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Via Prov.le Lecce–Arnesano, P.O. Box 193 I - 73100 Lecce, Italy
francesco.catino@unile.it, maddalena.miccoli@unile.it

Received: 18 February 1997; accepted: 24 November 2000.

Abstract. This note contains a few introductory results on strongly Lie nilpotent rings and,
in particular, an analogue of a well known theorem of P. Hall on nilpotent groups.
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1 Introduction

Let R be an associative ring. For all a, b ∈ R we set a ◦ b = ab − ba. It is
well-known that (R, +, ◦) is a Lie ring. For all A, B ⊆ R, the additive subgroup
of R generated by all Lie products a ◦ b (a ∈ A, b ∈ B) is denoted by A ◦ B.

Now we put γ1(R) = R and for any n ∈ N, n > 1, γn(R) = γn−1(R)◦R.
If there exists c ∈ N such that γc+1(R) = 0, then R is called a Lie nilpotent
ring.

We define the Lie powers R(n)(n ∈ N) as follows: R(1) = R, and for all
n ∈ N, n > 1, R(n) is the ideal of R generated by R(n−1) ◦ R. If there exists
c ∈ N such that R(c+1) = 0, then R is called a strongly Lie nilpotent ring
(see [7]).

Clearly, γn ⊆ R(n) for all n ∈ N, thus a strongly Lie nilpotent ring is Lie-
nilpotent.

There are many results on strongly Lie nilpotent group rings, see for example
Bovdi’s paper [2].

The 2nd section of this note contains a few developments in the spirit of
Jennings’ paper [4]. In the 3rd section, an analogue of a well known theorem of
P. Hall on nilpotent groups for strongly Lie nilpotent rings is obtained.

2 Central series of ideals

We recall that if I and J are ideals of a ring R and I ⊆ J , then J/I
is called a central factor if J ◦R ⊆ I or, equivalently, J/I belongs to the centre
Z(R/I) of the ring R/I.
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A chain (J (λ)) of ideals of a ring R is called a central series of R if every
factor J (λ+1)/J (λ) is central (see [4]).

The lower central series of a ring R is the descending series whose terms
R(α) are defined by setting: R(1) = R and, for α > 1, R(α) =

⋂
β<α R(β) if α

is a limit ordinal and R(α) is the ideal of R generated by R(α−1) ◦R, otherwise.
Following an idea of Jennings [4], we now define the upper central series of

an arbitrary ring.
If B is an additive subgroup of a ring R, then the set M := {x|x ∈ B, Rx ⊆

B} is the largest left ideal of R which is contained in B. Moreover, the set
F := {y|y ∈ M, yR ⊆ M} is the largest ideal of R which is contained in B.

It is easy to see that F (R) = {y|y ∈ Z(R), yR ⊆ Z(R)} is the largest
ideal of R which is contained in the centre Z(R) of R. The ideal F (R) is called
the strong centre of R. We remark that the annihilator of a ring R is contained
in F (R).

The upper central series of a ring R is the ascending series whose terms
F (α)(R) are defined by setting F (0)(R) = {0} and, for alpha > 0, F (α)(R) =⋃

β<α F (β)(R) if α is a limit ordinal and F (α+1)(R)/F (α)(R) = F (R/F (α)(R))
otherwise. In particular, F (1)(R) is the strong centre of R.

Moreover, for any positive integer k

F (k)(R) = {x|x ∈ R, ∀r, s ∈ R x(1 + r) ◦ s ∈ F (k−1)(R)} (1)

The following result gives some relationship between the lower central series
and the upper central series of arbitrary ring R.

Proposition 1. Let R be a ring, and let k and l be positive integers. (1)

R(k) · R(l) ⊆ R(k+l−1)

(2) R(k) ◦ R(l) ⊆ R(k+l)

(3) (R(k))(l) ⊆ R(kl)

(4) R(k) · F (l)(R) ⊆ F (l−k+1)(R) se k ≤ l

(5) F (l)(R) · R(k) ⊆ F (l−k+1)(R) se k ≤ l

(6) R(k) ◦ F (l)(R) ⊆ F (l−k)(R) se k ≤ l

(7) F (k)(R/F (l)(R)) = F (k+l)(R)/F (l)(R)
Proof. For (1), (2) see [4], Theorem 3.3 e Theorem 3.4. We prove our

assertions by induction. First, (3) is trivial for l = 1. If l > 1, then, by (2), we
have

(R(k))(l−1) ◦ R(k) ⊆ Rk(l−1) ◦ R(k) ⊆ R(k(l−1)+k) = R(kl)

for all positive integer k. Hence (R(k))(l) ⊆ R(kl).
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(4): If k = 1, then, for all l ∈ N

R(k)F (l)(R) = R(1)F (l)(R) ⊆ F (l)(R) ⊆ F (l−k+1)(R)

Now let k > 1. For all a ∈ R(k−1), b ∈ R and c ∈ F (l)(R), the inductive
hypothesis implies that

(a ◦ b)c = ac ◦ b − a(c ◦ b) ∈ F (l−k+1)(R),

as desired.

