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Abstract. In this work, we prove the existence of a complete, embedded, singly periodic
minimal surface, whose quotient by a vertical translation has genus two and four Scherk type
ends. With an adequate choice of parameters it can be shown that the surface is a covering of
Scherk’s saddle tower.
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1. Introduction

In the classical theory of minimal surfaces the well known Scherk saddle
towers are minimal singly periodic surfaces which have genus zero and four
Scherk type ends in the quotient space.

The aim of this work is to discuss the construction of saddle towers with
genus two in the quotient space. In some cases we can assure that the surface
is a covering of the original one or of the deformed Scherk tower [1, 4, 5].

The construction of singly periodic examples with genus two and four Scherk
type ends, in the quotient space, will be made by considering a 2-torus M as
a hyperelliptic curve. The functions of the Weierstrass representation will be
defined on this 2-torus. In some cases we can solve the period problem thus
having a well defined singly periodic minimal surface with planar Scherk ends.

2. The Riemann surface M and its automorphisms

We will consider a compact genus two Riemann surface M given by the set

M =
{

(z, w) ∈ Ĉ × Ĉ : w2 =
(z + λ1)(z − 1)(z + λ)
(z − λ1)(z + 1)(z − λ)

, 0 < λ < 1 < λ1

}
(1)

By removing of M the four points corresponding to the solutions of the
equation z2 + c2 = 0, c > 0, we will have an appropriated surface to define
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an immersion with vertical period. The equation above was chosen to have the
normal map of the surface exactly described by the function w.

In the figure 1 we have the values of the function z associated to some points
of the 2-torus M . The symbol o identifies the points corresponding to the ends.
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Figure 1. The 2-torus M

The symmetries of M will be very useful to eliminate some of the periods.
First of all we observe that w2(z) = w2(z); if z is real then w2(z) is real.

Moreover, analysing the sign of w2, we have:
• w is real if z belongs to ] −∞,−λ1[ , ] − 1,−λ[ , ]λ, 1[ or ]λ1, +∞[
• w is purely imaginary if z belongs to ] − λ1,−1[ , ] − λ, λ[ or ]1, λ1[.

If z is imaginary, z = −z and w2(−z) =
1

w2(z)
then w(z) =

1
w(z)

, that is,

the w has modulus equal to 1 on the imaginary axis. From these calculations
we have the following lemma.

Lemma 1. Let M =
{

(z, w) ∈ Ĉ × Ĉ : w2 =
(z + λ1)(z − 1)(z + λ)
(z − λ1)(z + 1)(z − λ)

}
be a

2-torus.
Let: σ, δ, τ : M → M be the maps given by

σ(z, w) = (z,−w)
δ(z, w) = (z, w)

τ(z, w) =
(
−z,

1
w

)
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These maps are automorphisms of M .
The curves fixed by σ are corresponding to

{z ∈ R | − λ1 ≤ z ≤ −1, −λ ≤ z ≤ λ and 1 ≤ z ≤ λ1}.

The curves fixed by δ are corresponding to

{z ∈ R | − 1 ≤ z ≤ −λ and λ ≤ z ≤ 1}.

The automorphism τ fixes the curve of the 2-torus corresponding to the imag-
inary axis in the plane z.

Q

τ

Q

δQ

Q

σ

Figure 2. Automorphisms of the 2-torus M

3. The Weierstrass Data

For each c ∈ R, c > 0 let us define

M = M\{(z, w) : z = ic or z = −ic} (2)

In order to construct the immersion of the 2-torus with four Scherk type
ends we recall that according to [6] such ends are asymptotic to a vertical flat
annulus and the winding number of M vanishes. From these remarks it follows
that the total curvature is c(M) = 2π(χ(M)−W (M)) = 2πχ(M) = −12π, since
that M has genus two and four points have been removed. Consequently, the
degree of the Weierstrass function g will be 3. We will take the normal vector
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in the vertical direction and pointing up at the points of M such that z = λ1,
z = λ or z = −1 and pointing down at the points such that z = 1, z = −1 or
z = −λ1.

