Space curves not contained in low degree surfaces in positive characteristic

E. Ballico*
Dept. of Mathematics, University of Trento, 38050 Povo (TN) Italy, fax: +390461881624
ballico@science.unitn.it

Received: 2 May 2000; accepted: 3 October 2000.
Abstract. Let $C \subset \mathbf{P}^{3}$ be an integral projective curve not contained in a quadric surface. Set $d:=\operatorname{deg}(C), g:=p_{a}(C)$,

$$
\pi_{1}(d, 3):=\left\{\begin{array}{cc}
d^{2} / 6-d / 2+1 & \text { if } d / 3 \in \mathbf{Z} \\
d^{2} / 6-d / 2+1 / 3 & \text { if } d / 3 \notin \mathbf{Z}
\end{array}\right.
$$

Here we prove in arbitrary characteristic that $g \leq \pi_{1}(d, 3)$ if $d \geq 25$.
Keywords: integral projective curve; singular space curve; arithmetic genus; quadric surface; plane section: hyperplane section: Hilbert function.

MSC 2000 classification: 14 H 50

Introduction

In characteristic zero using heavily the Uniform Position Principle D. Eisenbud and J. Harris proved the following result ([4, Th. 3.13]) (classically due to Halphen).

Theorem 1. Let $C \subset \mathbf{P}^{3}$ be an integral projective curve not contained in a quadric surface. Set $d:=\operatorname{deg}(C), g:=p_{a}(C)$,

$$
\pi_{1}(d, 3):=\left\{\begin{array}{cc}
d^{2} / 6-d / 2+1 & \text { if } d / 3 \in \mathbf{Z} \\
d^{2} / 6-d / 2+1 / 3 & \text { if } d / 3 \notin \mathbf{Z}
\end{array}\right.
$$

Assume $d \geq 25$. Then $g \leq \pi_{1}(d, 3)$.
The main aim of this paper is to prove Theorem 1 in arbitrary characteristic. If we may apply the Uniform Position Principle to the generic hyperplane section of C, then the proof of [4, Th. 3.13], works verbatim. By [5, Cor. 1.8], if the monodromy group of the generic hyperplane section, G, of C contains the alternating group A_{d}, then the Uniform Position Principle holds for the general plane section of C.

[^0]Unfortunately, we are interested in a case which (if it exists) has as Galois group of the generic hyperplane section the third class of groups in the statement of [5, Th. 3.4].

In the last part of section two we will prove (in arbitrary characteristic) the following result proved by J.Harris in characteristic zero ([3]).

Proposition 1. Fix integers d, k with $k \geq 2$ and $d>k(k-1)$.
Set $n:=[(d-1) / k]+1, \varepsilon:=n k-d$ and $\pi(d, k):=d^{2} / 2 k+(k-4) d / 2+1-\varepsilon(k-$ $\varepsilon-1+(\varepsilon / k))$. Let $C \subset \mathbf{P}^{3}$ an integral curve with $\operatorname{deg}(C)=d$ and C contained in an integral surface of degree k. Then $p_{a}(C) \leq \pi(d, k)$.
Notice that the integer ε in the statement of Prop. 1 is the unique integer with $0 \leq \varepsilon \leq k-1$ and $\varepsilon \equiv-d \bmod (k)$.

1 The proofs

Now we will prove Theorem 1 and Proposition 1.
Proof of Theorem 1. Let $H \subset \mathbf{P}^{3}$ be a general plane. Set $Z:=C \cap H$. Let G be the monodromy group of the generic plane section of C. By [5, Cor. 1.6], and its proof, G is 2 -transitive and it is 3 -transitive if and only if the general secant line to C intersects C only at two points. By Castelnuovo method ([4, Ch. III]) to find a "good" upper bound for g it is sufficient to find a "good" upper bound for all integers $h(Z, t):=h^{0}\left(H, \mathbf{O}_{Z}(t)\right)-h^{0}\left(H, \mathbf{I}_{Z}(t)\right)$. We distinguish 3 cases and several subcases.

