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73100 Lecce, Italy

Received: 14 January 2000; accepted: 3 October 2000.

Abstract. In graph theory one often deals with 1-graphs (i. e.: given two vertices u and v,
there is at last one arc that incides from u to v) of order m = pn, where p and n are natural
number greater than 1. These are regular graphs of degree p and diameter n, which have a
certain importance in some problems of telecommunication (cf. [2], p.229: EXAMPLE), since
vertices and arcs can respectively represent stations and one-way connections of a telecommu-
nication net-work.
It seems that the first construction of these graphs, with m = 2n, is due to Ir. K. Posthumus,
who stated a very interesting conjecture, concerning some cycles of digits 0 or 1, proved in [1]
by N. G. De Bruijn.
In the study of these graphs the condition m = pn is heavily relied on. In this paper we adapt
that construction to the case in which pn−1 < m ≤ pn; so we find again several interesting
properties of the previous particular case.
Among other things, we get regular 1-graphs of degree p, such that for any two different ver-
tices u and v there exists at least a path from u to v of length less than, or equal to, n.
The research here reported has been motivated by a problem brought to my attention by
G. Cancellieri.
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Introduction

We shall deal only with natural numbers, thus we shall only use for them
the terms “integer” or “number”.

Now, given a number m ≥ 2, let [[0,m−1]] be the set {0, . . . ,m−1} of the
numbers smaller than m1. Furthermore, let us consider two numbers p and n
such that pn−1 < m ≤ pn.

If m = pn, then we can give [[0,m−1]] a graph structure in a very simple way.
In fact if we represent the numbers in basis p, then any element of [[0, pn−1]] is
given by a sequence tntn−1 · · · t2t1 of n integers less than p. Thus we can associate
to any such tntn−1 · · · t2t1 the p elements tn−1 · · · t1t (where t = 0, . . . , p−1); as
a consequence, tntn−1 · · · t2t1 is associated just to the p elements ttntn−1 · · · t2.
Hence [[0, pn−1]] becomes a regular 1-graph of degree p. Moreover, it is obvious

1More generally, if a and b are numbers such that a < b, then [[a, b]] will be the set of the
number x such that a ≤ x ≤ b.
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that, if u and v are different elements belonging to [[0, pn−1]], then one can
go from u to v through a path of length less than or equal to n. Furthermore
the diameter of this graph is n, since it is clear that, if t1 �= t, then from
tntn−1 · · · t2t1 to the constant n-ple t · · · t there is a distance equal to n.

The recalled construction has several interesting practical applications. In
fact vertices and arcs of the previous graph can respectively represent stations
and one-way connections of a telecommunication net-work. Anyway, a net-work
could have a number of stations which is different from a power of an integer;
thus it is useful to consider the more general case in which pn−1 < m ≤ pn.
To this end let the symbols “+”, “−” and “·” represent the usual operations
modulo m. Moreover, if a is a natural number less than m, let −a be the
opposite of a with respect to +. At the same time let the symbols “+”, “−”
and “·” represent the usual arithmetical operations. In our formulas however we
shall omit almost always the symbol “·”.

1 On some particular 1-graphs

Obviously, if m = pn, then one has:

tn−1 · · · t1t = tntn−1 · · · t2t1 · p+ t (1)

Equality (1) suggests us to study also in the case pn−1 < m ≤ pn the graph G
whose vertices are the elements of [[0,m−1]] and whose arcs connect any vertex
u to the p elements of the following set:

f(u) = {u · p, u · p+ 1, . . . , u · p+ (p− 1)}.

Then p arcs incide from any vertex of G, and G has mp arcs. We shall say that
G is a “generalized Posthumus graph”.

Now we can associate to the arc from the vertex u to the vertex u · p+ r
(with 0 ≤ r < p) the number up+r. In such a manner we determine a function
from the set of the mp arcs into the set [[0,mp−1]].

This function is surjective and hence it is bijective too. In fact whenever
n ∈ [[0,mp−1]], one has n = qp+r, with r ≤ p−1; hence q ∈ [[0,m−1]] and n
corresponds to the arc from q to q · p+ r.

Moreover, the mp arcs of G individually incide in a cyclic order and in
sequence to the m vertices of G. Thus p arcs incide to any vertex of G. This
fact is stated in a more precise way in the following remark.

Remark 1. Given a vertex v, in order to determine a vertex u such that
there is an arc from u to v, let us fix an integer i ≤ p−1. Then we can consider
the numbers ui and ri such that ri ≤ p−1 and v+im = uip+ri.
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Obviously, since i ≤ p−1 and v < m, we have that v+im < pm, hence ui is a
number smaller than m. Moreover ui · p+ ri = v, hence an arc incides from ui

to v. As a consequence, since one has ui′ < ui′′ whenever i′ < i′′, then exactly p
arcs incide to v.

