On a generalization of Posthumus graphs

Domenico Lenzi

Dipartimento di Matematica "E. De Giorgi", Università di Lecce, 73100 Lecce, Italy

Received: 14 January 2000; accepted: 3 October 2000.

Abstract. In graph theory one often deals with 1-graphs (*i. e.*: given two vertices u and v, there is at last one arc that incides from u to v) of order $m = p^n$, where p and n are natural number greater than 1. These are regular graphs of degree p and diameter n, which have a certain importance in some problems of telecommunication (cf. [2], p.229: EXAMPLE), since vertices and arcs can respectively represent stations and one-way connections of a telecommunication net-work.

It seems that the first construction of these graphs, with $m = 2^n$, is due to Ir. K. Posthumus, who stated a very interesting conjecture, concerning some cycles of digits 0 or 1, proved in [1] by N. G. De Bruijn.

In the study of these graphs the condition $m = p^n$ is heavily relied on. In this paper we adapt that construction to the case in which $p^{n-1} < m \le p^n$; so we find again several interesting properties of the previous particular case.

Among other things, we get regular 1-graphs of degree p, such that for any two different vertices u and v there exists at least a path from u to v of length less than, or equal to, n.

The research here reported has been motivated by a problem brought to my attention by G. Cancellieri.

Keywords: graph

MSC 2000 classification: 05Cxx

Introduction

We shall deal only with natural numbers, thus we shall only use for them the terms "integer" or "number".

Now, given a number $m \ge 2$, let [[0, m-1]] be the set $\{0, \ldots, m-1\}$ of the numbers smaller than m^1 . Furthermore, let us consider two numbers p and n such that $p^{n-1} < m \le p^n$.

If $m = p^n$, then we can give [[0, m-1]] a graph structure in a very simple way. In fact if we represent the numbers in basis p, then any element of $[[0, p^n-1]]$ is given by a sequence $t_n t_{n-1} \cdots t_2 t_1$ of n integers less than p. Thus we can associate to any such $t_n t_{n-1} \cdots t_2 t_1$ the p elements $t_{n-1} \cdots t_1 t$ (where $t = 0, \ldots, p-1$); as a consequence, $t_n t_{n-1} \cdots t_2 t_1$ is associated just to the p elements $tt_n t_{n-1} \cdots t_2$. Hence $[[0, p^n-1]]$ becomes a regular 1-graph of degree p. Moreover, it is obvious

¹More generally, if a and b are numbers such that a < b, then [[a, b]] will be the set of the number x such that $a \le x \le b$.

that, if u and v are different elements belonging to $[[0, p^n-1]]$, then one can go from u to v through a path of length less than or equal to n. Furthermore the diameter of this graph is n, since it is clear that, if $t_1 \neq t$, then from $t_n t_{n-1} \cdots t_2 t_1$ to the constant n-ple $t \cdots t$ there is a distance equal to n.

The recalled construction has several interesting practical applications. In fact vertices and arcs of the previous graph can respectively represent stations and one-way connections of a telecommunication net-work. Anyway, a net-work could have a number of stations which is different from a power of an integer; thus it is useful to consider the more general case in which $p^{n-1} < m \leq p^n$. To this end let the symbols "+", "-" and "·" represent the usual operations modulo m. Moreover, if a is a natural number less than m, let -a be the opposite of a with respect to +. At the same time let the symbols "+", "-" and "·" represent the usual arithmetical operations. In our formulas however we shall omit almost always the symbol "·".

1 On some particular 1-graphs

Obviously, if $m = p^n$, then one has:

$$t_{n-1}\cdots t_1 t = t_n t_{n-1}\cdots t_2 t_1 \cdot p + t \tag{1}$$

Equality (1) suggests us to study also in the case $p^{n-1} < m \leq p^n$ the graph **G** whose vertices are the elements of [[0, m-1]] and whose arcs connect any vertex u to the p elements of the following set:

$$f(u) = \{ u \cdot p, u \cdot p + 1, \dots, u \cdot p + (p-1) \}$$

Then p arcs incide from any vertex of \mathbf{G} , and \mathbf{G} has mp arcs. We shall say that \mathbf{G} is a "generalized Posthumus graph".

Now we can associate to the arc from the vertex u to the vertex $u \cdot p + r$ (with $0 \le r < p$) the number up+r. In such a manner we determine a function from the set of the mp arcs into the set [[0, mp-1]].

This function is surjective and hence it is bijective too. In fact whenever $n \in [[0, mp-1]]$, one has n = qp+r, with $r \leq p-1$; hence $q \in [[0, m-1]]$ and n corresponds to the arc from q to $q \cdot p + r$.

