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Introduction

Let M be a 2-dimensional compact connected smooth manifold without
boundary. Let p ∈ M be fixed. Take a geodesic g(t), 0 ≤ t ≤ ∞, starting at
p. Then the first point on this geodesic where the geodesic ceases to minimize
distance from p is called the cut point of p along the geodesic g(t). The cut
locus C(p) is the set of all cut points of p. Since M is compact, C(p) �= ∅. The
graph G is said to be smoothly embedded in M if for every point q ∈ G, there
exists a smooth coordinate chart ρ : V → R2 where V is an open neighborhood
of q in M , such that, for every edge e of G with q ∈ e, ρ(e ∩ V ) is contained
in a 1-dimensional affine subspace of R2. Suppose G is a connected finite graph
which is smoothly embedded in M , and whose vertices have degree 1 or 3 only.
Furthermore, suppose that for every vertex v of G of degree 3, the tangent
vectors to M at v in the directions of the three edges of G incident to v are not
contained in a closed half-space of TvM . Also, suppose that the inclusion map
ι : G → M induces an isomorphism ι∗ : H1(G; Z/2) → H1(M ; Z/2). In §1 - 3,
with the preceding hypothesis, we construct a smooth Riemannian metric α on
M and find a point p ∈ M so that the cut locus C(p, α) of p with respect to α
is G, and in §4, we show that the cut locus C(p, α) is stable for α.

1 Construction of the model curves

Let γ : R → R2 be a C∞ unit speed plane curve.
Then γ′(t) = Tγ(t) and T ′

γ(t) = κγ(t)Nγ(t) where Tγ(t) is the unit tangent
vector of γ(t), Nγ(t) is the unit normal vector of γ(t) such that {Tγ(t), Nγ(t)}
has the standard orientation and κγ(t) is the signed curvature of γ(t). The center
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of curvature of γ(t) at γ(t0) is γ(t0) + Nγ(t0)
κγ(t0)

where κγ(t0) �= 0. The evolute of

γ(t) is γ(t) + Nγ(t)
κγ(t) where κγ(t) �= 0. The parallel curve of γ(t) at distance r is

given by γ(t) + rNγ(t). The cut point of γ(t0) is the first point on the normal
line at γ(t0) in the direction of Nγ(t0) where the normal line ceases to minimize
its distance from γ. The cut locus of γ is the set of all cut points of γ(t) (i. e.
the cut locus of γ is the Maxwell set of the family of parallel curves of γ with
the distance parameter). The cut point on the normal ray γ(t) + uNγ , u ≥ 0
cannot occur after the center of curvature of γ(t). This is easy to prove. We
also need the following generalization of the cut locus of the plane curve. Let
γi : [ai, bi] → R2, i = 1, 2, . . . , n be a finite collection of smooth disjoint arcs. For
t0 ∈ [ai, bi], the cut locus of γi(t0) with respect to γ1, . . . , γn is the first point on
the normal line at γi(t0) in the direction of Nγ(t0) where the normal line ceases
to minimize distance to the union of the arcs. The cut locus of {γ1, . . . , γn} is
the set of all such cut points.

Lemma 1. Let g : [c, d] → R be a C∞ function and a, b ∈ R2 with ‖b‖ = 1.
There exists a unique C∞ plane curve C in R2 having parametrization f by arc
length such that if f : [c, d] → R2 then f(c) = a, f ′(c) = b, and κf (t) = g(t)
for every t ∈ [c, d]. In other words, a plane curve is determined up to a rigid
motion, by its signed curvature.

The proof of Lemma 1 may be found in the standard Differential Geometry
textbooks. Now, we are ready to construct three different types of model curves.
Let θ be a variable angle such that π

2 > θ > π
3 .

(1) Construct a curve whose curvature function is constant, i. e. an arc of a
circle with angle 2θ − 2

3π starting from (s0 cos(π
2 − θ), l + s0 sin(π

2 − θ))
to (

√
3

2 l + s0 cos(θ − π
6 ), − l

2 + s0 sin(θ − π
6 )), where l is the given positive

number and 0 < s0 <

√
3l

√
1+tan(

π

2
−θ)

2(1−√
3 tan(

π

2
−θ))

.