Case (a). Here we assume that for a general secant line D of C we have $z:=\operatorname{card}(D \cap C) \geq 3$. By [1] Z is in linear semi-general position, i. e. for any two points P, Q of Z the line $\langle P, Q\rangle$ contains exactly z points of Z. Fix any $P \in Z$ and any line $D \subset H$ with D spanned by $Z \cap D$ and $P \notin D$. Thus $\operatorname{card}(Z \cap D)=z$. Let $\pi: \mathbf{P}^{2} \backslash\{P\} \rightarrow D$ be the linear projection. Set $y:=\operatorname{card}(\pi(Z \backslash\{P\}))$. For every line D^{\prime} with $P \notin D^{\prime}$ and D^{\prime} spanned by $D^{\prime} \cap Z, \pi \mid D^{\prime}$ induces a bijection of $D^{\prime} \cap Z$ with $\pi\left(D^{\prime} \cap \mathrm{Z}\right)$. Thus $y \geq z$. For every $Q \in \pi(Z \backslash\{P\})$ the line $\langle P, Q\rangle$ contains exactly z points of Z and any two such lines intersect only at $\{P\}$. Thus $d-1=(z-1) y$.

We claim that for every integer $t \geq z+y-1$ we have $h^{1}\left(H, \mathbf{I}_{Z}(t)\right)=0$. Set $\left\{Q_{1}, \ldots, Q_{y}\right\}:=\pi(Z \backslash\{P\}), D_{j}:=<\left\{P, Q_{j}\right\}>$ and $S_{j}:=Z \cap D_{j}$. Since $D_{j} \cong \mathbf{P}^{1}$ and $\operatorname{card}\left(S_{j}\right)=z$, for every integer $u \geq z-1$ we have $h^{1}\left(D_{j}, \mathbf{O}_{D_{j}}(u)\left(-S_{j}\right)\right)=$ 0 . Thus if $t \geq z+y-1$ we obtain $h^{1}\left(H, \mathbf{I}_{Z}(t)\right) \leq h^{1}\left(H, \mathbf{I}_{Z \backslash S_{y}}(t-1)\right) \leq$ $h^{1}\left(H, \mathbf{I}_{Z \backslash\left(S_{y} \cup S_{y-1}\right)}(t-2)\right) \leq \cdots \leq h^{1}\left(H, \mathbf{I}_{D_{1} \backslash\{P\}}(t-y+1)\right)=0$, proving the claim.

By the definition of z every homogeneous form on H with degree $z-1$ vanishing at Z vanishes on each D_{j}. There are y distinct lines $D_{j}, 1 \leq j \leq y$, and $y \geq z$.

Thus we have $h^{0}\left(H, \mathbf{I}_{Z}(z-1)\right)=0$. Now we will check that if $z \leq t \leq z+y-2$, then $h(Z, t) \geq z+(t-z)(z-1)$. To check this inequality we may use induction on t because the case $t=z$ follows from $h^{1}\left(D_{1}, \mathbf{O}_{D_{1}}(z)\left(-S_{1}\right)\right)=0$. Set $\Sigma:=$ $S_{1} \cup \ldots \cup S_{t-z}$ and $\Delta:=\Sigma \cup S_{t-z+1}$. Since $h^{1}\left(D_{t-z+1}, \mathbf{O}_{D_{t-z+1}}(t)\left(-S_{t-z+1}\right)\right)=0$, we obtain $h(Z, t) \geq h(\Delta, t) \geq h(\Sigma \backslash\{P\}, t-1)+z \geq h(\Sigma, t-1)+z-1$ and hence we conclude by induction on t. By using all the inequalities for the integers $h(Z, t)$ obtained up to now we obtain $g \leq \pi_{1}(d, 3)$ at least if $z \geq 4$.

Now assume $z=3$. To win it would be sufficient to obtain $h(Z, t) \geq$ $\min \{d, 3 t\}$. We have $h(Z, 1)=3$. Fix an integer $t \geq 2$ and assume $h(Z, t-1) \geq$ $\min \{d, 3 t-3\}$. Take $S \subset Z$ with $\operatorname{card}(S)=h(Z, t-1)$ and set $W:=Z \backslash S$. Assume the existence of a line D with $\operatorname{card}(D \cap W) \geq 3$. Since $z=3$ this implies $\operatorname{card}(D \cap W)=3$ and $D \cap S=\emptyset$. Since $h^{1}\left(D, \mathbf{O}_{D}(t)(-(D \cap W))\right)=0$, we obtain $h(Z, t) \geq h(S \cup(D \cap W), t) \geq h(S, t-1)+3$, as wanted.

