On a generalization of Posthumus graphs

Domenico Lenzi
Dipartimento di Matematica "E. De Giorgi", Università di Lecce, 73100 Lecce, Italy

Received: 14 January 2000; accepted: 3 October 2000.

Abstract

In graph theory one often deals with 1-graphs (i. e.: given two vertices u and v, there is at last one arc that incides from u to v) of order $m=p^{n}$, where p and n are natural number greater than 1 . These are regular graphs of degree p and diameter n, which have a certain importance in some problems of telecommunication (cf. [2], p.229: EXAMPLE), since vertices and arcs can respectively represent stations and one-way connections of a telecommunication net-work. It seems that the first construction of these graphs, with $m=2^{n}$, is due to Ir. K. Posthumus, who stated a very interesting conjecture, concerning some cycles of digits 0 or 1 , proved in [1] by N. G. De Bruijn. In the study of these graphs the condition $m=p^{n}$ is heavily relied on. In this paper we adapt that construction to the case in which $p^{n-1}<m \leq p^{n}$; so we find again several interesting properties of the previous particular case. Among other things, we get regular 1-graphs of degree p, such that for any two different vertices u and v there exists at least a path from u to v of length less than, or equal to, n. The research here reported has been motivated by a problem brought to my attention by G. Cancellieri.

Keywords: graph
MSC 2000 classification: 05Cxx

Introduction

We shall deal only with natural numbers, thus we shall only use for them the terms "integer" or "number".

Now, given a number $m \geq 2$, let $[[0, m-1]]$ be the set $\{0, \ldots, m-1\}$ of the numbers smaller than m^{1}. Furthermore, let us consider two numbers p and n such that $p^{n-1}<m \leq p^{n}$.

If $m=p^{n}$, then we can give $[[0, m-1]]$ a graph structure in a very simple way. In fact if we represent the numbers in basis p, then any element of $\left[\left[0, p^{n}-1\right]\right]$ is given by a sequence $t_{n} t_{n-1} \cdots t_{2} t_{1}$ of n integers less than p. Thus we can associate to any such $t_{n} t_{n-1} \cdots t_{2} t_{1}$ the p elements $t_{n-1} \cdots t_{1} t$ (where $t=0, \ldots, p-1$); as a consequence, $t_{n} t_{n-1} \cdots t_{2} t_{1}$ is associated just to the p elements $t t_{n} t_{n-1} \cdots t_{2}$. Hence $\left[\left[0, p^{n}-1\right]\right]$ becomes a regular 1 -graph of degree p. Moreover, it is obvious

[^0]that, if u and v are different elements belonging to $\left[\left[0, p^{n}-1\right]\right.$, then one can go from u to v through a path of length less than or equal to n. Furthermore the diameter of this graph is n, since it is clear that, if $t_{1} \neq t$, then from $t_{n} t_{n-1} \cdots t_{2} t_{1}$ to the constant n-ple $t \cdots t$ there is a distance equal to n.

The recalled construction has several interesting practical applications. In fact vertices and arcs of the previous graph can respectively represent stations and one-way connections of a telecommunication net-work. Anyway, a net-work could have a number of stations which is different from a power of an integer; thus it is useful to consider the more general case in which $p^{n-1}<m \leq p^{n}$. To this end let the symbols "+", "-" and "." represent the usual operations modulo m. Moreover, if a is a natural number less than m, let $-a$ be the opposite of a with respect to + . At the same time let the symbols "+", "-" and "." represent the usual arithmetical operations. In our formulas however we shall omit almost always the symbol ".".

1 On some particular 1-graphs

Obviously, if $m=p^{n}$, then one has:

$$
\begin{equation*}
t_{n-1} \cdots t_{1} t=t_{n} t_{n-1} \cdots t_{2} t_{1} \cdot p+t \tag{1}
\end{equation*}
$$

Equality (1) suggests us to study also in the case $p^{n-1}<m \leq p^{n}$ the graph \mathbf{G} whose vertices are the elements of $[[0, m-1]]$ and whose arcs connect any vertex u to the p elements of the following set:

$$
f(u)=\{u \cdot p, u \cdot p+1, \ldots, u \cdot p+(p-1)\}
$$

Then p arcs incide from any vertex of \mathbf{G}, and \mathbf{G} has $m p$ arcs. We shall say that \mathbf{G} is a "generalized Posthumus graph".