(2) Construct a curve γ satisfying the following conditions.

a. κγ(t) > 0 near t = 0, κ′
γ(0) = 0 and κ′′

γ(0) < 0.

b. κγ(−t) = κγ(t) and κγ is monotonically decreasing for t > 0.

c. If γ(t) = (X(t), Y (t)), then γ(−t) = (−X(t), Y (t)), γ(0) = (0,−δ),
and X ′(t), Y ′(t) > 0 for t > 0 where δ > 0.

The cut locus of γ is contained in Y -axis by some consideration. Finally,
we’ll show that the end-point of the cut locus is an ordinary cusp of the
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evolute of γ. Let F : R × R2 → R be defined by

F (t, x) := (x − γ(t)) · (x − γ(t)) − r2 where r > 0.

∂F

∂t
= (x − γ(t)) · Tγ(t) = 0 implies x − γ(t) = λNγ(t) for some λ.

Also, F (t, x) = 0 implies that λ = ±r.

∂2F

∂t2
= −2(−Tγ(t) · Tγ(t) + (x − γ(t)) · κγ(t)Nγ(t))

= −2(−1 + (x − γ(t)) · κγ(t)Nγ(t))

F = ∂F
∂t = ∂2F

∂t2
= 0 implies x = γ(t) + Nγ(t)

κγ(t) .

Let K : R × R2 → R be given by

K(t, x) := (x − γ(t)) · Tγ(t).

Then the discriminant set {γ(t) + Nγ(t)
κγ(t) |t ∈ (−ε, ε)} of K is the evolute

of γ. (The discriminant set of K is {x ∈ R2; there exists t ∈ R with
F (t, x) = ∂F

∂t (t, x) = 0})

∂K

∂t
=

∂2K

∂t2
= 0 at t = 0 if and only if

[κγ(0) �= 0, κ′
γ(0) = 0, and x = γ(0) +

Nγ(0)
κγ(0)

],

since ∂2K
∂t2

= κ′
γ(t)

κγ(t) = 0 at t = 0 (because κ′
γ(0) = 0)

To be an ordinary cusp of the evolute of γ, ∂3K
∂t3

�= 0 at t = 0. ∂3K
∂t3

=
κ′′

γ(t)

κγ(t) �= 0 at t = 0 since κ′′
γ(0) �= 0. (see J. W. Bruce and P. J. Giblin [2])

(3) Construct a curve γ satisfying the following conditions:

a. κγ(t) > 0 for all t, κ′
γ(0) = 0 and κ′′

γ(0) > 0.

b. κγ(−t) = κγ(t) and κγ is monotonically increasing for t > 0.

c. If γ(t) = (X(t), Y (t)), then γ(−t) = (−X(t), Y (t)), γ(0) = (e, 0),
and X ′(t), Y ′(t) > 0 for t > 0 where e > 0.

The initial point is (−w + s0 sin θ, s0 sin θ) and initial vector is (cos(π
2 −

θ), sin(π
2 − θ)). Also, we can construct another curve below the X-axis

which is symmetric with respect to X-axis.
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The parallel curves of these two curves at distance r intersect each other
transversely for some r since the two normal lines of two curves intersect
each other transversely at points of the X-axis between (−w, 0) and (w, 0)
except (0, 0). The cut locus of these two curves is the straight line segment
from (−w, 0) to (w, 0).

So we have finished the local construction of three different types of model
curves.

2 Construction of the regular neighborhoods

Let q1 be a vertex of G of degree 1. By definition of a smooth embedding,
there exists a smooth coordinate chart ρ : V1 → R2 where V1 is an open neigh-
borhood of q1 in M , such that, for the unique edge e of G with q1 ∈ e, ρ(e∩V1)
is contained in a ray from ρ(q1).

Let τ be a Euclidean motion (translation and rotation) of R2 which takes
ρ(q1) to the origin and R to the positive X-axis. Let ξ1 = τ ◦ ρ, and let U1 =
ξ1(V1). Choose δ1 > 0 such that Bδ1(0) = { (x, y) ∈ R2 | x2 + y2 < (δ1)2 } ⊂ U1,
and (ξ1)−1(Bδ1(0)) = V ′

1 ⊂ V1.
Let q3 be a vertex of degree 3. By definition of a smooth embedding and our

assumption on the vertices of degree 3, there exists a smooth coordinate chart
ρ : V3 → R2 where V3 is an open neighborhood of q3, such that ρ(V3 ∩ G) is
contained in three rays starting from ρ(q3) in ρ(V3) with angles which are all
< π.

