Strong convergence of the new modified composite iterative method for strict pseudo-contractions in Hilbert spaces

Zhenhua He^{i}
Department of Mathematics, University of Honghe, Yunnan, 661100, China
zhenhuahe@126.com

Received: 29/03/2011; accepted: 23/06/2011.

Abstract

In this paper, we introduce and analyze a new modified Mann iterative scheme for strict pseudo-contraction mappings in Hilbert spaces. The results presented in this paper improve and extend the main results in [1] and many others.

Keywords: Strong convergence, Strict pseudo-contractions, Composite iterative scheme, Hilbert space

MSC 2000 classification: $47 \mathrm{H} 07,47 \mathrm{H} 09,47 \mathrm{H} 10,47 \mathrm{~J} 25$

1 Introduction

Let H be a real Hilbert space, whose inner product and norm are denoted by $\langle\cdot, \cdot\rangle$ and $\|\cdot\|$. Let I be the identity mapping on H and C a closed convex subset of H.

A mapping T of H into itself is called a k-strict pseudo-contraction mapping, if $\forall x, y \in K,\|T x-T y\|^{2} \leq\|x-y\|^{2}+k\|(I-T) x-(I-T) y\|^{2}$, here $0 \leq k<$ 1. We use $F(T)$ to denote the set of fixed points of T (i.e. $F(T)=\{x \in K$: $T x=x\}$).

In Hilbert spaces, it is clear that a k-strict pseudo-contraction mappings is equivalent to

$$
\begin{equation*}
\langle T x-T y, x-y\rangle \leq\|x-y\|^{2}-\frac{1-k}{2}\|(I-T) x-(I-T) y\|^{2}, \tag{1}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
\frac{1-k}{2}\|(I-T) x-(I-T) y\|^{2} \leq\langle(I-T) x-(I-T) y, x-y\rangle \tag{2}
\end{equation*}
$$

[^0]Remark. Notice that a mapping $T: H \rightarrow H$ is called non-expansive mappings, if for all $x, y \in H, \quad\|T x-T y\| \leq\|x-y\|$. Therefore, a non-expansive mapping T is a $0-$ strict pseudo-contractive mapping.

A linear bounded operator B is strongly positive if there exists a constant $\bar{\gamma}>0$ with property $\langle B x, x\rangle \geq \bar{\gamma}\|x\|^{2}, \quad \forall x \in H$.

Marino and $\mathrm{Xu}[2]$ introduced a new iterative scheme by the viscosity approximation method:

$$
\begin{equation*}
x_{0} \in H, \quad x_{n+1}=\left(I-\alpha_{n} B\right) S x_{n}+\alpha_{n} \gamma f\left(x_{n}\right), \quad n \geq 0 \tag{3}
\end{equation*}
$$

where, $S: H \rightarrow H$ is a non-expansive mapping. They proved that the sequence $\left\{x_{n}\right\}$ generated by above iterative scheme converges strongly to the unique solution of the variational inequality

$$
\langle\gamma f q-B q, p-q\rangle \leq 0, \quad \forall p \in F(S)
$$

which is the optimality condition for the minimization problem

$$
\min _{p \in F(S)} \frac{1}{2}\langle B p, p\rangle-h(p), \quad \forall p \in F(S)
$$

where h is a potential function for γf (i.e., $h^{\prime}(x)=\gamma f(x)$ for $\left.x \in H\right)$.
The normal Mann's iterative process was introduced by Mann [3] in 1953 as follows:

$$
\begin{equation*}
x_{n+1}=\left(1-\alpha_{n}\right) x_{n}+\alpha_{n} T x_{n}, \quad n \geq 0 \tag{4}
\end{equation*}
$$

where $\left\{\alpha_{n}\right\}$ is a real number sequence in $(0,1)$.
If T is a non-expansive mapping with a fixed point and the control sequence $\left\{\alpha_{n}\right\}$ is chosen so that $\sum_{n=0}^{\infty} \alpha_{n}\left(1-\alpha_{n}\right)=\infty$, then the sequence $\left\{x_{n}\right\}$ generated by the normal Mann's iterative process (1.4) weakly converges to a fixed point of T (this is also valid in a uniformly convex Banach space with the Fréchet differentiable norm [4],or more generally,in a uniformly convex Banach space such that its dual has the KK property as proved by Garcia Falset, Kaczor, Kuczumow and Reich in [5]). However, this scheme has only weak convergence even in a Hilbert space [6].Therefore, many authors try to modify normal Mann's iteration process to have strong convergence;see, e.g., $[7-12,13,14]$ and the references therein.