(5): Analogously to (4).

(6): If k = 1, then, for all l ∈ N

R(k) ◦ F (l)(R) = R ◦ F (l)(R) ⊆ F (l−1)(R) = F (l−k)(R)

Now let k > 1. For all a ∈ R(k−1), b ∈ R, r ∈ R and c ∈ F (l)(R), inductively
we have

(a ◦ b) ◦ c = b ◦ (c ◦ a) + a ◦ (b ◦ c) ∈ F (l−k)(R)

Hence, by (5), we have

(a ◦ b)r ◦ c = (a ◦ b) ◦ rc + r ◦ (c(a ◦ b)) ∈ F (l−k)(R)

(7): If k = 1, then, for all l ∈ N

F (k)(R/F (l)(R)) = F (R/F (l)(R)) = F (l+1)(R)/F (l)(R) = F (k+l)(R)/F (l)(R)

Now let k > 1. For all l ∈ N and for all y ∈ R we have

y + F (l)(R) ∈ F (k)(R/F (l)(R)) ⇐⇒

⇐⇒ ∀a, b ∈ R
(
y(1 + a) ◦ b

)
+ F (l)(R) ∈ F (k−1)(R/F (l)(R))

⇐⇒ ∀a, b ∈ R
(
y(1 + a) ◦ b

)
+ F (l)(R) ∈ F (k−1+l)(R)/F (l)(R)

⇐⇒ ∀a, b ∈ R y(1 + a) ◦ b ∈ F (k−1+l)(R) ⇐⇒ y ∈ F (k+l)(R)

which completes the proof. QED

Corollary 1. If R is a ring and k is a positive integer, then

char R/F (k)(R) = charR(k+1).
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Proof. Let k ∈ N and let m := char R/F (k)(R) �= 0. For all a ∈ R(k), r ∈
R, we have

m(a ◦ r) = a ◦ mr ∈ R(k) ◦ F (k)(R) = 0,

by Prop. 1 (6). Since R(k+1) is the ideal of R generated by R(k) ◦ R, it follows
that char R(k+1) divides m.

Now let n := charR(k+1) �= 0. For each r, r1, . . . rk, s1, . . . s1, . . . sk ∈ R we
have

(· · · ((((nr(1 + r1) ◦ s1)(1 + r2) ◦ s2) · · · )(1 + rk) ◦ sk =

= n
(
(· · · ((((r(1 + r1) ◦ s1)(1 + r2) ◦ s2) · · · )(1 + rk) ◦ sk

)
= 0

By (1), it follows that nr ∈ F (k)(R). Hence char R/F (k)(R) divides n

It follows immediately that charR/F (k)(R) = 0 if and only if charR(k+1) =
0. QED

The following proposition gives a relation between the characteristic of the
factors of the upper central series of a ring and that of its strong centre.

Proposition 2. If R is a ring such that char F (R) �= 0, then the charac-
teristic of F (k+1)(R)/F (k)(R) divides the characteristic of F (R), for each non-
negative integer k.

Proof. Let n := charF (R) �= 0. We show by induction on k that nx ∈
F (k)(R), for all x ∈ F (k+1)(R) and k ∈ N0.

For k = 0, there is nothing to prove. Let k ≥ 1 and assume that ny ∈
F (k−1)(R) for each y ∈ F (k)(R). Let x ∈ F (k−1)(R). For all r, s ∈ R we have
x(1+r)◦s ∈ F (k)(R). Inductively, n(x(1+r)◦s) ∈ F (k−1)(R). Hence (nx)(1+r)◦s
belongs to F (k−1)(R) and nx ∈ F (k)(R), by (1). QED

3 Analogue of a theorem of P. Hall

In [4], Jennings proves that a ring is strongly Lie nilpotent if and only if it
has a finite central series. Moreover, we have

Proposition 3. Let R be a ring. If c ∈ N and 0 = I0 ⊂ . . . ⊂ Ic = R is a
central series of R, then

R(c−k+1) ⊆ Ik ⊆ F (k)(R)

for each k ∈ {0, 1, . . . c}
Proof. The first inclusion holds by [4] (Theorem 2.1). We prove, by induc-

tion on k, that Ik ⊆ F (k)(R). For k = 0, there is nothing to prove. Let k ≥ 1
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and assume that Ik−1 ⊆ F (k−1)(R). Let z ∈ Ik. Since Ik/Ik−1 is a central factor,
we have inductively

z(1 + r) ◦ s ∈ Ik−1 ⊆ F (k−1)(R)

for all r, s ∈ R. Hence z ∈ F (k)(R), by (1). QED

The proposition shows that the lower and upper central series of any strongly
Lie nilpotent ring R have the same length c. This length c is called the strongly
Lie nilpotent class of R

The following result is analogous to one obtained for nilpotent rings (see [5],
1.2.6).

Proposition 4. If R is a strongly Lie nilpotent ring, then char R = 0 if and
only if char F (R) = 0.

