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Abstract. Let C ⊂ P3 be an integral projective curve not contained in a quadric surface.
Set d := deg(C), g := pa(C),

π1(d, 3) :=

{
d2/6 − d/2 + 1 if d/3 ∈ Z

d2/6 − d/2 + 1/3 if d/3 /∈ Z

Here we prove in arbitrary characteristic that g ≤ π1(d, 3) if d ≥ 25.
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Introduction

In characteristic zero using heavily the Uniform Position Principle D. Eisen-
bud and J. Harris proved the following result ([4, Th. 3.13]) (classically due to
Halphen).

Theorem 1. Let C ⊂ P3 be an integral projective curve not contained in a
quadric surface. Set d := deg(C), g := pa(C),

π1(d, 3) :=
{

d2/6 − d/2 + 1 if d/3 ∈ Z
d2/6 − d/2 + 1/3 if d/3 /∈ Z

Assume d ≥ 25. Then g ≤ π1(d, 3).
The main aim of this paper is to prove Theorem 1 in arbitrary characteris-

tic. If we may apply the Uniform Position Principle to the generic hyperplane
section of C, then the proof of [4, Th. 3.13], works verbatim. By [5, Cor. 1.8], if
the monodromy group of the generic hyperplane section, G, of C contains the
alternating group Ad, then the Uniform Position Principle holds for the general
plane section of C.
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Unfortunately, we are interested in a case which (if it exists) has as Galois
group of the generic hyperplane section the third class of groups in the statement
of [5, Th. 3.4].

In the last part of section two we will prove (in arbitrary characteristic) the
following result proved by J.Harris in characteristic zero ([3]).

Proposition 1. Fix integers d, k with k ≥ 2 and d > k(k − 1).
Set n := [(d−1)/k]+1, ε := nk−d and π(d, k) := d2/2k+(k−4)d/2+1−ε(k−
ε− 1 + (ε/k)). Let C ⊂ P3 an integral curve with deg(C) = d and C contained
in an integral surface of degree k. Then pa(C) ≤ π(d, k).
Notice that the integer ε in the statement of Prop. 1 is the unique integer with
0 ≤ ε ≤ k − 1 and ε ≡ −dmod(k).

1 The proofs

Now we will prove Theorem 1 and Proposition 1.

Proof of Theorem 1. Let H ⊂ P3 be a general plane. Set Z := C ∩H.
Let G be the monodromy group of the generic plane section of C. By [5, Cor.
1.6], and its proof, G is 2-transitive and it is 3-transitive if and only if the general
secant line to C intersects C only at two points. By Castelnuovo method ([4, Ch.
III]) to find a “good” upper bound for g it is sufficient to find a “good” upper
bound for all integers h(Z, t) := h0(H,OZ(t)) − h0(H, IZ(t)). We distinguish 3
cases and several subcases.

Case (a) . Here we assume that for a general secant line D of C we have
z := card(D ∩ C) ≥ 3. By [1] Z is in linear semi-general position, i. e. for
any two points P,Q of Z the line 〈P,Q〉 contains exactly z points of Z. Fix
any P ∈ Z and any line D ⊂ H with D spanned by Z ∩ D and P /∈ D.
Thus card(Z ∩ D) = z. Let π : P2 \ {P} → D be the linear projection. Set
y := card(π(Z \ {P})). For every line D′ with P /∈ D′ and D′ spanned by
D′ ∩ Z, π | D′ induces a bijection of D′ ∩ Z with π(D′∩Z). Thus y ≥ z. For
every Q ∈ π(Z \ {P}) the line 〈P,Q〉 contains exactly z points of Z and any
two such lines intersect only at {P}. Thus d− 1 = (z − 1)y.

We claim that for every integer t ≥ z + y − 1 we have h1(H, IZ(t)) = 0. Set
{Q1, . . . , Qy} := π(Z\{P}),Dj :=< {P,Qj} > and Sj := Z∩Dj . SinceDj

∼= P1

and card(Sj) = z, for every integer u ≥ z − 1 we have h1(Dj ,ODj (u)(−Sj)) =
0. Thus if t ≥ z + y − 1 we obtain h1(H, IZ(t)) ≤ h1(H, IZ\Sy

(t − 1)) ≤
h1(H, IZ\(Sy∪Sy−1)(t − 2)) ≤ · · · ≤ h1(H, ID1\{P}(t − y + 1)) = 0, proving the
claim.

