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Abstract. In graph theory one often deals with 1-graphs (i. e.: given two vertices u and v,
there is at last one arc that incides from w to v) of order m = p™, where p and n are natural
number greater than 1. These are regular graphs of degree p and diameter n, which have a
certain importance in some problems of telecommunication (cf. [2], p.229: EXAMPLE), since
vertices and arcs can respectively represent stations and one-way connections of a telecommu-
nication net-work.

It seems that the first construction of these graphs, with m = 2", is due to Ir. K. Posthumus,
who stated a very interesting conjecture, concerning some cycles of digits 0 or 1, proved in [1]
by N. G. De Bruijn.

In the study of these graphs the condition m = p” is heavily relied on. In this paper we adapt
that construction to the case in which p"~' < m < p™; so we find again several interesting
properties of the previous particular case.

Among other things, we get regular 1-graphs of degree p, such that for any two different ver-
tices w and v there exists at least a path from u to v of length less than, or equal to, n.

The research here reported has been motivated by a problem brought to my attention by
G. Cancellieri.
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Introduction

We shall deal only with natural numbers, thus we shall only use for them
the terms “integer” or “number”.

Now, given a number m > 2, let [[0,m—1]] be the set {0,...,m-1} of the
numbers smaller than m!. Furthermore, let us consider two numbers p and n
such that p"~1 < m < p".

If m = p", then we can give [[0, m—1]] a graph structure in a very simple way.
In fact if we represent the numbers in basis p, then any element of [[0, p"-1]] is
given by a sequence tyt,_1 - - - tat1 of n integers less than p. Thus we can associate
to any such t,t,_1---tot1 the p elements ¢, ---t;t (where t = 0,...,p-1); as
a consequence, t,t,_1---toty is associated just to the p elements tt,t,_1---ts.
Hence [[0, p"-1]] becomes a regular 1-graph of degree p. Moreover, it is obvious

'More generally, if @ and b are numbers such that a < b, then [[a, b]] will be the set of the
number z such that a <z <b.
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that, if v and v are different elements belonging to [[0,p"~1]], then one can
go from u to v through a path of length less than or equal to n. Furthermore
the diameter of this graph is n, since it is clear that, if t; # t, then from
tptn_1---tot1 to the constant n-ple t-- -t there is a distance equal to n.

The recalled construction has several interesting practical applications. In
fact vertices and arcs of the previous graph can respectively represent stations
and one-way connections of a telecommunication net-work. Anyway, a net-work
could have a number of stations which is different from a power of an integer;
thus it is useful to consider the more general case in which p"~! < m < p".
To this end let the symbols “+7, “—” and “.” represent the usual operations
modulo m. Moreover, if a is a natural number less than m, let —a be the
opposite of a with respect to +. At the same time let the symbols “+7, “-”
and “” represent the usual arithmetical operations. In our formulas however we
shall omit almost always the symbol “.”.

1 On some particular 1-graphs
Obviously, if m = p™, then one has:
tp—1---lit =lplp—1---lol1-p+t (1)

Equality (1) suggests us to study also in the case p"~! < m < p" the graph G
whose vertices are the elements of [[0,m~1]] and whose arcs connect any vertex
u to the p elements of the following set:

flw)={u-pu-p+1,...;u-p+(p—1)}

Then p arcs incide from any vertex of G, and G has mp arcs. We shall say that
G is a “generalized Posthumus graph”.

Now we can associate to the arc from the vertex u to the vertex u-p 4+ r
(with 0 < r < p) the number up+r. In such a manner we determine a function
from the set of the mp arcs into the set [[0, mp-1]].

This function is surjective and hence it is bijective too. In fact whenever
n € [[0,mp-1]], one has n = gp+r, with r < p-1; hence ¢ € [[0,m-1]] and n
corresponds to the arc from ¢ to g -p + r.

Moreover, the mp arcs of G individually incide in a cyclic order and in
sequence to the m vertices of G. Thus p arcs incide to any vertex of G. This
fact is stated in a more precise way in the following remark.

Remark 1. Given a vertex v, in order to determine a vertex u such that
there is an arc from u to v, let us fix an integer ¢ < p—1. Then we can consider
the numbers u; and r; such that r; < p—1 and v+im = u;p+r;.
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Obviously, since ¢ < p—1 and v < m, we have that v+im < pm, hence u; is a
number smaller than m. Moreover u; « p 4+ r; = v, hence an arc incides from u;
to v. As a consequence, since one has u; < u;» whenever i < 4" then exactly p
arcs incide to v.