This choice leads naturally to g = w, since the two functions have the same
zeros and poles.

The holomorphic 1-form η must have double zeros in the points correspond-
ing to z = λ1, z = λ e z = −1. In order to guarantee Scherk type ends, η must
have, according to [6], simple poles at the points z = ±ic (corresponding to the
ends of the surface).

By observing zeros and poles in the table that follows, where we have set
wc =

√
w2(ic) e w−c =

√
w2(−ic), we define:

η =
1

(z2 + c2)g
dz (3)

and we have

z −λ1 −1 −λ λ 1 λ1 −ic −ic ic ic ∞ ∞
g = w 0 ∞ 0 ∞ 0 ∞ w−c −w−c wc −wc 1 −1

1
z2+c2

∞ ∞ ∞ ∞ 02 02

1
g ∞ 0 ∞ 0 ∞ 0
dz 0 0 0 0 0 0 ∞2 ∞2

η 02 02 02 ∞ ∞ ∞ ∞

Let φ1, φ2 and φ3 be the holomorphic 1-forms defined from the Weierstrass

data g = w e η =
1

(z2 + c2)g
dz:

φ1 =
1
2
(1 − g2)η

φ2 =
i

2
(1 + g2)η

φ3 = gη

In the theorem that follows we will verify that the surface obtained from the
1-form Φ = (φ1, φ2, φ3) defined on M is complete singly periodic and minimal.

More precisely, we will first demonstrate that on curves around the ends
there are real periods in the vertical direction. Secondly we will verify that
there exists a pair (λ, λ1) such that Re

∫
γ Φ = 0 for all closed curves γ in the

homology group of M . To do this we will use the symmetries of M . We have:
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Lemma 2. The automorphisms σ, δ and τ of Lemma 1 satisfy

σ∗Φ =

 −1 0 0
0 1 0
0 0 1

Φ, δ∗Φ =

 1 0 0
0 −1 0
0 0 1

Φ

and τ∗Φ =

 1 0 0
0 1 0
0 0 −1

Φ.

From the previous lemma we can conclude that σ, δ and τ induce, in R
3,

reflexion symmetries with respect to orthogonal planes parallel to x2Ox3, x1Ox3

and x1Ox2, respectively. The images of the curves fixed by σ, δ and τ are planar
geodesics contained in these orthogonal planes [3]. On the curves fixed by σ the
function g assume imaginary values and on the curves fixed by δ we have g real;
finally on the curves fixed by τ the function g assumes values with modulus one.

Theorem 1. Let M be the compact Riemann surface with four points re-
moved given by 2. For c in a neighbourhood of c = 1 there exists a pair (λ, λ1)
such that X : M → R

3 defined by X(p) = Re
∫ p
p0

Φ, is a minimal singly periodic
surface in R

3.
Proof. In the z plane we will consider the positively oriented circle γ̃ with

center in z = ic and radius r =
c

2
. Let γ be the lifting of γ̃ to M ; we observe

that τγ = −γ. We have:∫
γ
Φ = −

∫
τγ

Φ = −
∫

γ
τ∗Φ =

 −1 0 0
0 −1 0
0 0 1

∫
γ
Φ

therefore Re
∫
γ φ1 = 0 and Re

∫
γ φ2 = 0.

From the Cauchy integral formula it follows that Re
∫

γ
φ3 =

π

c
. Hence, the

period vector at the ends (z, w) = (ic,±wc) is (0, 0,
π

c
) and it is easy to see that

the period at the ends (z, w) = (−ic,±w−c) is (0, 0,−π

c
).

To study the periods on the homology curves we consider, in the z-plane, γ̃1

and γ̃2 circles centered in A =
1 + λ

2
and B =

1 + λ1

2
, respectively, both with

radius r =
λ1 − λ

2
. We will denote by γ∗

1 and γ∗
2 the liftings of γ̃1 and γ̃2 to M .

The curves γ∗
1 , γ∗

2 , τγ∗
1 and τγ∗

2 constitute a basis of the homology
group of M .