Lemma 2. Given three rays r1, r2 and r3 from (0, 0) all of whose intersec-
tion angles are less than π, there exists a non-singular linear transformation
L : R2 → R2 such that L(r1) = {k(1, 0)|k � 0}, L(r2) = {k(−1

2 ,
√

3
2 )|k � 0} and

L(r3) = {k(−1
2 ,−

√
3

2 )|k � 0}.
Lemma 2 is trivial since the projective group PGL(2, R) acts transitively on

triple of points of the projective plane.
Next, we will define a coordinate chart for each open neighborhood of a edge

of G. Let i = 1, 2, . . ., the number of vertices of degree 1 and k = 1, 2, . . ., the
number of vertices of degree 3. For each i and k, we have δi

1 and δk
3 by the

previous two constructions. Let δ := min{δi
1, δ

k
3 , 1}. Thus we have coordinate

chars ξi
1 : Oi

1 → Bδ(0) and ξk
3 : Ok

3 → Bδ(0) (i. e. Oi
1 = (ξi

1)
−1(Bδ(0)) and

Ok
3 = (ξk

3 )−1(Bδ(0)).
Since the normal bundle of an edge ē is trivial, we have a diffeomorphism g

from the normal bundle of ē to [−2, 2]×R where the interval [−2, 2] parametrizes
ē.



Stable cut loci on surfaces 5

By our previous construction of neighborhoods of vertices, we have coordi-
nate charts ξ̃i

1 : Oi
1 → Bδ((2, 0)) (or Bδ((−2, 0))) and ξ̃k

3 : Ok
3 → Bδ((2, 0)) (or

Bδ((−2, 0))) where the chart ξ̃i
1 (resp. ξ̃k

3 ) is obtained from the above ξi
1 (resp.

ξk
3 ), by composition with Euclidean isometries. We choose the parametrization

[−2, 2] → ē so that it is equal to the inverse of the restriction of the given coor-
dinate charts on [−2,−2 + δ) and (2− δ, 2]. On

⋃
i,k (Oi

1 ∪Ok
3), there is the flat

metric induced by the coordinate charts. If we consider the space of metrics on
M as the space of sections of a fibre bundle with base M and fibre the set of
positive definite (n×n) matrices (see M. Buchner [3, p. 203]), we can extend this
flat metric together with the metric on ē induced by the given paremetrization
to neighborhood of ē in M by the prolongation theorem for smooth sections.

Let exp: [−2, 2] × R → M be the composition of g−1 with the exponential
map of the normal bundle of ē. Then by the tubular neighborhood theorem, exp
restricts to a diffeomorphism h between an open neighborhood U2 of the zero
section in [−2, 2]×R and a neighborhood V2 of ē. We define a new metric on V2

as the flat metric induced by h; i. e. so that h is an isometry. Since h was already
an isometry near the vertices of e, this new metric extends the flat metric defined
near the vertices. Thus we obtain a flat metric on a neighborhood of G. Then
there is a ε0 > 0 such that [−2, 2] × (−ε0, ε0) ⊂ U2. Let ε′ := min{ε0, δ

2} and
h−1([−2.2] × (−ε′, ε′) ⊂ V2. For any n = 1, 2, . . . the number of edges, there is
ε′n such that (hn)−1([−2, 2] × (−ε′n, ε′n)) ⊂ V n

2 . Let ε := min{ε′n}.
Let us define subgraphs Gi

1,G
j
2, and Gk

3 of the graph G as follows.

(1) Gi
1 := an edge e together with an incident vertex of degree 1 but without

incident vertex of degree 3 where i = 1, 2, . . ., number of vertices of degree
1.

(2) Gj
2 := an edge e without two incident vertices of degree 3 where j =

1, 2, . . ., number of edges with two incident vertices of degree 3.

(3) Gk
3 := G ∩ Ok

3 , where k = 1, 2, . . ., number of vertices of degree 3

We want to construct the neighborhoods of Gi
1, Gj

2, and Gk
3.