Proof. If charF (R) = 0, then clearly charR = 0. Conversely, let charR =
0 and assume that char F (R) = m �= 0. If c is the strongly nilpotent class of R,
then R(c) ⊆ F (R). Hence char R(c) �= 0. Let i := min{j|j ∈ N, char R(j) �= 0}
and let n := char R(i). Then there is an element x ∈ R(i−1) such that mnx �= 0.

For all y, z ∈ R, we have

nx(1 + y) ◦ z = n(x(1 + y) ◦ z) = n(x ◦ z + xy ◦ z) = 0

By (1), nx ∈ F (R), therefore mnx = 0, a contradiction to the choice of x.
QED

The results above are examples of a strong analogy between the theories of
nilpotent groups and strongly Lie nilpotent rings.

In particular, we recall the well-known theorem of P. Hall for nilpotent
groups: if N is a normal subgroups of a group G and N, G/N ′ are nilpotent, then
G is nilpotent (see [6]). A version of this theorem for Lie algebras is contained,
for example, in [1].

We give a version of the theorem of P. Hall for strongly Lie nilpotent rings.
Lemma 1. Let R be a ring, I an ideal of R such that its strong centre F (I)

is an ideal of R and M the largest ideal of R contained in I ◦ I.
If there is a finite central series of R between F (I) and I, then there is a

finite central series of R between 0 and M .
Proof. Let t ∈ N and

F (I) = I0 ⊂ I1 ⊂ · · · ⊂ It = I (2)

a finite central series of R between F (I) and I.
For each i ∈ N, i ≤ 2t, let Bi the additive subgroup of R generated by⋃

h+k=i Ih ◦ Ik, and let Bi be the ideal R generated by Bi.
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Evidently
0 = B1 ⊆ B2 ⊆ · · · ⊆ B2t (3)

We show that (3) is a central series of R.
It is sufficient to prove that, for all a ∈ Ih, b ∈ Ik such that h + k = i and

for all r, s, v ∈ R we have
a ◦ b ◦ v ∈ Bi−1

(a ◦ b)r ◦ v ∈ Bi−1

r(a ◦ b) ◦ v ∈ Bi−1

r(a ◦ b)s ◦ v ∈ Bi−1

Since (2) is a central series, by the Jacobi identity, we have

a ◦ b ◦ v = a ◦ v ◦ b + v ◦ b ◦ a ∈ Bi−1 ⊆ Bi−1

Moreover (cfr. [3], Lemma 2)

(a ◦ b)(r ◦ v) = v(a ◦ r) ◦ b

− r(a ◦ b ◦ v)
−a ◦ r ◦ bv + a ◦ br ◦ v

−a ◦ b ◦ v ◦ r + a ◦ r ◦ b ◦ v ∈ Bi−1.

Hence
(a ◦ b)r ◦ v = (a ◦ b ◦ v)r + (a ◦ b)(r ◦ v) ∈ Bi−1.

It follows that

r(a ◦ b) ◦ v = −(a ◦ b ◦ r) ◦ v + (a ◦ b)r ◦ v ∈ Bi−1.

Finally,
s(a ◦ b)r ◦ v = s((a ◦ b)r ◦ v) + (s ◦ v)(a ◦ b)r ∈ Bi−1.

Hence for all i ∈ N, 1 < i ≤ 2t we have

(Bi ∩ M) ◦ R ⊆ (Bi ◦ R) ∩ (M ◦ R) ⊆ Bi−1 ∩ M.

Therefore
0 = B1 ∩ M ⊆ · · · ⊆ B2t ∩ M = M

is a finite central series of R between 0 and M . QED

Theorem 1. Let R be a ring, I an ideal of R such that its strong centre
F (I) is an ideal of R, and let M be the largest ideal of R contained in I ◦ I.

If I and R/M are strongly Lie nilpotent rings, then R is strongly Lie nilpo-
tent.
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Proof. We proceed by induction on the strongly Lie nilpotent class c of
I. If c = 1, then I = F (I) and I ◦ I = 0. It follows that M = 0. Hence R is
strongly Lie nilpotent.

If c = 2, then I ◦ I ⊆ F (I). Hence M ⊆ F (I). As R/M is strongly nilpotent,
it follows that R/F (I) is strongly Lie nilpotent. Now, I/F (I) is an ideal of
R/F (I), and therefore there is a finite central series of R between F (I) and I.
By 1, there is a finite central series of R between 0 and M . It follows that R is
strongly Lie nilpotent.

If c > 3 and M is the largest ideal of R/F (I) contained in I/F (I) ◦ I/F (I),
then F (I) ⊆ M and M = M/F (I). Since (R/F (I))/M ∼= R/M , we have that
(R/F (I))/M is strongly Lie nilpotent. Now I/F (I) is strongly Lie nilpotent of
class c − 1 and, inductively R/F (I) is strongly Lie nilpotent.

Proceeding as in the case of c = 2, we complete our proof. QED
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