In particular, if m = pq, then both v+im and v+(i+1)m have the same rest
with respect to the division by p. As a consequence, in this case the numbers r
is the same for every i < p—1 and u; = ug+iq. O

Now let us consider the function F' that associates to every non empty subset
H CJ[0,m-1]] the set Uyem f(u).

It is obvious that if we consider two vertices v and u+1 then, since (u41)-p =
u - p—+ p we have:

F{u,u+1} = {u-p,u-p+1,...,u-p+(p—1),u-p+p, u-p+p+1,...,u-p+2p—1}.

Therefore, if H is a set of h consecutive vertices starting from wu, and hp < m,
then F'H is a set of hp consecutive vertices starting from wu - p; in particular,
F[[0, h-1]] = [[0, hp—1]]. On the contrary, if m < hp, then FH = [[0, m-1]].
Hence, if h < m, then [[0,h-1]] C F[[0, h—1]]. Furthermore, for a fixed vertex u,
by iterating F' we have that, if ¢ is a number such that m < p° then F{u} =
[[0,m—1]]; on the other hand, if p¢ < m, then F{u} has exactly p® consecutive
vertices starting from wu - p©.

Theorem 1. G is a reqular and strongly connected 1-graph of degree p and
diameter n.

PROOF. In fact, since m < p", we have F"{u} = [[0, m-1]] for any vertex
u. Thus for any two vertices u and v there exists at least a path from u to v
having at most n elements. Moreover, {0} C F{0} C --- Cc F*~1{0} c F"{0}
= [[0,m-1]], thus F""1{0} # [[0,m-1]]; hence there are some vertices whose
distance from 0 is n. These properties tell us that G is strongly connected and
the diameter §(G) is n.

Furthermore, since from any vertex of G exactly p arcs incide and to any
vertex of G exactly p arcs incide from p different vertices, then G is a regular
1-graph of degree p. QED

Now let ¢ be the involution that maps any u € [[0, m~1]] into the element
¢(u) := m-1-u = —1 — u. Thus we have a kind of “symmetry” on [[0, m-1]],
since (u,v) is an arc of G if and only if (¢(u), ¢(v)) is an arc of G. Indeed if
(u,v) is an arc, then v = u - p 4 ¢, where ¢ € [[0, p-1]]. Hence we have:

¢p)=—1—(u-p+t)=p—p—1l—u-p—t=
=(=l—=u)p+p—1—t=0(u) p+ (p-1-t).

Since 0 < p-1-t < p-1, the assertion immediately follows.
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The above property ensures that ¢ is an automorphism of the 1-graph G. In
general, it is difficult to describe all the automorphisms of G. However, if m = p™
this is very simple, since one can represent the numbers in basis p. Indeed, if g is
a permutation of the set of the numbers smaller than p and if ¢ is the map that
to any tp_1tn—o - - to € [[0, p"—1]] associates the number g(t,,—1)g(tn—2) - g(to),
then v is an automorphism of this graph, since both (t,—1tp—2 - - to, tn—2- - tot)
and (g(tn—1)g(tn—2)---9g(to), g(tn—2)---g(to)g(t)) are arcs. It is easily verified
that the maps of this type are the only automorphisms of this graph.

Through G one can construct several other regular 1-graphs of degree p and di-
ameter not higher than n, such that their vertices are the elements of [[0, m—1]].
In fact f(0) = [[0,p-1]] and f(m-1) = [[m-p, m—1]]. Therefore 0 and m-1 are
loop vertices of G. Moreover, since p < m, one has m-1 ¢ f(0) and 0 ¢ f(m-1).
Thus the ordered pairs (0,m-1) and (m-1,0) are not arcs of G. Consequently,
if & is the set of the loop vertices of G, then one can give & a structure of
regular 1-graph of degree 1 in such a manner that, if the loops of G are replaced
by the arcs of &, then G is transformed into another strongly connected and
regular 1-graph G’ of degree p and diameter not higher than n?.

If m =4 and p = 3, so that §(G) = n = 2, we can give & a structure of
regular 1-graph of degree 1, in such a manner that the diameter of G’ is 1. In fact
it is easily verified that in this case all the vertices of G are loop vertices. Thus
we can take (0,3),(3,0),(1,2) and (2,1) as the arcs of &. Therefore — since
the other arcs of G are (0,1),(1,0),(0,2),(2,0),(1,3),(3,1),(2,3) and (3,2) —
if u and v are distinct elements of {0, 1,2, 3}, then (u,v) is an arc of G’. Hence

5(G') =1.