On Gi
1, we can get a coordinate chart ηi

1 : J i
1 → J 〉

∞ as follows. By our
previous construction, we obtain J 〉

∞ = (−ε, 4) × (−ε, ε). For p ∈ Oi
1, ηi

1(p) =
ξ1(p) and for p ∈ Oj

2, ηi
1(p) = h(p) + (2, 0) (Recall that δ ≥ 2ε > 0). Let

J i
1 := (ηi

1)
−1(J 〉

∞).
On Gj

2, we just get a coordinate chart ηj
2 : J j

2 → J |
∈ by ηj

2 = h, J |
∈ =

(−∈,∈) × (−ε, ε) and J j
2 := (ηj

2)
−1(J |

∈).
On Gk

3, we get a coordinate chart ηk
3 : Jk

3 → J ‖
� by η = ξ3, J ‖

� = Bδ(′) and
Jk

3 := (ηk
3 )−1(J ‖

�).
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In J i
1, J j

2 , and Jk
3 , we get the flat metric induced by the coordinate charts

ηi
1, ηj

2, and ηk
3 . Also, if J i

1∩J j
2 �= ∅, (ηk

3 )−1 ◦ηi
1: J i

1∩Jk
3 → J i

1∩Jk
3 is an isometry,

and if J j
2 ∩ Jk

3 �= ∅, (ηk
3 )−1 ◦ (Euclidean motions) ◦ ηj

2 : J j
2 ∩ Jk

3 → J j
2 ∩ Jk

3 is an
isometry.

Let J :=
⋃

i,j,k(J
i
1 ∪ J j

2 ∪ Jk
3 ). So J is a regular neighborhood of G in M .

3 Construction of the metric α

By the construction of J 〉
∞, J |

∈, and J ‖
� in section 2, we have δ and ε with

δ > 2ε > 0. Let δ′ = 3
4δ and s0 = ε

sin θ .
In J ‖

� , draw the circle with center (0, 0) and radius δ′ and three bands with
width ε whose center line is the edge from (0, 0) to (δ, 0). We get the intersection
points between this circle and the boundary of the bands, and two line segments
from these points to a point on the edge with intersection angle Θ with the
corresponding edge. The length of each of the line segments is s0. Denote the
length from (0, 0) to a point of the edge at which the line segments intersect by
l. By construction (I) of §1, we can get the curve γ : (−c, c) → J 〉

∞ such that
γ(−c) = (4 − l − s0 cos Θ, s0 sin Θ) and γ(0) = (− 1

κγ(0) , 0).

In J |
∈, by construction (III) of §1, we get γ : (−d, d) → J |

∈ such that
γ(−d) = (−2 + l − s0 cos Θ, s0 sin Θ) and γ(0) = (0, A) for A > 0.

Then in J i
1 ∩ Jk

3 or J j
2 ∩ Jk

3 , the inverse of these constructed arcs in J 〉
∞, J |

∈,
and J ‖

� under the coordinate charts fit smoothly by isometries since near their
ends of the arcs have the same constant curvature.

Finally, in J ⊂ M , the union of the inverse of the constructed arcs under the
coordinate charts are smooth curves by above reason. Let these curves be called
Γ and J ′ the closed region bounded by Γ (including G). Obviously G ⊂ int(J ′) ⊂
J ′ ⊂ J . Consider the Mayer-Vietoris exact sequence of the pair (J,M \ J ′) with
coefficients Z/2.

· · · → H2(J \ int(J ′)) → H2(J) ⊕ H2(M \ J ′) → H2(M)

→ H1(J \ int(J ′)) → H1(J) ⊕ H1(M \ J ′) → H1(M)

→ H̃0(J \ int(J ′)) → H̃0(J) ⊕ H̃0(M \ J ′) → H̃0(M) → 0 (1)