By the definition of z every homogeneous form onH with degree z−1 vanish-
ing at Z vanishes on eachDj . There are y distinct linesDj , 1 ≤ j ≤ y, and y ≥ z.
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Thus we have h0(H, IZ(z− 1)) = 0. Now we will check that if z ≤ t ≤ z+ y− 2,
then h(Z, t) ≥ z+ (t− z)(z− 1). To check this inequality we may use induction
on t because the case t = z follows from h1(D1,OD1(z)(−S1)) = 0. Set Σ :=
S1∪. . .∪St−z and ∆ := Σ∪St−z+1. Since h1(Dt−z+1,ODt−z+1(t)(−St−z+1)) = 0,
we obtain h(Z, t) ≥ h(∆, t) ≥ h(Σ \ {P}, t − 1) + z ≥ h(Σ, t − 1) + z − 1 and
hence we conclude by induction on t. By using all the inequalities for the integers
h(Z, t) obtained up to now we obtain g ≤ π1(d, 3) at least if z ≥ 4.

Now assume z = 3. To win it would be sufficient to obtain h(Z, t) ≥
min{d, 3t}. We have h(Z, 1) = 3. Fix an integer t ≥ 2 and assume h(Z, t− 1) ≥
min{d, 3t − 3}. Take S ⊂ Z with card(S) = h(Z, t − 1) and set W := Z \ S.
Assume the existence of a line D with card(D∩W ) ≥ 3. Since z = 3 this implies
card(D∩W ) = 3 and D∩S = ∅. Since h1(D,OD(t)(−(D∩W ))) = 0, we obtain
h(Z, t) ≥ h(S ∪ (D ∩W ), t) ≥ h(S, t− 1) + 3, as wanted.

Now assume that there is no such line. First assume the existence of a
conic A with w := card(A ∩ W ) ≥ 6. Since W has no trisecant line, A is
smooth. We would like to imitate the proofs of Case(b) below, but there are the
following differences. First of all, G does not act as the permutation group onW .
Furthermore, if w = card(W ) and C is linearly normal we cannot use the exact
sequence (1) below to conclude. We have h1(A,OA(t)(−(A∩W ))) = max{0, 2t+
1−w}. If w ≥ 7 we just take W ′ ⊆W with card(W ′) = 7 and any two points of
it to obtain h(S∪W ’,t) ≥ h(S, t−1)+2 and h(S∪W ’,t+1) ≥ h(S, t−1)+7 and
then continue with S ∪W ’ instead of S; these inequalities are strong enough to
obtain that the contribution of h(Z, t) and h(Z, t+ 1) to the upper bound for g
obtained using Castelnuovo method because 2 + 7 = 3 + 6.

Now assume w = 6. If there is an another conic, A′, with card(A′∩W ) ≥ 7,we
use A′. Hence from now on we may assume that for every conic A we have
card(A ∩W ) ≤ 6. We apply the proof of Case(c) without making any mention
of the Galois group G; in subcases (c2) and (c3) we will never mention G; in
subcase (c1) just note that if we have the union,S,of different points on an
irreducible plane cubic A(S) with Sing(A(S)) �= ∅, either S ⊂ A(S)reg or S
is not the complete intersection of A(S) with another cubic, because any such
complete intersection either does not contain the singular point of A(S) or it
has at least multiplicity two at the singular point of A(S).

Case (b) . Here we assume that for a general secant line D of C we have
card(D ∩ C) = 2 (i. e. that no 3 points of Z are collinear) but that there is a
conic A ⊂ H with card(A ∩ Z) ≥ 6.

(b1) . First assume Z ⊂ A. If C is linearly normal, then the exact sequence

0 → IC(1) → IC(2) → IZ,H(2) → 0 (1)

gives h0(P3, IC(2)) �= 0, contradicting our assumptions. If C is not linearly nor-
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mal, then C is an isomorphic linear projection of an irreducible non-degenerate
curve Y ⊂ P4 with deg(Y ) = d. Write d = 3m + α with 0 ≤ α ≤ 2. We claim
that pa(Y ) ≤ 3m(m− 1)/2 +mα.

