.

We define the Lie powers R (n € N) as follows: R(Y) = R, and for all
neN, n>1, R™ is the ideal of R generated by R o R. If there exists
¢ € N such that R(¢t1) = 0, then R is called a strongly Lie nilpotent ring
(see [7]).

Clearly, 7, € R™ for all n € N, thus a strongly Lie nilpotent ring is Lie-
nilpotent.

There are many results on strongly Lie nilpotent group rings, see for example
Bovdi’s paper [2].

The 2nd section of this note contains a few developments in the spirit of
Jennings’ paper [4]. In the 3rd section, an analogue of a well known theorem of
P. Hall on nilpotent groups for strongly Lie nilpotent rings is obtained.

2 Central series of ideals

We recall that if I and J are ideals of a ring R and I C J, then J/I
is called a central factor if Jo R C I or, equivalently, J/I belongs to the centre
Z(R/I) of the ring R/I.
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A chain (JW) of ideals of a ring R is called a central series of R if every
factor JAHD) /JWN is central (see [4]).

The lower central series of a ring R is the descending series whose terms
R are defined by setting: R = R and, for a > 1, ﬂﬁ RO if o
is a limit ordinal and R(® is the ideal of R generated by R( Do R, otherwise.

Following an idea of Jennings [4], we now define the upper central series of
an arbitrary ring.

If B is an additive subgroup of a ring R, then the set M := {z|z € B, Rx C
B} is the largest left ideal of R which is contained in B. Moreover, the set
F:={ylye M, yR C M} is the largest ideal of R which is contained in B.

It is easy to see that F(R) = {y|ly € Z(R), yR C Z(R)} is the largest
ideal of R which is contained in the centre Z(R) of R. The ideal F(R) is called
the strong centre of R. We remark that the annihilator of a ring R is contained
in F(R).

The upper central series of a ring R is the ascending series whose terms
F(®)(R) are defined by setting F(©(R) = {0} and, for alpha > 0, F(®)(R) =
Upea FP(R) if « is a limit ordinal and F®*)(R)/F(®)(R) = F(R/F®)(R))
otherwise. In particular, F' (1)(R) is the strong centre of R.

Moreover, for any positive integer k

F®(R)={zlzr e R, Vr,seR z(l4+r)ose FF I (R)} (1)

The following result gives some relationship between the lower central series
and the upper central series of arbitrary ring R.

Proposition 1. Let R be a ring, and let k and | be positive integers. (1)
R®) . R ¢ Rk+i-1)
(2) R*® o R C R+
(3) (R®) € RED

(4) R® . FO(R) € FU-F+1)(R) se k <1
(5)F ( ) R®) € FU=k+1(R) se k <1
(6) R® o FO(R) C FU=F)(R) se k <

(7) FO(R/FO(R)) = F**)(R) /FY(R)

ProoF. For (1), (2) see [4], Theorem 3.3 e Theorem 3.4. We prove our
assertions by induction. First, (3) is trivial for [ = 1. If [ > 1, then, by (2), we
have

(RN o ) C REI=1) o RK) ¢ RKI-1)+k) — R(K)

for all positive integer k. Hence (R*®)() C R,
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(4): If k =1, then, for all [ € N
RMFO(R) = RVFO(R) c FO(R) C FUF+1(R)

Now let k > 1. For all a € R*D b € R and ¢ € FO(R), the inductive
hypothesis implies that

(aob)c=acob—a(cob) € FU"F(R),
as desired.
(5): Analogously to (4).
(6): If kK =1, then, for all [ € N
R® o FO(R) = Ro FO(R) C FU=V(R) = FUF)(R)

Now let k > 1. Foralla € R*V_ be R, reRandce FO(R), inductively
we have

(aob)oc=bo(coa)+ao(boc)e FITR(R)

Hence, by (5), we have

(aob)roc=(aob)orc+ro(claob)) e FU7F(R)

(7): If k = 1, then, for all | € N
FOR/FO(R) = F(R/FO(R) = FE(R)/FO(R) = FE(R) [FO(R)
Now let &k > 1. For all [ € N and for all y € R we have
y+ FOR) e FP(R/FO(R)) =
= Va,be R (y(1+a)ob)+FO(R) e F*V(R/FU(R))
= Va,be R (y(1+a)ob) + FO(R) e FE1*D(R)/FO(R)
—Va,beR y(l+a)obe FF1H)(R) — y e FEHI(R)

which completes the proof.

Corollary 1. If R is a ring and k is a positive integer, then

char R/F®)(R) = char R*+1).
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PROOF. Let k € N and let m := char R/F(®)(R) # 0. Foralla € R® | ¢
R, we have

m(aor)=aomre R® o F®(R) =0,

by Prop. 1 (6). Since R *1) is the ideal of R generated by R* o R, it follows
that char R#+1) divides m.

Now let n := char R*+1 # 0. For each r,r,...7%,51,...51,...5x € R we
have

(- ((((nr(l4+r)os1)(14+r2)ose) - )(1+rg)os, =
=n((--- (((r(A+r1)os1)(1+72) 0 82) -+ ) (1 + 1) 0 5) =0

By (1), it follows that nr € F*)(R). Hence char R/F*)(R) divides n
It follows immediately that char R/F®*)(R) = 0 if and only if char R#+1) =
0. QED

The following proposition gives a relation between the characteristic of the
factors of the upper central series of a ring and that of its strong centre.

Proposition 2. If R is a ring such that char F(R) # 0, then the charac-
teristic of F*+1D(R)/F®)(R) divides the characteristic of F(R), for each non-
negative integer k.