Since M is a 2-dimensional compact connected manifold without boundary,
H2(M) = Z/2 and H̃0(M) = 0. Since Γ is a deformation retract of J \ int(J ′),
H2(J \ int(J ′) = 0. Since M \ J ′ is a surface with non-empty boundary and
M \ J ′ ⊂ M , H2(M \ J ′) = 0. Since G is a deformation retract of J ′ and J ′ is
homotopy equivalent to J , H2(J) = 0 and H̃0(J) = 0. Also, since the inclusion
map ι : G → M induces an isomorphism ι∗ : H1(G; Z/2) → H1(M ; Z/2),
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H1(J) = H1(M) = (Z/2)m for some positive integer m. Since J \ int(J ′) is
homotopy equivalent to Γ, the inclusion maps J \ int(J ′) → J and J \ int(J ′) →
M \ J ′ induce the zero homomorphisms. Thus H1(J \ int(J ′)) = H2(M) = Z/2.
Then Γ is connected, so H̃0(J\int(J ′)) = 0. Now exactness of the Mayer-Vietoris
sequence implies that H1(M \ J ′) = 0. Also, H̃0(M \ J ′) = 0. Thus M \ J ′ is
diffeomorphic to a disk D2 with Γ mapping to ∂D2.

Proposition 1. Let D be an n-disk embedded in C∞ manifold M . For any
Riemannian metric on M \ int(D), there is a Riemannian metric on M which
agrees with the original metric on M \ int(D) such that for some p in D, expp

is a diffeomorphism of unit disk about the origin in Tp(M) onto M .

The proof of Proposition 3 can be found in Weinstein [8, Proposition C]. By
Proposition 3, we can extend the flat metric constructed on the neighborhood
J ′ of the graph G to a metric α on M such that for some p ∈ M \ J ′, expp :
Tp(M) → M is a diffeomorphism from the unit disk in Tp(M) onto M \ J ′.
In particular, the image of the unit circle in Tp(M) is the curve Γ, and the
geodesic rays from p are orthogonal to Γ. Thus, in the isometric coordinate
neighborhoods J 〉

∞, J |
∈, and J ‖

� constructed above, the geodesic rays from p are
the normal lines to the model curves. Since the metric in J ′ is flat, the graph G
is the cut locus C(p, α).

4 Stability of C(p, α)

In section 3, we have constructed a metric α such that C(p, α) = G for some
p ∈ M . The cut locus C(p, α) is said to be stable for α if there is a neighborhood
W of α in the space of all metrics on M with the Whitney C∞-topology such
that for each β ∈ W , there is a diffeomorphism A(β) : M → M with the
property that A(β)(C(p, α) = C(p, β) (see M. Buchner [3, 4]). In this section,
we want to prove that C(p, α) is stable for α. To do this, we use Looijenga’s
set-up (see Looijenga [5]). Let Γ, α, and G ⊂ J ′ ⊂ J be as in the previous
section, and let r0 be the largest distance from a point of G to the curve Γ.
From now on, we denote Γ as γ : R → M like a function. Let δ > 0 and
U := {(t, x, r) : x ∈ J ′, dα(x, γ(t)) < r0 + δ,−δ < r < r0 + δ} where dα is the
distance function on M corresponding to the metric α. The family F : U → R
is defined by

F (t, x, r) := (dα(x, γ(t)))2 − r2

The deformation H : U → R × J ′ × (−δ, r0 + δ) associated to the family F is
defined by

H(t, x, r) := (F (t, x, r), x, r)
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The deformation H is stable if for F ′ close to F (in the Whitney C∞ topology)
there exist diffeomorphisms h, h′, h

′′
such that the following diagram commutes

U
H−−−−→ R × J ′ × (−δ, r0 + δ)

Proj−−−−→ J ′ × (−δ, r0 + δ)

h

� h′
� h

′′
�

U
H′

−−−−→ R × J ′ × (−δ, r0 + δ)
Proj−−−−→ J ′ × (−δ, r0 + δ)

where H ′(t, x, r) = (F ′(t, x, r), x, r) and h′(t, x, r) = (t, h′′(x, r)) (see Looi-
jenga [5]). Note that h′′ is close to the identity map and the restriction of h
to J ′ × (−δ, r0 + δ) is also close to the identity map.

We consider the action of Diff(R) on C∞(R) by h · f := f ◦ h−1 where
Diff(R) is the group of diffeomorphisms from R to R. Let Ψ : J ′×(−δ, r0+δ) →
C∞(R) be defined by

(Ψ(x, r))(t) := (dα(x, γ(t)))2 − r2(= F (t, x, r))

By the work of Thom, Mather, and Sergeraert, the deformation H is stable if and
only if Ψ is transverse to all the Diff(R)-orbits in C∞(R) (see Looijenga [5]).