The curve γ∗
1 is homotopic to the closed curve γ1 on M corresponding to

the interval I1 = {z ∈ R | λ ≤ z ≤ 1}. One branch of the function w = w(z)
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Figure 3. The z plane

such that w(1) = 0 and w(λ) = ∞, is real and positive on this interval; the
other branch is real and negative. Let C1 be the curve in M given by the
points (z, w) such that z ∈ I1 and w(z) ≥ 0. If (z, w) belongs to C1 then
σ(z, w) = (z,−w) = (z,−w) and σC1 describes the portion of γ1 corresponding
to the negative branch of the function w. According the orientation we can write
γ1 = C1 ∪ (−σC1).

The curve γ∗
2 is homotopic to the closed curve γ2 in M corresponding to the

interval I2 = {z ∈ R|1 ≤ z ≤ λ1}. On this curve the function w = w(z) assumes
imaginary values; denoting by C2 the portion of γ2 corresponding to one of the
branches of w we can write γ2 = C2 ∪ (−δC2).

From the above considerations, it follows that σγ1 = −γ1 and δγ2 = −γ2

and hence:

1.
∫

γ1

Φ = −
∫

σγ1

Φ = −
∫

γ1

σ∗Φ =

 1 0 0
0 −1 0
0 0 −1

∫
γ1

Φ; we have

Re
∫
γ1

φ2 = 0 and Re
∫
γ1

φ3 = 0;

2.
∫

γ2

Φ = −
∫

δγ2

Φ = −
∫

γ2

δ∗Φ =

 −1 0 0
0 1 0
0 0 −1

∫
γ2

Φ; we have

Re
∫
γ2

φ1 = 0 and Re
∫
γ2

φ3 = 0.

These two integrals (i) and (ii) depend on λ and λ1. From now our aim is
to prove that there exists a pair (λ, λ1) ∈ Ω = {(λ, λ1) : 0 < λ < 1 < λ1} such
that Re

∫
γ1

φ1 = Re
∫
γ2

φ2 = 0.
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Figure 4. Homology curves of M

We denote

π1(λ, λ1) = Re
∫

γ1

φ1 =
∫ 1

λ

(λ1 + λ − 1)z2 − λλ1√
(λ2

1 − z2)(1 − z2)(z2 − λ2)(z2 + c2)
dz. (4)

π2(λ, λ1) = Re
∫

γ1

φ2 =
∫ λ1

1

−z3 + (λ1 + λ − λλ1)z√
(λ2

1 − z2)(z2 − 1)(z2 − λ2)(z2 + c2)
dz. (5)

To verify the existence of a common zero to these two integrals we will de-
velop the same arguments founded in the work of Wölgemuth [8]: by construct-
ing a closed curve in the region Ω we will show that its image under π = (π1, π2)
is a plane curve such that the winding number around the point (0, 0) is distinct
from zero. The conclusion will follow from the next result, demonstrated in [2,
p. 86]:

Theorem. Let f : D → P be a continuous mapping of a disc into the plane,
let C be the boundary circle of D, and let y be a point of the plane not on f(C).
If the winding number of f |C about y is not zero, then y ∈ f(D); i. e. there is
a point x ∈ D such that f(x) = y.

Deriving π1 with respect to λ1 and π2 with respect to λ we obtain:

∂π1

∂λ1
(λ, λ1) =

∫ 1

λ

z2(λ1 + λ − λλ1 − z2)√
(λ2

1 − z2)3(1 − z2)(z2 − λ2)(z2 + c2)
dz.

∂π2

∂λ
(λ, λ1) =

∫ λ1

1

z[λλ1 − (λ1 + λ − 1)z2]√
(λ2

1 − z2)(z2 − 1)(z2 − λ2)3(z2 + c2)
dz.
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Recalling that 0 < λ < 1 < λ1 we have λ1 + λ − λλ1 > 1, that is, λλ1 <
λ1 + λ − 1 and it follows:

• the first integrand is positive, for λ < z < 1 and
• the second integrand is negative, for 1 < z < λ1.