Moreover, the mp arcs of **G** individually incide in a cyclic order and in sequence to the m vertices of **G**. Thus p arcs incide to any vertex of **G**. This fact is stated in a more precise way in the following remark.

Remark 1. Given a vertex v, in order to determine a vertex u such that there is an arc from u to v, let us fix an integer $i \leq p-1$. Then we can consider the numbers u_i and r_i such that $r_i \leq p-1$ and $v+im = u_ip+r_i$.

On a generalization of Posthumus graphs

Obviously, since $i \leq p-1$ and v < m, we have that v+im < pm, hence u_i is a number smaller than m. Moreover $u_i \cdot p + r_i = v$, hence an arc incides from u_i to v. As a consequence, since one has $u_{i'} < u_{i''}$ whenever i' < i'', then exactly p arcs incide to v.

In particular, if m = pq, then both v+im and v+(i+1)m have the same rest with respect to the division by p. As a consequence, in this case the numbers ris the same for every $i \leq p-1$ and $u_i = u_0+iq$.

Now let us consider the function F that associates to every non empty subset $H \subseteq [[0, m-1]]$ the set $\bigcup_{u \in H} f(u)$.

It is obvious that if we consider two vertices u and u+1 then, since $(u+1) \cdot p = u \cdot p + p$ we have:

$$F\{u, u+1\} = \{u \cdot p, u \cdot p+1, \dots, u \cdot p+(p-1), u \cdot p+p, u \cdot p+p+1, \dots, u \cdot p+2p-1\}.$$

Therefore, if H is a set of h consecutive vertices starting from u, and hp < m, then FH is a set of hp consecutive vertices starting from $u \cdot p$; in particular, F[[0, h-1]] = [[0, hp-1]]. On the contrary, if $m \le hp$, then FH = [[0, m-1]]. Hence, if h < m, then $[[0, h-1]] \subset F[[0, h-1]]$. Furthermore, for a fixed vertex u, by iterating F we have that, if c is a number such that $m \le p^c$, then $F^c\{u\} = [[0, m-1]]$; on the other hand, if $p^c < m$, then $F^c\{u\}$ has exactly p^c consecutive vertices starting from $u \cdot p^c$.

Theorem 1. G is a regular and strongly connected 1-graph of degree p and diameter n.

PROOF. In fact, since $m \leq p^n$, we have $F^n\{u\} = [[0, m-1]]$ for any vertex u. Thus for any two vertices u and v there exists at least a path from u to v having at most n elements. Moreover, $\{0\} \subset F\{0\} \subset \cdots \subset F^{n-1}\{0\} \subset F^n\{0\}$ = [[0, m-1]], thus $F^{n-1}\{0\} \neq [[0, m-1]]$; hence there are some vertices whose distance from 0 is n. These properties tell us that **G** is strongly connected and the diameter $\delta(\mathbf{G})$ is n.

Furthermore, since from any vertex of \mathbf{G} exactly p arcs incide and to any vertex of \mathbf{G} exactly p arcs incide from p different vertices, then \mathbf{G} is a regular 1-graph of degree p.

Now let ϕ be the involution that maps any $u \in [[0, m-1]]$ into the element $\phi(u) := m-1-u = -1 - u$. Thus we have a kind of "symmetry" on [[0, m-1]], since (u, v) is an arc of **G** if and only if $(\phi(u), \phi(v))$ is an arc of **G**. Indeed if (u, v) is an arc, then $v = u \cdot p + t$, where $t \in [[0, p-1]]$. Hence we have:

$$\begin{split} \phi(v) &= -1 - (u \cdot p + t) = p - p - 1 - u \cdot p - t = \\ &= (-1 - u) \cdot p + p - 1 - t = \phi(u) \cdot p + (p - 1 - t). \end{split}$$

Since $0 \le p-1-t \le p-1$, the assertion immediately follows.

The above property ensures that ϕ is an automorphism of the 1-graph **G**. In general, it is difficult to describe all the automorphisms of **G**. However, if $m = p^n$ this is very simple, since one can represent the numbers in basis p. Indeed, if g is a permutation of the set of the numbers smaller than p and if ψ is the map that to any $t_{n-1}t_{n-2}\cdots t_0 \in [[0, p^n-1]]$ associates the number $g(t_{n-1})g(t_{n-2})\cdots g(t_0)$, then ψ is an automorphism of this graph, since both $(t_{n-1}t_{n-2}\cdots t_0, t_{n-2}\cdots t_0t)$ and $(g(t_{n-1})g(t_{n-2})\cdots g(t_0), g(t_{n-2})\cdots g(t_0)g(t))$ are arcs. It is easily verified that the maps of this type are the only automorphisms of this graph.