The discriminant of the family F is the set

DF := {(x, r) : there existt ∈ Rsuch thatF (t, x, r) = 0,

∂F

∂t
(t, x, r) = 0}

= {(x, r) : there existt ∈ Rsuch thatΨ(x, r)(t) = 0,

d

dt
(Ψ(x, r)(t)) = 0}

First, we show that if H is stable then C(p, α) is stable for α. Suppose that
the deformation H is stable. The cut locus G = C(p, α) is the image by the
projection J ′ × (−δ, r0 + δ) → J ′ of the closure G of the double point curve of
DF . (To see this, consider EF = {(t, x, r) : F (t, x, r) = 0, ∂F

∂t (t, x, r) = 0}, then
EF is a smooth surface and the double point curve of DF means the double
points of the projection of EF to (x, r)-space.) Now, if we perturb the metric of
M , we obtain a new cut locus G′, which is the projection of the cut locus G′ of
DF ′ corresponding to the perturbed family H ′(t, x, r) = (F ′(t, x, r), x, r) where
F ′ is the corresponding perturbed family with respect to metrics. Since H is
stable, there exist diffeomorphisms h, h′ and h′′ such that H ′(t, x, r) = (h′ ◦H ◦
h−1)(t, x, r) and G′ = h′′(G). Thus G′ = h′′(G) where h′′ is a diffeomorphism.

Since the projection J ′ × (−δ, r0 + δ) → J ′ restricts to a mapping G → G
and h′′ is close to the identity, h′′ induces a homeomorphism φ : G → G′ which
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extends to a diffeomorphism Φ : M → M . Thus the cut locus G of γ is stable
with respect to perturbation of the metric α of M .

Next, we prove that Ψ is transverse to all Diff -orbits on C∞(R). Before the
proof, we need to know the Diff(R)-orbits in C∞(R). The orbits of singularities
in C∞(R) are followings:

(1) f has one critical point t0 such that f(t0) = f ′(t0) = 0 and f ′′(t0) �= 0.

(2) f has one critical point t0 such that f(t0) = f ′(t0) = f ′′(t0) = 0 and
f ′′′(t0) �= 0.

(3) f has one critical point t0 such that f(t0) = f ′(t0) = f ′′(t0) = f ′′′(t0) = 0
and f (iv)(t0) �= 0.

(4) f has two distinct critical points t0 and t1 such that f(t0) = f(t1) =
f ′(t0) = f ′(t1) = 0, f ′′(t0) �= 0 and f ′′(t1) �= 0.

(5) f has three distinct critical points t0, t1, and t2 such that f(t0) = f(t1) =
f(t2) = f ′(t0) = f ′(t1) = f ′(t2) = 0, f ′′(t0) �= 0, f ′′(t1) �= 0, and f ′′(t2) �=
0.

The preimage of these orbits are the strata of the discriminant locus DF ⊂
J ′ × (−δ,∇′ + δ). Type(1) are smooth points of DF , type(2) are cusp points
of DF , type(3) are swallowtail points of DF , type(4) are double points of DF ,
type(5) are triple points of DF .

To prove that Ψ is transverse to all Diff(R)-orbits in C∞(R), we use
Mather’s infinitesimal versality criterion, which we now describe (see [6]).

Consider an orbit X ⊂ C∞(R) along which the function f has exactly s
critical points t0, . . . , ts−1 such that f(t0) = · · · = f(ts−1) = 0. Suppose that
Ψ(x0, r0) = f ∈ X. To prove that Ψ is transverse to X at f , we just consider
the germs of F (t, x, r) at (ti, x0, r0), i = 0, . . . , s− 1. For each i, let fi(t) ∈ R[[t]]
be the Taylor series of f at ti (so f

(n)
i (0) = f (n)(ti)). Let < f ′

i(t) > be the ideal
of R[[t]] generated by f ′

i(t), and consider the R-algebra

A =
R[[t]]

< f ′
0(t) >

× · · · × R[[t]]
< f ′

s−1(t) >
.