Hence
∂π1

∂λ1
> 0 and

∂π2

∂λ
< 0, that is, π1 is strictly increasing as a function

of λ1 and π2 is strictly decreasing as a function of λ.
The values of π1 and π2 in some points (λ, λ1) can be estimated directly by

computer and in the special case c = 1 we found:

π1(0.1, 2) = 0.131057 > 0 π2(0.1, 2) = −0.0183368 < 0
π1(0.9, 44) = −0.00333298 < 0 π2(0.9, 44) = 0.0345741 > 0

From these values and from the properties of the functions π1 and π2 it
follows that:

π1(λ, λ1) > 0, if (λ, λ1) ∈ l1 = {(λ, λ1) : λ = 0.1 and 2 ≤ λ1 ≤ 44}
π2(λ, λ1) < 0, if (λ, λ1) ∈ l2 = {(λ, λ1) : 0.1 ≤ λ ≤ 0.9 and λ1 = 2}
π1(λ, λ1) < 0, if (λ, λ1) ∈ l3 = {(λ, λ1) : λ = 0.9 and 2 ≤ λ1 ≤ 44}

π2(λ, λ1) > 0, if (λ, λ1) ∈ l4 = {(λ, λ1) : 0.1 ≤ λ ≤ 0.9 and λ1 = 44}

Let α be the closed curve in Ω (figure 5) obtained as the union of the
segments lj , j = 1, . . . , 4. It follows that π(α) turns once around (0, 0). Moreover,
α is homotopic to the unitary circle and π : Ω → R

2 is continuous; from the
theorem [2] mentioned before we have that there exists a pair (λ, λ1) in the
region limited by α such that π(λ, λ1) = (0, 0).

The zero level curves of π1 and π2 can be drawn by computer and we can
see that this pair is unique for c equal to 1. The continuity of π as function of
c, guarantees the resolution of the period problem for c in a neighbourhood of
c = 1 and assures that X is a singly periodic minimal immersion. QED

4. The geometry of the quotient surface

The surface obtained from Theorem 1 has its symmetries related to the
automorphisms σ, δ and τ . As a consequence of lemma 2 the images of the
curves fixed by the symmetries σ, δ and τ are planar symmetry curves contained
in planes parallel to x2Ox3, x1Ox3 e x1Ox2, respectively. Let γ1 and γ2 be the
closed curves of the 2-torus corresponding to the intervals [λ, 1] and [1, λ1] as in
theorem 1 and let γ3 be the closed curve corresponding to the interval [−λ, λ].
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Figure 5. The curve α in Ω

The curves γ2 and γ3 are fixed by σ and γ1 is fixed by δ. Thus the plane of
X(γ1) is orthogonal to the planes of X(γ2) and X(γ3). Moreover, by theorem
1, we have a vertical period only on the closed curves around the ends. Hence,
the images X(γ1), X(γ2) and X(γ3) are closed curves in R

3. It follows that the
intersection points X(λ) = X(γ1)∩X(γ3) and X(1) = X(γ1)∩X(γ2) are in the
intersection line determined by the planes of X(γ1) and X(γ2).

We can conclude that the intersection points X(−λ1), X(−λ), X(−1), X(λ),
X(1), X(λ1) belong to the vertical axis Ox3.

In the points where z = ic or z = −ic we have simple poles of η and
the Scherk ends are asymptotic to a pair of vertical planes. There exists θ0,
0 < θ0 <

π

2
such that g(ic, wc) = cos θ0 + i sin θ0, g(ic,−wc) = − cos θ0− i sin θ0,

g(−ic, w−c) = cos θ0− i sin θ0 e g(−ic,−w−c) = − cos θ0 + i sin θ0. Moreover, the
curves fixed by τ go to the ends.

Proposition 1. For all c in a neighbourhood of c = 1 the surface obtained
in Theorem 1 is embedded.