Now assume that there is no such line. First assume the existence of a conic A with $w:=\operatorname{card}(A \cap W) \geq 6$. Since W has no trisecant line, A is smooth. We would like to imitate the proofs of Case(b) below, but there are the following differences. First of all, G does not act as the permutation group on W. Furthermore, if $w=\operatorname{card}(W)$ and C is linearly normal we cannot use the exact sequence (1) below to conclude. We have $h^{1}\left(A, \mathbf{O}_{A}(t)(-(A \cap W))\right)=\max \{0,2 t+$ $1-w\}$. If $w \geq 7$ we just take $W^{\prime} \subseteq W$ with $\operatorname{card}\left(W^{\prime}\right)=7$ and any two points of it to obtain $h\left(S \cup W^{\prime}, t\right) \geq h(S, t-1)+2$ and $h\left(S \cup W^{\prime}, t+1\right) \geq h(S, t-1)+7$ and then continue with $S \cup W^{\prime}$ instead of S; these inequalities are strong enough to obtain that the contribution of $h(Z, t)$ and $h(Z, t+1)$ to the upper bound for g obtained using Castelnuovo method because $2+7=3+6$.

Now assume $w=6$. If there is an another conic, A^{\prime}, with $\operatorname{card}\left(A^{\prime} \cap W\right) \geq 7$, we use A^{\prime}. Hence from now on we may assume that for every conic A we have $\operatorname{card}(A \cap W) \leq 6$. We apply the proof of Case (c) without making any mention of the Galois group G; in subcases $(c 2)$ and $(c 3)$ we will never mention G; in subcase ($c 1$) just note that if we have the union, S, of different points on an irreducible plane cubic $A(S)$ with $\operatorname{Sing}(A(S)) \neq \emptyset$, either $S \subset A(S)_{\text {reg }}$ or S is not the complete intersection of $A(S)$ with another cubic, because any such complete intersection either does not contain the singular point of $A(S)$ or it has at least multiplicity two at the singular point of $A(S)$.

Case (b). Here we assume that for a general secant line D of C we have $\operatorname{card}(D \cap C)=2(i$. e. that no 3 points of Z are collinear) but that there is a conic $A \subset H$ with $\operatorname{card}(A \cap Z) \geq 6$.
(b1) . First assume $Z \subset A$. If C is linearly normal, then the exact sequence

$$
\begin{equation*}
0 \rightarrow \mathbf{I}_{C}(1) \rightarrow \mathbf{I}_{C}(2) \rightarrow \mathbf{I}_{Z, H}(2) \rightarrow 0 \tag{1}
\end{equation*}
$$

gives $h^{0}\left(\mathbf{P}^{3}, \mathbf{I}_{C}(2)\right) \neq 0$, contradicting our assumptions. If C is not linearly nor-
mal, then C is an isomorphic linear projection of an irreducible non-degenerate curve $Y \subset \mathbf{P}^{4}$ with $\operatorname{deg}(Y)=d$. Write $d=3 m+\alpha$ with $0 \leq \alpha \leq 2$. We claim that $p_{a}(Y) \leq 3 m(m-1) / 2+m \alpha$.

To check the claim we distinguish two cases: the generic hyperplane section of Y is in linearly general position or not. In the first case the claim follows from the classical Castelnuovo method. In the second case we are in the case studied in [2] and in particular if $d \geq 25$ we have $d=2^{k}$ for some integer k and Y is strange; hence C is strange; but we will not use these informations on d and C.