Choose local coordinates x = (u, v) on M near x0 and let Fu, Fv, Fr be
the elements corresponding to the functions ∂F

∂u (t, u0, v0, r0), ∂F
∂v (t, u0, v0, r0),

∂F
∂r (t, u0, v0, r0), respectively. Then Ψ is transverse to X at f if and only if Fu,
Fv, Fr span A as a real vector space (Mather’s infinitesimal criterion).

First, we consider the orbits of type(1)-(3) for which s = 1. Mather’s criterion
is easily checked for type(1). Furthermore, if Ψ(t, x0, r0) has type(3) and Ψ is
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transverse to the orbits of type(3) at (x0, r0), then Ψ is transverse to the orbit
of type(2) for (x, r) sufficiently close to (x0, r0). The proof that C(p, α) is stable
if H is stable shows that we can replace J ′ by an arbitrary neighborhood of the
cut locus G = C(p, α). Thus we need only check that Ψ is transverse to the
orbit of type(3).

To check Mather’s criterion for singularity of type(3), we can work in a
coordinate patch J ′

1 as constructed above, In these coordinates,

F (t, u, v, r) = ((u, v) − γ(t)) · ((u, v) − γ(t)) − r2

where γ is the model curve type (II)(in §1). By this construction, γ(0) = (0, 0)
and γ′(0) = (1, 0). Thus we can parametrize γ as (t, a2t

2 + a3t
3 + a4t

4 + · · · ).
Now, F has a singularity at (0, 0, 1

κγ(0) ,
1

κγ(0)). Let f(t) = F (t, 0, 1
κγ(0) ,

1
κγ(0)).

By Mather’s criterion, Ψ is transverse to the orbit of f in C∞(R) if and only
if ∂F

∂u |(u,v,r)=(0,1/κγ(0),1/κγ(0)) generate R[[t]]
<f ′(t)> where R[[t]] is the ring of power

series at 0.

F (t, u, v, r) = ((u, v) − γ(t)) · ((u, v) − γ(t)) − r2

= u2 − 2ut + t2 + v2 − 2(a2t
2 + a3t

3 + a4t
4 + · · · )v

+ (a2t
2 + a3t

3 + a4t
4 + · · · )2 − r2

By the construction(II) of §1, κγ(0) > 0, κ′
γ(0) = 0, and κ′′

γ(0) �= 0.

∂F

∂u
|(u,v,r)=(0,1/κγ(0),1/κγ(0)) = −2t

∂F

∂v
|(u,v,r)=(0,1/κγ(0),1/κγ(0)) =

2
κγ(0)

− 2(a2t
2 + a3t

3 + a4t
4 + · · · )

∂F

∂r
|(u,v,r)=(0,1/κγ(0),1/κγ(0)) = −2r = − 2

κγ(0)
�= 0

Also, a2 = κγ(0)
2 , a3 = 0 and a4 = κ3

γ(0)

8 by basic calculation. Thus

f(t) = F (t, 0,
1

κγ(0)
,

1
κγ(0)

)

= t2 − 2
κγ(0)

· (κγ(0)
2

t2 +
κγ(0)

8
t4 + · · · )

+ (
κγ(0)

2
t2 +

κγ(0)
8

t4 + · · · )2 + · · ·

=
κγ(0)

4
t4 + · · ·

f ′(t) = κ2
γ(0)t3 + · · ·
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It is true that {1, t, t2} spans R[[t]]
<t3>

. Thus Ψ is transverse to the orbit of f in
C∞(R).

Next, we consider the orbit of type(4), for which s = 2. Now, F has a
type(4) singularity at (t0, u0, v0, r0) and (t1, u0, v0, r0) where r0 �= 1/κγ(t0),
r0 �= 1/κγ(t1), κγ(t0) �= 0, and κγ(t1) �= 0. Let g0(t) = f(t0 + t) = F (t0 +
t, u0, v0, r0) and g1 = f(t1 + t) = F (t1 + t, u0, v0, r0). By Mather’s criterion, Ψ is
transverse to the orbits of f in C∞(R) if and only if ∂F

∂u |(u,v,r)=(0,1/κγ(0),1/κγ(0)),
∂F
∂v |(u,v,r)=(0,1/κγ(0),1/κγ(0)), ∂F

∂r |(u,v,r)=(0,1/κγ(0),1/κγ(0)) generate R[[t]]
<g′0(t)>

× R[[t]]
<g′1(t)>

.
Let

gi(t) = f(t + ti) = ((u0, v0) − γ(t + ti)) · ((u0, v0) − γ(t + ti)) − r2
0

for i = 0, 1.