Through **G** one can construct several other regular 1-graphs of degree p and diameter not higher than n, such that their vertices are the elements of [[0, m-1]]. In fact f(0) = [[0, p-1]] and f(m-1) = [[m-p, m-1]]. Therefore 0 and m-1 are loop vertices of **G**. Moreover, since p < m, one has $m-1 \notin f(0)$ and $0 \notin f(m-1)$. Thus the ordered pairs (0, m-1) and (m-1, 0) are not arcs of **G**. Consequently, if \Im is the set of the loop vertices of **G**, then one can give \Im a structure of regular 1-graph of degree 1 in such a manner that, if the loops of **G** are replaced by the arcs of \Im , then **G** is transformed into another strongly connected and regular 1-graph **G**' of degree p and diameter not higher than n^2 .

If m = 4 and p = 3, so that $\delta(\mathbf{G}) = n = 2$, we can give \Im a structure of regular 1-graph of degree 1, in such a manner that the diameter of \mathbf{G}' is 1. In fact it is easily verified that in this case all the vertices of \mathbf{G} are loop vertices. Thus we can take (0,3), (3,0), (1,2) and (2,1) as the arcs of \Im . Therefore — since the other arcs of \mathbf{G} are (0,1), (1,0), (0,2), (2,0), (1,3), (3,1), (2,3) and (3,2) — if u and v are distinct elements of $\{0,1,2,3\}$, then (u,v) is an arc of \mathbf{G}' . Hence $\delta(\mathbf{G}') = 1$.

2 On the loop vertices of G

In this section we shall determine the loop vertices of **G**. If $m = p^n$ and if one represents the elements of $[[0, p^n-1]]$ in basis p, then the loop vertices are the constant n-ples $t \cdots t$ ($t \le p-1$); because $t_n t_{n-1} \cdots t_2 t_1 = t_{n-1} \cdots t_2 t_1 t$ if and only if $t_n = t_{n-1} = \cdots = t_1 = t$. In the general case let us consider the following m-modular equation in $x: x \cdot p + t = x$, with $t \in [[0, m-1]]$, which is equivalent to the following one:

$$(p-1) \cdot x + t = 0 \tag{2}$$

Obviously, a loop vertex of **G** is a solution of (2) such that t is smaller than p.

²For example, one can give \Im the structure of 1-graph in which the vertices different from 0 and from m-1 are the only loop vertices. In the meantime (0, m-1) and (m-1, 0) are the only arcs which are not loops.

On a generalization of Posthumus graphs

Now let <u>d</u> be the greatest common divisor of p-1 and m. Moreover let $\underline{a} := (p-1)/\underline{d}$ and $\underline{m} := m/\underline{d}$.

Remark 2. The following properties of modulo *m* arithmetic are obvious:

i) The solutions of $(p-1) \cdot x = 0$ are the elements of [[0, m-1]] of the type $c\underline{m}$, where $c \in [[0, \underline{d}-1]]$.

ii) For a fixed $t \in [[0, m-1]]$, if v is a particular solution of (2), then the solutions of (2) are of type $v + v_0$, where v_0 is a solution of $(p-1) \cdot x = 0$. \Box

Remark 3. The solutions of (2) are the elements $v \in [[0, m-1]]$ such that m divides (p-1)v+t. Hence, if the above equation (2) has a solution, then this equation is of the following type:

$$(\underline{d}\,\underline{a})\cdot x + \underline{d}b = 0,\tag{3}$$

where b is a number less than \underline{m} .

Now a number v smaller than m is a solution of (3) if and only if m is a divisor of $\underline{d} \underline{a} v + \underline{d} b$; thus, since $m = \underline{d} \underline{m}$, v is a solution of (3) if and only if \underline{m} is a divisor of $\underline{a} v + b$.

Since <u>a</u> and <u>m</u> are relative primes, let <u>a'</u> be the unique number smaller than <u>m</u> such that $\underline{a} \underline{a'} \equiv 1 \pmod{\underline{m}}$. Thus $0 \equiv -\underline{a} \underline{a'} + 1 \pmod{\underline{m}}$.

We have the following

Theorem 2. If b is a number less than \underline{m} , then $-\underline{a'} \cdot b$ is a particular solution of $(p-1) \cdot x + \underline{d}b = 0$.