To check the claim in this case we use the method of part (a). Take a general hyperplane M of \mathbf{P}^{4} and set $W:=Y \cap M$. We need to study the function $h(W, t)$. As in part (a) to check the claim it is sufficient to check that $h(W, t) \geq h(W, t-1)+3$ if $h^{0}\left(M, \mathbf{I}_{W}(t-1)\right) \geq 3$ and that $h(W, t)=d$ if $h^{0}\left(M, \mathbf{I}_{W}(t-1)\right) \leq 2$. Let m be the number of points of W contained in a plane of M spanned by points of W; this number does not depend on the choice of the plane (linear semi-uniform position introduced in [1]). By assumption we have $m \geq 4$.

First assume $m \geq 5$. Take a general $P \in Y_{\text {reg }}$. By the generality of P we may take M with $P \in M$. Let $C^{\prime} \subset \mathbf{P}^{3}$ be the image of Y under the projection of Y from P. Since a general secant line to Y is not a trisecant line and P is general, C^{\prime} is birational to $Y, \operatorname{deg}\left(C^{\prime}\right)=d-1$ and there is a birational morphism $Y \rightarrow C^{\prime}$. Thus $p_{a}(Y) \leq p_{a}\left(C^{\prime}\right)$ and it is sufficient to check that $p_{a}\left(C^{\prime}\right) \leq \pi_{1}(d, 3)$. Notice that C^{\prime} fits in the case considered in part (a) of the proof with $m-1$ as integer z : the image of a plane through P and 2 other general points of Y is a general secant line to C^{\prime}.

Now assume $m=4$. Any three points of W span a plane of M and any two planes A, A^{\prime} of M containing at least 3 points of W have $\operatorname{card}\left(A \cap A^{\prime}\right) \leq 2$. Notice that any 4 non-collinear points of a plane impose independent conditions to curves of degree at least 2 . Thus we obtain $h(W, t) \geq \min \{d, h(W, t-1)+t\} \geq$ $\min \{d, 3 t\}$ (induction on t for the last inequality) with strict inequality for $t=2$ and 3 . Thus in this subcase we obtain $p_{a}(Y)<3 m(m-1) / 2+m \alpha$. Since $Y \cong C$, the claim concludes the case $Z \subset A$.
(b2). Now assume $w:=\operatorname{card}(A \cap Z)<d$. Since we are not in $\operatorname{Case}(a)$, any 3 points of Z span $H([1])$. Thus A is irreducible.

To obtain $g \leq \pi_{1}(d, 3)$ it would be sufficient to show that $h(Z, t) \geq \min \{d, 3 t\}$ for every integer t. We have $h(Z, 1)=3$ and $h(Z, 2)=6$. We fix an integer $t \geq 3$ and $S \subseteq A \cap Z$ with $\operatorname{card}(S)=6$. Since $h^{1}\left(A, \mathbf{O}_{A}(t)(-S)\right)=0$, we have $h(Z, t) \geq h(Z \backslash S, t-2)+6$. If there is a conic B with $\operatorname{card}(B \cap(Z \backslash S)) \geq 6$, we use B in a similar way to show that $h(Z, t) \geq h\left(Z \backslash\left(S \cup S^{\prime}\right), t-4\right)+12$ with $S^{\prime} \subseteq$ $B \cap(Z \backslash S)$ and $\operatorname{card}\left(S^{\prime}\right)=6$. And so on until we obtain a subset $S^{\prime \prime}$ of Z with $e:=\operatorname{card}\left(S^{\prime \prime}\right) / 6 \in \mathbf{N}, S^{\prime \prime}$ contained in e conics, $h(Z, t) \geq h\left(Z \backslash S^{\prime \prime}, t-2 e\right)+6 e$,
but every conic contains at most 5 points of $Z \backslash S^{\prime \prime}$. If $\operatorname{card}\left(Z \backslash S^{\prime \prime}\right) \geq 9$ we use the same construction using irreducible cubics instead of irreducible conics (see subcase ($c 3$) below).