Thus g0(0) = f(t0) = 0 and g′0(0) = f ′(t0) = 0 since (u0, v0) is on the normal
line at γ(t0). g′′0(0) = f ′′(t0) �= 0 since κγ(t0) �= 0 and r0 �= 1

κγ(t0) . Also, similarly
g1(0) = f(t1) = 0, g′1(0) = f ′(t1) = 0 and g′′1(0) = f ′′(t1) �= 0. So we have
g0(t) = b2t

2 + · · · (b2 �= 0) and g1(t) = c2t
2 + · · · (c2 �= 0). Thus < g′0(t) >=<

g′1(t) >=< t >. dim( R[[t]]
<g′0(t)>

) = dim( R[[t]]
<g′1(t)>

) = 1. It is enough to show that

(
∂F

∂u
|(t0,u0,v0,r0),

∂F

∂u
|(t1,u0,v0,r0)) = (A, 0)

(
∂F

∂v
|(t0,u0,v0,r0),

∂F

∂v
|(t1,u0,v0,r0)) = (0, B)

for non-zero constant A, B since

(
∂F

∂r
|(t0,u0,v0,r0),

∂F

∂r
|(t1,u0,v0,r0)) = (−2r0,−2r0).

To do this, we change (u, v)-coordinate to (τ, η)-coordinate where the level
curves of τ are the parallel curves of γ and the level curves of η are the parallel
curves of γ near γ(t0). Also, we assume that (τ, η) = (0, 0) at (u, v) = (u0, v0).
Thus

∂F

∂τ
|(t0,0,0,r0) �= 0 and

∂F

∂η
|(t0,0,0,r0) = 0

since the arc of the circle through (u0, v0) with center γ(t0) is tangent to the
η-axis and is transverse to the τ -axis. Similarly,

∂F

∂τ
|(t1,0,0,r0) = 0 and

∂F

∂η
|(t1,0,0,r0) �= 0
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and Mather’s criterion holds. Also, we have another case of type(4) singularity at
(t0, u0, v0, r0) and (t1, u0, v0, r0) where r0 �= 1/κγ(t0), r0 �= 1/κγ(t1), κγ(t0) �= 0
and κγ(t1) �= 0. To check Mather’s criterion with same set-up above, we change
(u, v)-coordinate to (τ, η)-coordinate where the curve τ = 0 is tangent to the
parallel curves of γ at (u0, v0) and the curve η = 0 is orthogonal to the curve
τ = 0 at (u0, v0). We can assume (τ, η) = (0, 0) at (u, v) = (u0, v0). Then

∂F

∂τ
|(t0,0,0,r0) �= 0,

∂F

∂η
|(t0,0,0,r0) = 0

∂F

∂τ
|(t1,0,0,r0) �= 0,

∂F

∂η
|(t1,0,0,r0) = 0

∂F

∂r
|(t0,0,0,r0) �= 0,

∂F

∂r
|(t1,0,0,r0) �= 0

since the arcs of the circles through (u0, v0) with center γ(t0) and γ(t1) are
tangential to the η-axis and are transverse to the τ -axis. Thus Mather’s criterion
holds. Similarly, we can check the orbits of type(5) for which s = 3. Thus Ψ is
transverse to all Diff(R)-orbits in C∞(R). This implies that H is stable, so
the cut locus C(p, α) is stable for α. Thus we have the following theorem.

Theorem 1. Let M be a compact connected 2-dimensional C∞-manifold
without boundary. Suppose that G is a connected finite graph which is smoothly
embedded in M , and whose vertices have degree 1 or 3 only. Furthermore, sup-
pose that for every vertex v of G of degree 3, the tangent vectors to M at v in
the directions of the three edges of G incident to v are not contained in a closed
half-space of TvM . Also, suppose that the inclusion map ι : G → M induces an
isomorphism ι∗ : H1(G; Z/2) → H1(M ; Z/2). Then there exist a smooth metric
α on M and a point p ∈ M so that G = C(p, α) and the cut locus C(p, α) is
stable for α.
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