Now we can associate to the arc from the vertex u to the vertex $u \cdot p+r$ (with $0 \leq r<p$) the number $u p+r$. In such a manner we determine a function from the set of the $m p$ arcs into the set $[[0, m p-1]]$.

This function is surjective and hence it is bijective too. In fact whenever $n \in[[0, m p-1]]$, one has $n=q p+r$, with $r \leq p-1$; hence $q \in[[0, m-1]]$ and n corresponds to the arc from q to $q \cdot p+r$.

Moreover, the $m p$ arcs of \mathbf{G} individually incide in a cyclic order and in sequence to the m vertices of \mathbf{G}. Thus p arcs incide to any vertex of \mathbf{G}. This fact is stated in a more precise way in the following remark.

Remark 1. Given a vertex v, in order to determine a vertex u such that there is an arc from u to v, let us fix an integer $i \leq p-1$. Then we can consider the numbers u_{i} and r_{i} such that $r_{i} \leq p-1$ and $v+i m=u_{i} p+r_{i}$.

Obviously, since $i \leq p-1$ and $v<m$, we have that $v+i m<p m$, hence u_{i} is a number smaller than m. Moreover $u_{i} \cdot p+r_{i}=v$, hence an arc incides from u_{i} to v. As a consequence, since one has $u_{i^{\prime}}<u_{i^{\prime \prime}}$ whenever $i^{\prime}<i^{\prime \prime}$, then exactly p arcs incide to v.

In particular, if $m=p q$, then both $v+i m$ and $v+(i+1) m$ have the same rest with respect to the division by p. As a consequence, in this case the numbers r is the same for every $i \leq p-1$ and $u_{i}=u_{0}+i q$.
Now let us consider the function F that associates to every non empty subset $H \subseteq[[0, m-1]]$ the set $\cup_{u \in H} f(u)$.

It is obvious that if we consider two vertices u and $u+1$ then, since $(u+1) \cdot p=$ $u \cdot p+p$ we have:
$F\{u, u+1\}=\{u \cdot p, u \cdot p+1, \ldots, u \cdot p+(p-1), u \cdot p+p, u \cdot p+p+1, \ldots, u \cdot p+2 p-1\}$.
Therefore, if H is a set of h consecutive vertices starting from u, and $h p<m$, then $F H$ is a set of $h p$ consecutive vertices starting from $u \cdot p$; in particular, $F[[0, h-1]]=[[0, h p-1]]$. On the contrary, if $m \leq h p$, then $F H=[[0, m-1]]$. Hence, if $h<m$, then $[[0, h-1]] \subset F[[0, h-1]]$. Furthermore, for a fixed vertex u, by iterating F we have that, if c is a number such that $m \leq p^{c}$, then $F^{c}\{u\}=$ $[[0, m-1]]$; on the other hand, if $p^{c}<m$, then $F^{c}\{u\}$ has exactly p^{c} consecutive vertices starting from $u \cdot p^{c}$.

Theorem 1. G is a regular and strongly connected 1-graph of degree p and diameter n.

Proof. In fact, since $m \leq p^{n}$, we have $F^{n}\{u\}=[[0, m-1]]$ for any vertex u. Thus for any two vertices u and v there exists at least a path from u to v having at most n elements. Moreover, $\{0\} \subset F\{0\} \subset \cdots \subset F^{n-1}\{0\} \subset F^{n}\{0\}$ $=[[0, m-1]]$, thus $F^{n-1}\{0\} \neq[[0, m-1]]$; hence there are some vertices whose distance from 0 is n. These properties tell us that \mathbf{G} is strongly connected and the diameter $\delta(\mathbf{G})$ is n.