To check the claim we distinguish two cases: the generic hyperplane section
of Y is in linearly general position or not. In the first case the claim follows from
the classical Castelnuovo method. In the second case we are in the case studied
in [2] and in particular if d ≥ 25 we have d = 2k for some integer k and Y is
strange; hence C is strange; but we will not use these informations on d and C.

To check the claim in this case we use the method of part (a). Take a
general hyperplane M of P4 and set W := Y ∩ M . We need to study the
function h(W, t). As in part (a) to check the claim it is sufficient to check that
h(W, t) ≥ h(W, t − 1) + 3 if h0(M, IW (t − 1)) ≥ 3 and that h(W, t) = d if
h0(M, IW (t−1)) ≤ 2. Let m be the number of points of W contained in a plane
of M spanned by points of W ; this number does not depend on the choice of the
plane (linear semi-uniform position introduced in [1]). By assumption we have
m ≥ 4.

First assume m ≥ 5. Take a general P ∈ Yreg. By the generality of P we
may take M with P ∈M . Let C ′ ⊂ P3 be the image of Y under the projection
of Y from P . Since a general secant line to Y is not a trisecant line and P is
general, C ′ is birational to Y , deg(C ′) = d−1 and there is a birational morphism
Y → C ′. Thus pa(Y ) ≤ pa(C ′) and it is sufficient to check that pa(C ′) ≤ π1(d, 3).
Notice that C ′ fits in the case considered in part (a) of the proof with m− 1 as
integer z: the image of a plane through P and 2 other general points of Y is a
general secant line to C ′.

Now assume m = 4. Any three points of W span a plane of M and any
two planes A,A′ of M containing at least 3 points of W have card(A∩A′) ≤ 2.
Notice that any 4 non-collinear points of a plane impose independent conditions
to curves of degree at least 2. Thus we obtain h(W, t) ≥ min{d, h(W, t−1)+t} ≥
min{d, 3t} (induction on t for the last inequality) with strict inequality for t = 2
and 3. Thus in this subcase we obtain pa(Y ) < 3m(m−1)/2+mα. Since Y ∼= C,
the claim concludes the case Z ⊂ A.

(b2) . Now assume w := card(A∩Z) < d. Since we are not in Case(a), any
3 points of Z span H([1]). Thus A is irreducible.

To obtain g ≤ π1(d, 3) it would be sufficient to show that h(Z, t) ≥ min{d, 3t}
for every integer t. We have h(Z, 1) = 3 and h(Z, 2) = 6. We fix an integer
t ≥ 3 and S ⊆ A ∩ Z with card(S) = 6. Since h1(A,OA(t)(−S)) = 0, we have
h(Z, t) ≥ h(Z \S, t− 2)+6. If there is a conic B with card(B ∩ (Z \S)) ≥ 6, we
use B in a similar way to show that h(Z, t) ≥ h(Z \(S∪S′), t−4)+12 with S′ ⊆
B ∩ (Z \ S) and card(S′) = 6. And so on until we obtain a subset S′′ of Z with
e := card(S′′)/6 ∈ N, S′′ contained in e conics, h(Z, t) ≥ h(Z \ S′′, t− 2e) + 6e,
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but every conic contains at most 5 points of Z \ S′′. If card(Z \ S′′) ≥ 9 we use
the same construction using irreducible cubics instead of irreducible conics (see
subcase (c3) below).

Now we assume card(Z \ S′′) ≤ 8. First assume w ≥ 7. Taking instead of
S a subset S′ with card(S′) = 7 we obtain h(Z, t) ≥ h(Z \ S′, t − 2) + 7. Then
using e − 1 conics if e ≥ 2 we obtain h(Z, 2e) ≥ 6e + 2. This is sufficient to
conclude because in this case it is sufficient to get h(Z, 2e+1) ≥ min{d, 6e+4}
and h(Z, 2e + 2) ≥ min{d, 6e + 6}; the first inequality is obtained using a line
and the second one using two conics.

Now assume w = 6. Here we pass directly to Case(c). It is just to handle this
subcase with w = 6 that we allow in Case(c) the existence of a conic containing
6 points of Z.

Case (c) . Here we assume that no 3 points of Z are collinear and that there
is no conic containing at least 7 points of Z.

(c1) . Here we assume that no plane cubic contains at least 10 points of Z.
We have h(Z, t) = 0 for t ≤ min{3, (d− 1)/3}.