PROOF. By Remark 3, we have only to verify that \underline{m} is a divisor of $-\underline{a} \underline{a}' b + b$. To this purpose it is sufficient to observe that, since $0 \equiv -\underline{a} \underline{a}' + 1 \pmod{\underline{m}}, \underline{m}$ is a divisor $-\underline{a} \underline{a}' + 1$.

Theorem 3. The loop vertices of **G** are all the elements of [[0, m-1]] of the type $-\underline{a}' \cdot b + c\underline{m}$, where $b \in [[0, (p-1)/\underline{d}]]$ and $c \in [[0, \underline{d}-1]]$. Moreover, **G** admits exactly $p-1+\underline{d}$ loops.

PROOF. The first part is an immediate consequence of Remark 2 and of Theorem 2.

Now, since b can assume $(p-1)/\underline{d}+1$ values and c can assume \underline{d} values, then **G** admits exactly $p-1+\underline{d}$ loops.

Corollary 1. If d is a nontrivial divisor of m, then all the elements of [[0, m-1]] are loop vertices if and only if p = m+1-d.

3 A generalization and concluding remarks

We can give a simple generalization of the previous construction of generalized Posthumus graphs. Indeed we can consider the 1-graph \mathbf{G}' whose vertices are the elements of [[0, m-1]] and whose arcs connect any element $u \in [[0, m-1]]$ with the p elements of $f'(u) = \{u \cdot p + k, u \cdot p + 1 + k, \dots, u \cdot p + (p-1) + k\}.$

Remark 4. It is clear that the loop vertices of \mathbf{G}' are the solution of the equation (2) in section 3, with $t \in \{k, 1 + k, \dots, (p-1) + k\}$.

Moreover (by the previous remarks) we have that if c is a number such that $p^c < m$ and if F' is the function that associates to every non empty subset H of [[0, m-1]] the set $\bigcup_{u \in H} f'(u)$ then, for any $u \in [[0, m-1]]$, $F'^c(u)$ has exactly p^c consecutive elements, otherwise $F'^c(u)$ coincides with [[0, m-1]].

In particular, if n is the smallest natural number such that $m \leq p^n$, and u is a loop vertex, then we have (cf. the proof of Theorem 1, where u = 0) $\{u\} \subset F'(u) \subset \cdots \subset F'^{n-1}(u) \subset F'^n(u) = [[0, m-1]],$ hence $F'^{n-1}(u) \neq [[0, m-1]].$ Thus **G**' is a regular and strongly connected 1-graph whose diameter is n. \Box

We conclude with the following theorem that generalizes Theorem 3. Here \underline{d} , \underline{m} , \underline{a} and \underline{a}' are the same as in section 3.

Theorem 4. The loop vertices of \mathbf{G}' are the elements of [[0, m-1]] of type $-\underline{\mathbf{a}}' \cdot \mathbf{b} + c\underline{\mathbf{m}}$, where $c \in [[0, \underline{\mathbf{d}}-1]]$ and b is a number such that $\underline{\mathbf{d}}b \in \{k, 1 + k, \dots, (p-1) + k\}$.

If \underline{d} is a divisor of k, then \mathbf{G}' has $p-1+\underline{d}$ loops; otherwise, \mathbf{G}' has p-1 loops.

PROOF. The first part of the proof is an immediate consequence of the above results; the second one depends on the fact that, given a divisor d of p-1 and a set H of p consecutive numbers with minimum element k, if k is a multiple of d, then in H there are [(p-1)/d]+1 multiple of d; otherwise in H there are (p-1)/d multiples of d.

Let us remark that the second part of Theorem 4 can be useful in practical applications. In fact the loops of a graph somehow are superfluous, since they do not determine effective connections.

References

- G. CANCELLIERI, A. DEL FERRO, M. MAZZONE: State diagram for cyclic block codes, IEEE Melecom 96, Bari (1996) 1011–1013.
- [2] G. CANCELLIERI, L. LAICI: Input-output enumerating function of RSC codes and turbo codes, 4th Eur. Conf. Satellite Comm., Rome (1997) 422–427.
- [3] G. CANCELLIERI, F. VATTA: Feedback concatenation of convolutional codes, SoftCom 2001, Dubrovnik (2001) 57–63.
- [4] N. G. DE BRUIJN: A combinatorial problem. Proc. Konink. Nederl. Akad. Wetensch., 49 (1946) 758–764.
- [5] C. BERGE: Graphes et hypergraphes. Dunod, Paris (1970).
- [6] F. HARARY: Graph Theory. Addison–Wesley Pub. Company (1972).