Furthermore, since from any vertex of \mathbf{G} exactly p arcs incide and to any vertex of \mathbf{G} exactly p arcs incide from p different vertices, then \mathbf{G} is a regular 1-graph of degree p.

QED
Now let ϕ be the involution that maps any $u \in[[0, m-1]]$ into the element $\phi(u):=m-1-u=-1-u$. Thus we have a kind of "symmetry" on $[[0, m-1]]$, since (u, v) is an arc of \mathbf{G} if and only if $(\phi(u), \phi(v))$ is an arc of \mathbf{G}. Indeed if (u, v) is an arc, then $v=u \cdot p+t$, where $t \in[[0, p-1]]$. Hence we have:

$$
\begin{aligned}
& \phi(v)=-1-(u \cdot p+t)=p-p-1-u \cdot p-t= \\
& =(-1-u) \cdot p+p-1-t=\phi(u) \cdot p+(p-1-t)
\end{aligned}
$$

Since $0 \leq p-1-t \leq p-1$, the assertion immediately follows.

The above property ensures that ϕ is an automorphism of the 1 -graph \mathbf{G}. In general, it is difficult to describe all the automorphisms of \mathbf{G}. However, if $m=p^{n}$ this is very simple, since one can represent the numbers in basis p. Indeed, if g is a permutation of the set of the numbers smaller than p and if ψ is the map that to any $t_{n-1} t_{n-2} \cdots t_{0} \in\left[\left[0, p^{n}-1\right]\right]$ associates the number $g\left(t_{n-1}\right) g\left(t_{n-2}\right) \cdots g\left(t_{0}\right)$, then ψ is an automorphism of this graph, since both $\left(t_{n-1} t_{n-2} \cdots t_{0}, t_{n-2} \cdots t_{0} t\right)$ and $\left(g\left(t_{n-1}\right) g\left(t_{n-2}\right) \cdots g\left(t_{0}\right), g\left(t_{n-2}\right) \cdots g\left(t_{0}\right) g(t)\right)$ are arcs. It is easily verified that the maps of this type are the only automorphisms of this graph.
Through \mathbf{G} one can construct several other regular 1-graphs of degree p and diameter not higher than n, such that their vertices are the elements of $[[0, m-1]]$. In fact $f(0)=[[0, p-1]]$ and $f(m-1)=[[m-p, m-1]]$. Therefore 0 and $m-1$ are loop vertices of \mathbf{G}. Moreover, since $p<m$, one has $m-1 \notin f(0)$ and $0 \notin f(m-1)$. Thus the ordered pairs $(0, m-1)$ and $(m-1,0)$ are not arcs of \mathbf{G}. Consequently, if \Im is the set of the loop vertices of \mathbf{G}, then one can give \Im a structure of regular 1-graph of degree 1 in such a manner that, if the loops of \mathbf{G} are replaced by the arcs of \Im, then \mathbf{G} is transformed into another strongly connected and regular 1-graph \mathbf{G}^{\prime} of degree p and diameter not higher than n^{2}.

If $m=4$ and $p=3$, so that $\delta(\mathbf{G})=n=2$, we can give \Im a structure of regular 1-graph of degree 1 , in such a manner that the diameter of \mathbf{G}^{\prime} is 1 . In fact it is easily verified that in this case all the vertices of \mathbf{G} are loop vertices. Thus we can take $(0,3),(3,0),(1,2)$ and $(2,1)$ as the arcs of \Im. Therefore - since the other arcs of \mathbf{G} are $(0,1),(1,0),(0,2),(2,0),(1,3),(3,1),(2,3)$ and $(3,2)$ if u and v are distinct elements of $\{0,1,2,3\}$, then (u, v) is an arc of \mathbf{G}^{\prime}. Hence $\delta\left(\mathbf{G}^{\prime}\right)=1$.