Fix an integer t ≥ 3 and any subset of Z with card(S) = 9. There is a unique
cubic curve, A(S), containing S. By assumption (c1) we have A(S) ∩ Z = S.
Since the monodromy group G of the generic hyperplane section is transitive
and S is unique, we have Sing(A(S))∩S = ∅. Hence h0(A(S),OA(S)(t)(−S)) =
deg(OA(S)(t)(−S)) = 3t − 9 if either deg(OA(S)(t)(−S)) > 0 (i.e. t ≥ 4)
or deg(OA(S)(t)(−S)) = 0 (i.e. t = 3) and OA(S)(t)(−S)) not trivial and
h0(A(S),OA(S)(t)(−S)) = 1 if OA(S)(t)(−S)) is trivial. We obtain

h0(H, IZ(t)) ≤ h0(H, IZ\S(t− 3)) + h0(A(S),

OA(S)(t)(−S)) = h0(H, IZ\S(t− 3)) + 3t− 9 + ψ

with ψ = 0 if t ≥ 4 and 0 ≤ ψ ≤ 1 if t = 3.
Then if d ≥ 18 and t ≥ 6 we continue taking any subset S′ of Z \ S with

card(S′) = 9 and the unique plane cubic A(S′) with S′ ⊂ A(S′). By the as-
sumption (c1) we have A(S′)∩Z = S′. Fix a general Σ ⊂ A(S′) with card(Σ) =
h0(A(S′),OA(S′)(t−3)(−S′)). Every curve F ⊂ H with deg(F ) = t−3 and S′∪
Σ ⊂ F contains A(S′). Hence we obtain h0(H, IZ\S(t−3)) ≤ h0(H, IZ\(S∪S′)(t−
6)) + h0(A(S′),OA(S′)(t − 3)(−S′)). We have h0(A(S′),OA(S′)(t − 3)(−S′)) =
3(t− 3) − 9 unless t = 6 and S′ is the complete intersection of S′ with a cubic
curve.

In the latter case we have h0(S′,OS′(t− 3)(−S′)) = 3(t− 3) − 0.
And so on: we continue as in the classical Castelnuovo method using plane
cubics through 9 points of Z instead of lines through 2 points of Z. If t ≡
1(resp.2) mod(3), then in the last step instead of a plane cubic we use a line
(resp. a smooth conic). In this way we obtain g ≤ π1(d, 3).
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(c2) . Here we assume that Z is contained in a plane cubic, T . Since Z does
not contains 7 points on a conic or 3 collinear points, T is irreducible. Hence we
may apply verbatim the proof of [4, p. 96], and obtain g ≤ π1(d, 3).

(c3) . Here we assume that Z is not contained in a plane cubic.
Since h0(H,OH(3)) = 10 this implies d ≥ 10. By our assumption there are

10 points of Z not contained in any cubic. Thus there is S ⊂ Z with card(S) =
9 and a unique cubic A(S) containing S. Again, we obtain h0(H, IZ(t)) ≥
h0(H, IZ\S(t−3))+h0(A(S),OA(S)(t)(−S)) = h0(H, IZ\S(t−3))+3t−9. QED

Proof of Proposition 1. The proof of this result given in [3, §1], in the
case of characteristic zero, works verbatim except the proof of a lemma of
Gieseker (see [3, p.194]). To extend to positive characteristic the proof given
there just use that P1 is irreducible and hence that by [5, Cor. 1.6], for any base
point free linear system on P1 the monodromy of a generic hyperplane section
is transitive ([5, Cor. 1.6]). Alternatively, a far stronger form of this lemma is
proved in arbitrary characteristic in [6], Th. 1 and Th. 2. QED

We do not know if Theorem 1 holds for low d. We did not checked it case
by case because the original question posed to us by G. Korchamaros was for
d = 2f + 1 with f ≥ 3 in characteristic two and the missing case d = 17 fits in
case(a) (subcase z = 3) and case(c) which are the worst cases for our approach.
The bound on g given by Theorem 1 is sharp in arbitrary characteristic for
curves contained in cubic surfaces. We do not know how much it may be im-
proved assuming C not contained in a cubic surface but without assuming (as
in Proposition 1) that C is contained in a low degree surface.
In several subcases the proof of Theorem 1 gives far better bounds for g. The
difficult cases (for our method) are case(a) (subcase z = 3) and case(c) (or
case(b) with w = 6) and in these cases we do not know how to improve our
bound.
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