Proof. By lemma 2, X(M) consists of eight congruent parts. Each one
of them is the image of a quadrant in the z plane punctured in z = ic or
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z = −ic. Let R be the lifting to M of the first quadrant, such that w(∞) = 1
and w(0) = i. The image of R by X, F = X(R), is one of the eight congruent
parts and we will show that F is a graphic over the plane x1Ox3. The boundary
of F is constituted by six symmetry plane curves, fixed by reflexions, namely:

α1: image of {z = iy, 0 ≤ y < c}
α2: image of {z = x, 0 ≤ x ≤ λ}
α3: image of {z = x, λ ≤ x < 1}
α4: image of {z = x, 1 ≤ x < λ1}
α5: image of {z = x, x ≥ λ1}
α6: image of {z = iy, y ≥ c}

0

54

3

2

1 6

λ

1

ic

S

SS

S

S

S

λ
1

Figure 6. The region R in M

In the figure 6, we denote by sj the curve in the 2-torus corresponding to
the curve αj , in R

3, j = 1, . . . , 6.
The curves α1 and α6 are contained in distinct planes parallel to x1Ox2;

moreover they diverge towards the end. In fact, restrict to these curves the
function g has its image in the unitary circle. We observe that on the curve
α1 we can write g(iy) = cos θ(y) + i sin θ(y), 0 < θ(y) < θ0. The function θ
is continuous, θ(0) = 0 and θ(c) = θ0. The third coordinate function on α1 is
constant whereas the first and the second are given by:

x1(iy) =
∫ y

0

sin θ(t)
c2 − t2

dt

x2(iy) =
∫ y

0

(− cos θ(t))
c2 − t2

dt
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The two above integrals diverge when y is close to c therefore α1 diverge to
the end. Analogously it is easy to see that α6 also diverges to the end.

The restriction of the projection to the plane x1Ox3 to the boundary of F
is injective. The projection of α1 is the coordinate x1(iy) given above and its

derivative x′
1 =

sin θ(y)
c2 − y2

is strictly positive if z �= 0. The function α6 has the

same properties and the projections of α1 e α6 to x1Ox3 are injective.
In order to see that the projection of the reunion of the curves α2 and α5

has no self-intersections, it is sufficient to observe that this union is the image
of the positive real axis. With some calculations we obtain the third coordinate
for z real, z ≥ 0 as:

x3(z) =
∫ z

0

1
(c2 + z2)

dz =
1
c

arctan
z

c

Therefore the function x3(z) is strictly increasing, 0 ≤ x3(z) ≤ π

2c
, and it follows

that the projections of α2 to α5 over x1Ox3 are injective. We conclude that the
projection of the boundary of F over the plane x1Ox3 has no self-intersections.

In the interior of F there is no point with normal pointing in a direction
parallel to x1Ox3. This follows from the fact that g = w and w is real only
at the curves fixed by σ, whose images are the curves α2 and α4 contained in
the boundary of F . The imaginary part of w is strictly positive in all interior
points of F ; it follows that the projection of F over the plane x1Ox3 is injective.
Consequently F is a graphic over x1Ox3 and X(M) is an embedded surface in
R

3. QED

5. Remarks

We observe that the Scherk towers have genus zero and four Scherk type
ends [4]. In the classical example, the ends correspond to the solutions of the
equation z4 = −1. The Weierstrass data are:

g(z) = z η =
1

(z4 + 1)
dz.

The symmetrically deformed examples are obtained from the classical one
by moving the punctures; the ends correspond to z = ±eiα, 0 < α < π

4 , and the
Weierstrass data are:

g(z) = z η =
1

(z2 + z−2 − 2 cos 2α)z2
dz.

The question that arises immediately is: are the surfaces obtained in Theo-
rem 1 coverings of the classical or deformed Scherk saddle towers?
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In these examples, if the ends are branch points of the map g = w, the pa-
rameters λ and λ1 are uniquely determined. Moreover, on the compact surface
M given by 1 we will have two more automorphisms. Using the induced symme-
tries by these automorphisms the period problem becomes trivial. Furthermore
X(M) is a triple covering of the genus zero Scherk saddle tower.

We will list further details concerning these remarks:

• If the points given by z = ±ic are branch points of third order of g = w,
then

i)

√
3

3
< c <

√
3 ii) λ =

c(
√

3c − 1)√
3 + c

iii) λ1 =
c(
√

3c + 1)√
3 − c

.