In particular, if m = pq, then both v+im and v+(i+1)m have the same rest
with respect to the division by p. As a consequence, in this case the numbers r
is the same for every i ≤ p−1 and ui = u0+iq. �
Now let us consider the function F that associates to every non empty subset
H ⊆[[0,m−1]] the set ∪u∈Hf(u).

It is obvious that if we consider two vertices u and u+1 then, since (u+1)·p =
u · p+ p we have:

F{u, u+1} = {u·p, u·p+1, . . . , u·p+(p−1), u·p+p, u·p+p+1, . . . , u·p+2p−1}.

Therefore, if H is a set of h consecutive vertices starting from u, and hp < m,
then FH is a set of hp consecutive vertices starting from u · p; in particular,
F [[0, h−1]] = [[0, hp−1]]. On the contrary, if m ≤ hp, then FH = [[0,m−1]].
Hence, if h < m, then [[0, h−1]] ⊂ F [[0, h−1]]. Furthermore, for a fixed vertex u,
by iterating F we have that, if c is a number such that m ≤ pc, then F c{u} =
[[0,m−1]]; on the other hand, if pc < m, then F c{u} has exactly pc consecutive
vertices starting from u · pc.

Theorem 1. G is a regular and strongly connected 1-graph of degree p and
diameter n.

Proof. In fact, since m ≤ pn, we have Fn{u} = [[0,m−1]] for any vertex
u. Thus for any two vertices u and v there exists at least a path from u to v
having at most n elements. Moreover, {0} ⊂ F{0} ⊂ · · · ⊂ Fn−1{0} ⊂ Fn{0}
= [[0,m−1]], thus Fn−1{0} �= [[0,m−1]]; hence there are some vertices whose
distance from 0 is n. These properties tell us that G is strongly connected and
the diameter δ(G) is n.

Furthermore, since from any vertex of G exactly p arcs incide and to any
vertex of G exactly p arcs incide from p different vertices, then G is a regular
1-graph of degree p. QED

Now let φ be the involution that maps any u ∈ [[0,m−1]] into the element
φ(u) := m−1−u = −1 − u. Thus we have a kind of “symmetry” on [[0,m−1]],
since (u, v) is an arc of G if and only if (φ(u), φ(v)) is an arc of G. Indeed if
(u, v) is an arc, then v = u · p+ t, where t ∈ [[0, p−1]]. Hence we have:

φ(v) = −1 − (u · p+ t) = p− p− 1 − u · p− t =
= (−1 − u) · p+ p− 1 − t = φ(u) · p+ (p−1−t).

Since 0 ≤ p−1−t ≤ p−1, the assertion immediately follows.
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The above property ensures that φ is an automorphism of the 1-graph G. In
general, it is difficult to describe all the automorphisms of G. However, ifm = pn

this is very simple, since one can represent the numbers in basis p. Indeed, if g is
a permutation of the set of the numbers smaller than p and if ψ is the map that
to any tn−1tn−2 · · · t0 ∈ [[0, pn−1]] associates the number g(tn−1)g(tn−2) · · · g(t0),
then ψ is an automorphism of this graph, since both (tn−1tn−2 · · · t0, tn−2 · · · t0t)
and (g(tn−1)g(tn−2) · · · g(t0), g(tn−2) · · · g(t0)g(t)) are arcs. It is easily verified
that the maps of this type are the only automorphisms of this graph.

Through G one can construct several other regular 1-graphs of degree p and di-
ameter not higher than n, such that their vertices are the elements of [[0,m−1]].
In fact f(0) = [[0, p−1]] and f(m−1) = [[m−p,m−1]]. Therefore 0 and m−1 are
loop vertices of G. Moreover, since p < m, one has m−1 /∈ f(0) and 0 /∈ f(m−1).
Thus the ordered pairs (0,m−1) and (m−1, 0) are not arcs of G. Consequently,
if � is the set of the loop vertices of G, then one can give � a structure of
regular 1-graph of degree 1 in such a manner that, if the loops of G are replaced
by the arcs of �, then G is transformed into another strongly connected and
regular 1-graph G′ of degree p and diameter not higher than n2.

If m = 4 and p = 3, so that δ(G) = n = 2, we can give � a structure of
regular 1-graph of degree 1, in such a manner that the diameter of G′ is 1. In fact
it is easily verified that in this case all the vertices of G are loop vertices. Thus
we can take (0, 3), (3, 0), (1, 2) and (2, 1) as the arcs of �. Therefore — since
the other arcs of G are (0, 1), (1, 0), (0, 2), (2, 0), (1, 3), (3, 1), (2, 3) and (3, 2) —
if u and v are distinct elements of {0, 1, 2, 3}, then (u, v) is an arc of G′. Hence
δ(G′) = 1.