Now we assume $\operatorname{card}\left(Z \backslash S^{\prime \prime}\right) \leq 8$. First assume $w \geq 7$. Taking instead of S a subset S^{\prime} with $\operatorname{card}\left(S^{\prime}\right)=7$ we obtain $h(Z, t) \geq h\left(Z \backslash S^{\prime}, t-2\right)+7$. Then using $e-1$ conics if $e \geq 2$ we obtain $h(Z, 2 e) \geq 6 e+2$. This is sufficient to conclude because in this case it is sufficient to get $h(Z, 2 e+1) \geq \min \{d, 6 e+4\}$ and $h(Z, 2 e+2) \geq \min \{d, 6 e+6\}$; the first inequality is obtained using a line and the second one using two conics.

Now assume $w=6$. Here we pass directly to Case (c). It is just to handle this subcase with $w=6$ that we allow in $\operatorname{Case}(c)$ the existence of a conic containing 6 points of Z.

Case (c). Here we assume that no 3 points of Z are collinear and that there is no conic containing at least 7 points of Z.
$(\mathrm{c} 1)$. Here we assume that no plane cubic contains at least 10 points of Z. We have $h(Z, t)=0$ for $t \leq \min \{3,(d-1) / 3\}$.

Fix an integer $t \geq 3$ and any subset of Z with $\operatorname{card}(S)=9$. There is a unique cubic curve, $A(S)$, containing S. By assumption $(c 1)$ we have $A(S) \cap Z=S$. Since the monodromy group G of the generic hyperplane section is transitive and S is unique, we have $\operatorname{Sing}(A(S)) \cap S=\emptyset$. Hence $h^{0}\left(A(S), \mathbf{O}_{A(S)}(t)(-S)\right)=$ $\operatorname{deg}\left(\mathbf{O}_{A(S)}(t)(-S)\right)=3 t-9$ if either $\operatorname{deg}\left(\mathbf{O}_{A(S)}(t)(-S)\right)>0$ (i.e. $t \geq 4$) or $\operatorname{deg}\left(\mathbf{O}_{A(S)}(t)(-S)\right)=0$ (i.e. $\left.t=3\right)$ and $\left.\mathbf{O}_{A(S)}(t)(-S)\right)$ not trivial and $h^{0}\left(A(S), \mathbf{O}_{A(S)}(t)(-S)\right)=1$ if $\left.\mathbf{O}_{A(S)}(t)(-S)\right)$ is trivial. We obtain

$$
\begin{aligned}
h^{0}\left(H, \mathbf{I}_{Z}(t)\right) & \leq h^{0}\left(H, \mathbf{I}_{Z \backslash S}(t-3)\right)+h^{0}(A(S) \\
\left.\mathbf{O}_{A(S)}(t)(-S)\right) & =h^{0}\left(H, \mathbf{I}_{Z \backslash S}(t-3)\right)+3 t-9+\psi
\end{aligned}
$$

with $\psi=0$ if $t \geq 4$ and $0 \leq \psi \leq 1$ if $t=3$.
Then if $d \geq 18$ and $t \geq 6$ we continue taking any subset S^{\prime} of $Z \backslash S$ with $\operatorname{card}\left(S^{\prime}\right)=9$ and the unique plane cubic $A\left(S^{\prime}\right)$ with $S^{\prime} \subset A\left(S^{\prime}\right)$. By the assumption $(c 1)$ we have $A\left(S^{\prime}\right) \cap Z=S^{\prime}$. Fix a general $\Sigma \subset A\left(S^{\prime}\right)$ with card $(\Sigma)=$ $h^{0}\left(A\left(S^{\prime}\right), \mathbf{O}_{A\left(S^{\prime}\right)}(t-3)\left(-S^{\prime}\right)\right)$. Every curve $F \subset H$ with $\operatorname{deg}(F)=t-3$ and $S^{\prime} \cup$ $\Sigma \subset F$ contains $A\left(S^{\prime}\right)$. Hence we obtain $h^{0}\left(H, \mathbf{I}_{Z \backslash S}(t-3)\right) \leq h^{0}\left(H, \mathbf{I}_{Z \backslash\left(S \cup S^{\prime}\right)}(t-\right.$ $6))+h^{0}\left(A\left(S^{\prime}\right), \mathbf{O}_{A\left(S^{\prime}\right)}(t-3)\left(-S^{\prime}\right)\right)$. We have $h^{0}\left(A\left(S^{\prime}\right), \mathbf{O}_{A\left(S^{\prime}\right)}(t-3)\left(-S^{\prime}\right)\right)=$ $3(t-3)-9$ unless $t=6$ and S^{\prime} is the complete intersection of S^{\prime} with a cubic curve.