PROOF. Let n := char F(R) # 0. We show by induction on k that nz €
F®)(R), for all z € F*TD(R) and k € N.

For £ = 0, there is nothing to prove. Let £ > 1 and assume that ny €
F*=1(R) for each y € F®(R). Let x € F*~YD(R). For all r,s € R we have
z(1+r)os € F¥(R). Inductively, n(z(14+r)os) € F*~D(R). Hence (nz)(14r)os
belongs to F*~D(R) and nz € F®)(R), by (1). QBED

3 Analogue of a theorem of P. Hall

In [4], Jennings proves that a ring is strongly Lie nilpotent if and only if it
has a finite central series. Moreover, we have

Proposition 3. Let R be a ring. fce N and0=1y C...CI.=R isa
central series of R, then

R(C—k+1) - Ik‘ - F(k)(R)

for each k € {0,1,...c}

PRrOOF. The first inclusion holds by [4] (Theorem 2.1). We prove, by induc-
tion on k, that I € F*)(R). For k = 0, there is nothing to prove. Let k > 1
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and assume that I,_; C F(k_l)(R). Let z € I. Since Iy /I is a central factor,
we have inductively

z(14+7r)ose I, C F*U(R)

for all , s € R. Hence z € F®)(R), by (1). QED

The proposition shows that the lower and upper central series of any strongly
Lie nilpotent ring R have the same length c. This length c is called the strongly
Lie nilpotent class of R

The following result is analogous to one obtained for nilpotent rings (see [5],
1.2.6).

Proposition 4. If R is a strongly Lie nilpotent ring, then char R = 0 if and
only if char F(R) = 0.

PROOF. If char F/(R) = 0, then clearly char R = 0. Conversely, let char R =
0 and assume that char F'(R) = m # 0. If ¢ is the strongly nilpotent class of R,
then R(® C F(R). Hence char R(® # 0. Let i := min{j|j € N, char RU) # 0}
and let n := char R®. Then there is an element 2 € R(~Y such that mnax # 0.

For all y, z € R, we have

nz(l+y)oz=mn(z(l+y)oz)=n(roz+ryoz) =0

By (1), nx € F(R), therefore mnax = 0, a contradiction to the choice of x.
QED

The results above are examples of a strong analogy between the theories of
nilpotent groups and strongly Lie nilpotent rings.

In particular, we recall the well-known theorem of P. Hall for nilpotent
groups: if N is a normal subgroups of a group G and N, G/N' are nilpotent, then
G is nilpotent (see [6]). A version of this theorem for Lie algebras is contained,
for example, in [1].

We give a version of the theorem of P. Hall for strongly Lie nilpotent rings.

Lemma 1. Let R be a ring, I an ideal of R such that its strong centre F(I)
is an ideal of R and M the largest ideal of R contained in I o I.

If there is a finite central series of R between F(I) and I, then there is a
finite central series of R between 0 and M.

PROOF. Let t € N and
F(I):I()CIlc-'-CItZI (2)

a finite central series of R between F'(I) and 1.
For each i € N, ¢ < 21, let B; the additive subgroup of R generated by
Unik=i In © Ik, and let B; be the ideal R generated by B;.
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Evidently
0=B1 CByC---C By (3)

We show that (3) is a central series of R.
It is sufficient to prove that, for all a € I;;, b € I}, such that h + k =i and
for all r,s,v € R we have
aobov € B;_;

(aob)rove By
r(aob)ov € By
r(aob)sov € B;_1
Since (2) is a central series, by the Jacobi identity, we have
aobov=aovob+wvoboa€ B;_; C B;_;

Moreover (cfr. [3], Lemma 2)

(aob)(rov)=wv(aor)ob
—r(aobow)
—aorobv+aobrov
—aobovor+aorobov € B;_j.
Hence
(aob)rov=(aobov)r+ (aob)(rov) € B;_1.
It follows that
r(aob)ov=—(aobor)ov+ (aob)rov e B;_.
Finally,
s(aob)rov=s((aob)rov)+ (sov)(aob)r € B;_1.
Hence for all i € N, 1 < i < 2t we have
(BinM)oRC (B;joR)N(MoR)C B;—1N M.
Therefore
0=BiNMC---CBynNM=M

is a finite central series of R between 0 and M. QED

Theorem 1. Let R be a ring, I an ideal of R such that its strong centre
F(I) is an ideal of R, and let M be the largest ideal of R contained in I o I.

If I and R/M are strongly Lie nilpotent rings, then R is strongly Lie nilpo-
tent.
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PrOOF. We proceed by induction on the strongly Lie nilpotent class ¢ of
I.If ¢ =1, then I = F(I) and I oI = 0. It follows that M = 0. Hence R is
strongly Lie nilpotent.

If c=2,then Iol C F(I). Hence M C F(I). As R/M is strongly nilpotent,
it follows that R/F(I) is strongly Lie nilpotent. Now, I/F(I) is an ideal of
R/F(I), and therefore there is a finite central series of R between F'(I) and I.
By 1, there is a finite central series of R between 0 and M. It follows that R is
strongly Lie nilpotent.

If ¢ > 3 and M is the largest ideal of R/F(I) contained in I/F(I)oI/F(I),
then F(I) C M and M = M/F(I). Since (R/F(I))/M = R/M, we have that
(R/F(I))/M is strongly Lie nilpotent. Now I/F(I) is strongly Lie nilpotent of
class ¢ — 1 and, inductively R/F(I) is strongly Lie nilpotent.

Proceeding as in the case of ¢ = 2, we complete our proof.
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