2 On the loop vertices of G

In this section we shall determine the loop vertices of \mathbf{G}. If $m=p^{n}$ and if one represents the elements of $\left[\left[0, p^{n}-1\right]\right]$ in basis p, then the loop vertices are the constant n-ples $t \cdots t(t \leq p-1)$; because $t_{n} t_{n-1} \cdots t_{2} t_{1}=t_{n-1} \cdots t_{2} t_{1} t$ if and only if $t_{n}=t_{n-1}=\cdots=t_{1}=t$. In the general case let us consider the following m-modular equation in $x: x \cdot p+t=x$, with $t \in[[0, m-1]]$, which is equivalent to the following one:

$$
\begin{equation*}
(p-1) \cdot x+t=0 \tag{2}
\end{equation*}
$$

Obviously, a loop vertex of \mathbf{G} is a solution of (2) such that t is smaller than p.

[^1]Now let \underline{d} be the greatest common divisor of $p-1$ and m. Moreover let $\underline{a}:=$ $(p-1) / \underline{d}$ and $\underline{m}:=m / \underline{d}$.

Remark 2. The following properties of modulo m arithmetic are obvious:
i) The solutions of $(p-1) \cdot x=0$ are the elements of $[[0, m-1]]$ of the type $c \underline{m}$, where $c \in[[0, \underline{d}-1]]$.
ii) For a fixed $t \in[[0, m-1]]$, if v is a particular solution of (2), then the solutions of (2) are of type $v+v_{0}$, where v_{0} is a solution of $(p-1) \cdot x=0$.

Remark 3. The solutions of (2) are the elements $v \in[[0, m-1]]$ such that m divides $(p-1) v+t$. Hence, if the above equation (2) has a solution, then this equation is of the following type:

$$
\begin{equation*}
(\underline{d} \underline{a}) \cdot x+\underline{d} b=0, \tag{3}
\end{equation*}
$$

where b is a number less than \underline{m}.
Now a number v smaller than m is a solution of (3) if and only if m is a divisor of $\underline{d} \underline{a} v+\underline{d} b$; thus, since $m=\underline{d} \underline{m}, v$ is a solution of (3) if and only if \underline{m} is a divisor of $\underline{a} v+b$.
Since \underline{a} and \underline{m} are relative primes, let \underline{a}^{\prime} be the unique number smaller than \underline{m} such that $\underline{a} \underline{a}^{\prime} \equiv 1(\bmod \underline{m})$. Thus $0 \equiv-\underline{a} \underline{a}^{\prime}+1(\bmod \underline{m})$.

We have the following
Theorem 2. If b is a number less than \underline{m}, then $-\underline{a}^{\prime} \cdot b$ is a particular solution of $(p-1) \cdot x+\underline{d} b=0$.

Proof. By Remark 3, we have only to verify that \underline{m} is a divisor of $-\underline{a} \underline{a}^{\prime} b+b$. To this purpose it is sufficient to observe that, since $0 \equiv-\underline{a} \underline{a}^{\prime}+1(\bmod \underline{m}), \underline{m}$ is a divisor $-\underline{a} \underline{a}^{\prime}+1$. QED

Theorem 3. The loop vertices of \mathbf{G} are all the elements of $[[0, m-1]]$ of the type $-\underline{\mathrm{a}}^{\prime} \cdot b+c \underline{\mathrm{~m}}$, where $b \in[[0,(p-1) / \underline{\mathrm{d}}]]$ and $c \in[[0, \underline{\mathrm{~d}}-1]]$. Moreover, \mathbf{G} admits exactly $p-1+\underline{d}$ loops.

Proof. The first part is an immediate consequence of Remark 2 and of Theorem 2.

Now, since b can assume $(p-1) / \underline{d}+1$ values and c can assume \underline{d} values, then \mathbf{G} admits exactly $p-1+\underline{d}$ loops. QED

Corollary 1. If d is a nontrivial divisor of m, then all the elements of $[[0, m-1]]$ are loop vertices if and only if $p=m+1-d$.