In the latter case we have $h^{0}\left(S^{\prime}, \mathbf{O}_{S^{\prime}}(t-3)\left(-S^{\prime}\right)\right)=3(t-3)-0$.
And so on: we continue as in the classical Castelnuovo method using plane cubics through 9 points of Z instead of lines through 2 points of Z. If $t \equiv$ 1 (resp. 2$) \bmod (3)$, then in the last step instead of a plane cubic we use a line (resp. a smooth conic). In this way we obtain $g \leq \pi_{1}(d, 3)$.
(c2). Here we assume that Z is contained in a plane cubic, T. Since Z does not contains 7 points on a conic or 3 collinear points, T is irreducible. Hence we may apply verbatim the proof of [4, p. 96], and obtain $g \leq \pi_{1}(d, 3)$.
(c3). Here we assume that Z is not contained in a plane cubic.
Since $h^{0}\left(H, \mathbf{O}_{H}(3)\right)=10$ this implies $d \geq 10$. By our assumption there are 10 points of Z not contained in any cubic. Thus there is $S \subset Z$ with $\operatorname{card}(S)=$ 9 and a unique cubic $A(S)$ containing S. Again, we obtain $h^{0}\left(H, \mathbf{I}_{Z}(t)\right) \geq$ $h^{0}\left(H, \mathbf{I}_{Z \backslash S}(t-3)\right)+h^{0}\left(A(S), \mathbf{O}_{A(S)}(t)(-S)\right)=h^{0}\left(H, \mathbf{I}_{Z \backslash S}(t-3)\right)+3 t-9$. \quad QED

Proof of Proposition 1. The proof of this result given in [3, $\S 1]$, in the case of characteristic zero, works verbatim except the proof of a lemma of Gieseker (see [3, p.194]). To extend to positive characteristic the proof given there just use that \mathbf{P}^{1} is irreducible and hence that by [5, Cor. 1.6], for any base point free linear system on \mathbf{P}^{1} the monodromy of a generic hyperplane section is transitive ([5, Cor. 1.6]). Alternatively, a far stronger form of this lemma is proved in arbitrary characteristic in [6], Th. 1 and Th. 2. QED 2

We do not know if Theorem 1 holds for low d. We did not checked it case by case because the original question posed to us by G. Korchamaros was for $d=2^{f}+1$ with $f \geq 3$ in characteristic two and the missing case $d=17$ fits in case (a) (subcase $z=3$) and case (c) which are the worst cases for our approach. The bound on g given by Theorem 1 is sharp in arbitrary characteristic for curves contained in cubic surfaces. We do not know how much it may be improved assuming C not contained in a cubic surface but without assuming (as in Proposition 1) that C is contained in a low degree surface.
In several subcases the proof of Theorem 1 gives far better bounds for g. The difficult cases (for our method) are case(a) (subcase $z=3$) and case(c) (or case(b) with $w=6$) and in these cases we do not know how to improve our bound.

Acknowledgements. I want to thank Gabor Korchmaros for stimulating questions.

References

[1] E. Ballico: On singular curves in the case of positive characteristic, Math. Nachr. 141 (1989), 267-273.
[2] E. Ballico: On the general hyperplane section of a curve in char p, Rend. Ist. Mat. Univ. Trieste 22 (1990), 117-125.
[3] J. Harris: The genus of space curves, Math. Ann. 249 (1980), 191-204.
[4] J. Harris (with the collaboration of D. Eisenbud): Curves in projective spaces, Les Presses de l'Université de Montréal, 1982.
[5] J. Rathmann: The uniform position principle for curves in characteristic p, Math. Ann. 276 (1987), 565-579.
[6] R. Re: Multiplication of sections and Clifford bounds for stable curves, Comm. in Algebra 26 (1998), 1931-1944.

[^0]: *This research was partially supported by MURST (Italy).