We recall that a point z = z0 is a branch point of order three of g = w if

and only if
∂g

∂z
(z0) = 0 and

∂2g

∂z2
(z0) = 0. We have

g2 =
P (z)
Q(z)

=
z3 + Az2 − Bz − C

z3 − Az2 − Bz + C

where A = λ + λ1 − 1, B = λ + λ1 − λλ1 and C = λλ1.

It follows that z0 is a third order branch point of g if and only if it is
solution of the equations

P ′(z)Q(z) − P (z)Q′(z) = 0 and P ′′(z)Q(z) − P (z)Q′′(z) = 0.

These equations are respectively equivalent to:

Az4 − (3C − AB)z2 + BC = 0 (6)

and
z[2Az2 − (3C − AB)] = 0. (7)

We have BC �= 0 and hence z0 = 0 is not solution of (6). Thus, the

solutions of (7) are given by z2
0 =

3C − AB

2A
and by replacing in (6), we

obtain (3C −AB)2 = 4ABC. Finally, by assuming z0 = ±ic, we have the
results established in i), ii) and iii).

In the special case in which M is given by the parameters λ and λ1 above,
we have more symmetries in the 2-torus.

• If the points given by z = ±ic are branch points of third order of g = w,
then there are two more automorphisms in

M =
{

(z, w) ∈ Ĉ × Ĉ : w2 =
(z + λ1)(z − 1)(z + λ)
(z − λ1)(z + 1)(z − λ)

}
,
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α, β : M → M given by

α(z, w) =

(
c(z + c

√
3)√

3z − c
,

1
w

)

β(z, w) =

(
c(z − c

√
3)√

3z + c
,

1
w

)
Moreover, these automorphisms satisfy

α∗Φ =

 1 0 0
0 1 0
0 0 −1

Φ and β∗Φ =

 1 0 0
0 1 0
0 0 −1

Φ.

ρ

-ic

ic

C C
21

In the figure 7, we have the correspondent curves fixed by the automor-
phisms α and β in the 2-torus M and the corresponding curves in z-

plane. In this plane the circle with center C1 = (
−c

√
3

3
, 0) and radius

r =
2c
√

3
3

corresponds to the curve in M fixed by α and the circle with

center C2 = (
c
√

3
3

, 0) and same radius r corresponds to the curve fixed by

the automorphism β. The normal lines to the circles at the points (0,±ic)
make the angle of ρ = 60o.

• Let the points z = ±ic be branch points of third order of g = w. The
surface

X : M → R
3,
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Figure 7. The curves fixed by α and β in the z-plane and in M

described in theorem 1, with λ = λ(c) =
c(
√

3c − 1)√
3 + c

and λ1 = λ1(c) =

c(
√

3c + 1)√
3 − c

is a triple covering of a deformed Scherk saddle tower.

The reflexion symmetries induced by α and β fix two curves in horizontal
planes (see figure 8); these curves divide X(M) in three congruent parts
that are invariant by vertical translation. Each one of these parts has
four Scherk type ends and is invariant by three more symmetries that fix
three orthogonal planes. Hence each one corresponds to a basic piece of
the genus zero Scherk saddle tower, that is, X(M), given by the solution
(λ = λ(c), λ1 = λ1(c)), covers three times the classical Scherk saddle
tower.

It remains to know whether this solution is unique or if there are other
pairs (λ, λ1) solving the period problem and rendering X(M) distinct of
the covering described above. Some facts point to the negative answer.
For values of c such as 0.6 ≤ c ≤ 1.6, by making computational estimates
we draw, in the region Ω, the zero level curves of the functions π1 and π2,
defined in Theorem 1. For each c, we can see that the zero level curves
have only one intersection agreeing with the pair (λ = λ(c), λ1 = λ1(c))
obtained under the hypothesis that the ends are branch points of g. Thus,
we can assure that for c = 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5 and 1.6,
there is a unique solution and the surface obtained X(M) is a triple cov-
ering either the classical or the deformed Scherk saddle tower.
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Figure 8. The saddle tower
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