3 A generalization and concluding remarks

We can give a simple generalization of the previous construction of generalized Posthumus graphs. Indeed we can consider the 1-graph \mathbf{G}^{\prime} whose vertices
are the elements of $[[0, m-1]]$ and whose arcs connect any element $u \in[[0, m-1]]$ with the p elements of $f^{\prime}(u)=\{u \cdot p+k, u \cdot p+1+k, \ldots, u \cdot p+(p-1)+k\}$.

Remark 4. It is clear that the loop vertices of \mathbf{G}^{\prime} are the solution of the equation (2) in section 3, with $t \in\{k, 1+k, \ldots,(p-1)+k\}$.

Moreover (by the previous remarks) we have that if c is a number such that $p^{c}<m$ and if F^{\prime} is the function that associates to every non empty subset H of $[[0, m-1]]$ the set $\cup_{u \in H} f^{\prime}(u)$ then, for any $u \in[[0, m-1]], F^{\prime c}(u)$ has exactly p^{c} consecutive elements, otherwise $F^{\prime c}(u)$ coincides with [[0, $\left.m-1\right]$].

In particular, if n is the smallest natural number such that $m \leq p^{n}$, and u is a loop vertex, then we have (cf. the proof of Theorem 1, where $u=0$) $\{u\} \subset$ $F^{\prime}(u) \subset \cdots \subset F^{\prime n-1}(u) \subset F^{\prime n}(u)=[[0, m-1]]$, hence $F^{\prime n-1}(u) \neq[[0, m-1]]$. Thus \mathbf{G}^{\prime} is a regular and strongly connected 1 -graph whose diameter is n.

We conclude with the following theorem that generalizes Theorem 3. Here $\underline{d}, \underline{m}, \underline{a}$ and \underline{a}^{\prime} are the same as in section 3 .

Theorem 4. The loop vertices of \mathbf{G}^{\prime} are the elements of $[[0, m-1]]$ of type $-\underline{\mathrm{a}}^{\prime} \cdot b+c \underline{\mathrm{~m}}$, where $c \in[[0, \underline{\mathrm{~d}}-1]]$ and b is a number such that $\underline{\mathrm{d}} b \in \in\{k, 1+$ $k, \ldots,(p-1)+k\}$.

If $\underline{\mathrm{d}}$ is a divisor of k, then \mathbf{G}^{\prime} has $p-1+\underline{\mathrm{d}}$ loops; otherwise, \mathbf{G}^{\prime} has $p-1$ loops.
Proof. The first part of the proof is an immediate consequence of the above results; the second one depends on the fact that, given a divisor d of $p-1$ and a set H of p consecutive numbers with minimum element k, if k is a multiple of d, then in H there are $[(p-1) / d]+1$ multiple of d; otherwise in H there are $(p-1) / d$ multiples of d.

Let us remark that the second part of Theorem 4 can be useful in practical applications. In fact the loops of a graph somehow are superfluous, since they do not determine effective connections.

References

[1] G. Cancellieri, A. Del Ferro, M. Mazzone: State diagram for cyclic block codes, IEEE Melecom 96, Bari (1996) 1011-1013.
[2] G. Cancellieri, L. Laici: Input-output enumerating function of RSC codes and turbo codes, 4th Eur. Conf. Satellite Comm., Rome (1997) 422-427.
[3] G. Cancellieri, F. Vatta: Feedback concatenation of convolutional codes, SoftCom 2001, Dubrovnik (2001) 57-63.
[4] N. G. De Bruijn: A combinatorial problem. Proc. Konink. Nederl. Akad. Wetensch., 49 (1946) 758-764.
[5] C. Berge: Graphes et hypergraphes. Dunod, Paris (1970).
[6] F. Harary: Graph Theory. Addison-Wesley Pub. Company (1972).

[^0]: ${ }^{1}$ More generally, if a and b are numbers such that $a<b$, then $[[a, b]]$ will be the set of the number x such that $a \leq x \leq b$.

[^1]: ${ }^{2}$ For example, one can give \Im the structure of 1-graph in which the vertices different from 0 and from $m-1$ are the only loop vertices. In the meantime $(0, m-1)$ and ($m-1,0$) are the only arcs which are not loops.