2 On the loop vertices of G

In this section we shall determine the loop vertices of G. If m = p™ and if
one represents the elements of [[0,p"-1]] in basis p, then the loop vertices are
the constant n-plest-- -t (t < p-1); because t,t,—1 - -tot; = ty,—1---tat1t if and
only ift, =t,_1 =--- =t; = t. In the general case let us consider the following
m-modular equation in z: x « p 4+t = z, with ¢ € [[0, m—1]], which is equivalent
to the following one:

(p-1) -2 +1=0 2)

Obviously, a loop vertex of G is a solution of (2) such that ¢ is smaller than p.

2For example, one can give S the structure of 1-graph in which the vertices different from
0 and from m-1 are the only loop vertices. In the meantime (0, m-1) and (m-1,0) are the
only arcs which are not loops.
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Now let d be the greatest common divisor of p—1 and m. Moreover let a :=
(p-1)/d and m :=m/d.

Remark 2. The following properties of modulo m arithmetic are obvious:

i) The solutions of (p-1) - x = 0 are the elements of [[0, m—1]] of the type
cm, where ¢ € [[0, d-1]].

ii) For a fixed t € [[0,m-1]], if v is a particular solution of (2), then the
solutions of (2) are of type v 4 vg, where vy is a solution of (p-1)-x=0. O

Remark 3. The solutions of (2) are the elements v € [[0, m—1]] such that
m divides (p—1)v+t. Hence, if the above equation (2) has a solution, then this
equation is of the following type:

(da) -2 +db=0, 3)

where b is a number less than m.

Now a number v smaller than m is a solution of (3) if and only if m is a
divisor of dav+db; thus, since m = dm, v is a solution of (3) if and only if m is
a divisor of aguv+b. O
Since a and m are relative primes, let ¢’ be the unique number smaller than m
such that aa’ =1 (mod m). Thus 0 = —aad'+1 (mod m).

We have the following

Theorem 2. If b is a number less than m, then —a' - b is a particular
solution of (p-1) -z +db=0.

PROOF. By Remark 3, we have only to verify that m is a divisor of —a a’b+b.

To this purpose it is sufficient to observe that, since 0 = —ad/+1 (mod m), m
is a divisor —a a/+1.

Theorem 3. The loop vertices of G are all the elements of [[0,m—1]] of the
type —a’ -b+ cm, where b € [[0, (p-1)/d]] and ¢ € [[0,d-1]]. Moreover, G admits
exactly p—1+d loops.

PrOOF. The first part is an immediate consequence of Remark 2 and of
Theorem 2.

Now, since b can assume (p-1)/d+1 values and ¢ can assume d values, then
G admits exactly p—1+d loops.

Corollary 1. If d is a nontrivial divisor of m, then all the elements of
[[0, m—-1]] are loop vertices if and only if p = m+1-d.

3 A generalization and concluding remarks

We can give a simple generalization of the previous construction of genera-
lized Posthumus graphs. Indeed we can consider the 1-graph G’ whose vertices
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are the elements of [[0,m-1]] and whose arcs connect any element u € [[0, m—1]]
with the p elements of f'(u) ={u-p+ku-p+1+k,...,u-p+ (p-1)+ k}.

Remark 4. It is clear that the loop vertices of G’ are the solution of the
equation (2) in section 3, with t € {k,1 4+ k, ..., (p-1) + k}.

Moreover (by the previous remarks) we have that if ¢ is a number such that
p¢ < m and if F’ is the function that associates to every non empty subset H
of [[0,m-1]] the set Uyem f/'(u) then, for any u € [[0,m~-1]], F'°(u) has exactly
p° consecutive elements, otherwise F’¢(u) coincides with ([0, m-1]].

In particular, if n is the smallest natural number such that m < p", and u
is a loop vertex, then we have (cf. the proof of Theorem 1, where u = 0) {u} C
F'(u) C --- C F™"Yu) € F™(u) = [[0,m-1]], hence F"1(u) # [[0,m-1]].
Thus G’ is a regular and strongly connected 1-graph whose diameter is n. [

We conclude with the following theorem that generalizes Theorem 3. Here
d, m, a and d are the same as in section 3.

Theorem 4. The loop vertices of G’ are the elements of [[0,m-1]] of type
—a' - b4 cm, where ¢ € [[0,d-1]] and b is a number such that db € € {k,1+
ky...,(p-1) + k}.

If d is a divisor of k, then G’ has p—1+d loops; otherwise, G’ has p—1 loops.

PROOF. The first part of the proof is an immediate consequence of the above
results; the second one depends on the fact that, given a divisor d of p—1 and
a set H of p consecutive numbers with minimum element k, if k is a multiple
of d, then in H there are [(p—1)/d]+1 multiple of d; otherwise in H there are
(p-1)/d multiples of d. QED

Let us remark that the second part of Theorem 4 can be useful in practical

applications. In fact the loops of a graph somehow are superfluous, since they
do not determine effective connections.
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