2 On the loop vertices of G

In this section we shall determine the loop vertices of G. If m = pn and if
one represents the elements of [[0, pn−1]] in basis p, then the loop vertices are
the constant n-ples t · · · t (t ≤ p−1); because tntn−1 · · · t2t1 = tn−1 · · · t2t1t if and
only if tn = tn−1 = · · · = t1 = t. In the general case let us consider the following
m-modular equation in x: x · p+ t = x, with t ∈ [[0,m−1]], which is equivalent
to the following one:

(p−1) · x+ t = 0 (2)

Obviously, a loop vertex of G is a solution of (2) such that t is smaller than p.

2For example, one can give � the structure of 1-graph in which the vertices different from
0 and from m−1 are the only loop vertices. In the meantime (0, m−1) and (m−1, 0) are the
only arcs which are not loops.
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Now let d be the greatest common divisor of p−1 and m. Moreover let a :=
(p−1)/d and m := m/d.

Remark 2. The following properties of modulo m arithmetic are obvious:
i) The solutions of (p−1) · x = 0 are the elements of [[0,m−1]] of the type

cm, where c ∈ [[0, d−1]].
ii) For a fixed t ∈ [[0,m−1]], if v is a particular solution of (2), then the

solutions of (2) are of type v+ v0, where v0 is a solution of (p−1) · x = 0. �
Remark 3. The solutions of (2) are the elements v ∈ [[0,m−1]] such that

m divides (p−1)v+t. Hence, if the above equation (2) has a solution, then this
equation is of the following type:

(d a) · x+ db = 0, (3)

where b is a number less than m.
Now a number v smaller than m is a solution of (3) if and only if m is a

divisor of d a v+d b; thus, since m = dm, v is a solution of (3) if and only if m is
a divisor of av+b. �
Since a and m are relative primes, let a′ be the unique number smaller than m
such that a a′ ≡ 1 (mod m). Thus 0 ≡ −a a′+1 (mod m).

We have the following
Theorem 2. If b is a number less than m, then −a′ · b is a particular

solution of (p−1) · x+ d b = 0.
Proof. By Remark 3, we have only to verify that m is a divisor of −a a′b+b.

To this purpose it is sufficient to observe that, since 0 ≡ −a a′+1 (mod m), m
is a divisor −a a′+1. QED

Theorem 3. The loop vertices of G are all the elements of [[0,m−1]] of the
type −a′ · b+ cm, where b ∈ [[0, (p−1)/d]] and c ∈ [[0,d−1]]. Moreover, G admits
exactly p−1+d loops.

Proof. The first part is an immediate consequence of Remark 2 and of
Theorem 2.

Now, since b can assume (p−1)/d+1 values and c can assume d values, then
G admits exactly p−1+d loops. QED

Corollary 1. If d is a nontrivial divisor of m, then all the elements of
[[0,m−1]] are loop vertices if and only if p = m+1−d.

3 A generalization and concluding remarks

We can give a simple generalization of the previous construction of genera-
lized Posthumus graphs. Indeed we can consider the 1-graph G′ whose vertices
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are the elements of [[0,m−1]] and whose arcs connect any element u ∈ [[0,m−1]]
with the p elements of f ′(u) = {u · p+ k, u · p+ 1 + k, . . . , u · p+ (p−1) + k}.

Remark 4. It is clear that the loop vertices of G′ are the solution of the
equation (2) in section 3, with t ∈ {k, 1 + k, . . . , (p−1) + k}.

Moreover (by the previous remarks) we have that if c is a number such that
pc < m and if F ′ is the function that associates to every non empty subset H
of [[0,m−1]] the set ∪u∈Hf

′(u) then, for any u ∈ [[0,m−1]], F ′c(u) has exactly
pc consecutive elements, otherwise F ′c(u) coincides with [[0,m−1]].

In particular, if n is the smallest natural number such that m ≤ pn, and u
is a loop vertex, then we have (cf. the proof of Theorem 1, where u = 0) {u} ⊂
F ′(u) ⊂ · · · ⊂ F ′n−1(u) ⊂ F ′n(u) = [[0,m−1]], hence F ′n−1(u) �= [[0,m−1]].
Thus G′ is a regular and strongly connected 1-graph whose diameter is n. �

We conclude with the following theorem that generalizes Theorem 3. Here
d, m, a and a′ are the same as in section 3.

Theorem 4. The loop vertices of G′ are the elements of [[0,m−1]] of type
−a′ · b+ cm, where c ∈ [[0,d−1]] and b is a number such that db ∈ ∈ {k, 1 +
k, . . . , (p−1) + k}.

If d is a divisor of k, then G′ has p−1+d loops; otherwise, G′ has p−1 loops.
Proof. The first part of the proof is an immediate consequence of the above

results; the second one depends on the fact that, given a divisor d of p−1 and
a set H of p consecutive numbers with minimum element k, if k is a multiple
of d, then in H there are [(p−1)/d]+1 multiple of d; otherwise in H there are
(p−1)/d multiples of d. QED

Let us remark that the second part of Theorem 4 can be useful in practical
applications. In fact the loops of a graph somehow are superfluous, since they
do not determine effective connections.
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