Yao et al. [14] considered the following iteration process.

$$
\left\{\begin{array}{l}
y_{n}=\beta_{n} x_{n}+\left(1-\beta_{n}\right) T x_{n} \tag{5}\\
x_{n+1}=\alpha_{n} f\left(x_{n}\right)+\left(1-\alpha_{n}\right) y_{n}, \quad n \geq 0
\end{array}\right.
$$

where T is a non-expansive mapping of C into itself and f is an α-contraction (i.e. $\|f(x)-f(y)\| \leq \alpha\|x-y\|, 0 \leq \alpha<1$). They proved the sequence $\left\{x_{n}\right\}$ defined by (5) strongly converges to a fixed point of T provided the control sequences $\left\{\alpha_{n}\right\}$ and $\left\{\beta_{n}\right\}$ satisfy appropriate conditions.

Motivated by Marino and $\mathrm{Xu}[2,9]$ and Yao et al. [14], Marino et al. [1] introduced a composite iteration scheme as follows:

$$
\left\{\begin{array}{l}
y_{n}=\beta_{n} x_{n}+\left(1-\beta_{n}\right) \sum_{i=1}^{N} \eta_{i} T_{i} x_{n}, \tag{6}\\
x_{n+1}=\alpha_{n} \gamma f\left(x_{n}\right)+\left(I-\alpha_{n} B\right) y_{n}, \quad n \geq 0,
\end{array}\right.
$$

where f is an α-contraction, γ is a suitable coefficient and B is a linear bounded strongly positive operator, T_{i} is a k_{i}-pseudo-contraction with $0 \leq k_{i}<1$ and η_{i} is a positive constant such that $\eta_{1}+\eta_{2}+\cdots+\eta_{N}=1$. They proved, under certain appropriate assumptions on the sequences $\left\{\alpha_{n}\right\}$ and $\left\{\beta_{n}\right\}$ that $\left\{x_{n}\right\}$ defined by (6) converges to a common fixed point of $\left\{T_{1}, T_{2}, \ldots, T_{N}\right\}$, which solves some variation inequality. To be more precisely, they obtained the next Theorems.

Theorem M1. [1]. Let H be a Hilbert space and let for $i=1,2, \ldots, N$, T_{i} be a k_{i}-strict pseudo-contraction on H for some $0 \leq k_{i}<1$ with $\Omega=$ $\bigcap_{i=1}^{N} F\left(T_{i}\right) \neq \emptyset$ and f be an α-contraction. Let B be a strongly positive linear bounded self-adjoint operator with coefficient $\bar{\gamma}>0$. Assume that $0<\gamma<\bar{\gamma} / \alpha$. Given the initial guess $x_{0} \in H$ chosen arbitrarily and given sequences $\left\{\alpha_{n}\right\}_{n=0}^{\infty}$ and $\left\{\beta_{n}\right\}_{n=0}^{\infty}$ in (0,1), satisfying the following conditions
(M1) $\lim _{n \rightarrow \infty} \alpha_{n}=0, \sum_{n=1}^{\infty} \alpha_{n}=\infty$.
(M2) $\sum_{n=1}^{\infty}\left|\alpha_{n+1}-\alpha_{n}\right|<\infty, \sum_{n=1}^{\infty}\left|\beta_{n+1}-\beta_{n}\right|<\infty$.
(M3) $0 \leq \max _{i}\left\{k_{i}\right\} \leq \beta_{n} \leq \beta<1$ for all $n \geq 0$.
Then $\left\{x_{n}\right\}$ defined by (6) converges strongly to some common fixed point q of $\left\{T_{1}, T_{2}, \ldots, T_{N}\right\}$, which solves the following variational inequality:

$$
\langle\gamma f q-B q, p-q\rangle \leq 0, \quad \forall p \in \Omega
$$

Theorem M2. [1]. Let H be a Hilbert space and let for $i=1,2, \ldots, N$, T_{i} be a k_{i}-strict pseudo-contraction on H for some $0 \leq k_{i}<1$ with $\Omega=$ $\bigcap_{i=1}^{N} F\left(T_{i}\right) \neq \emptyset$ and f be an α-contraction. Let B be a strongly positive linear bounded self-adjoint operator with coefficient $\bar{\gamma}>0$. Assume that $0<\gamma<\bar{\gamma} / \alpha$. Given the initial guess $x_{0} \in H$ chosen arbitrarily and given sequences $\left\{\alpha_{n}\right\}_{n=0}^{\infty}$, $\left\{\eta_{i}^{(n)}\right\}_{n=0}^{\infty}$ and $\left\{\beta_{n}\right\}_{n=0}^{\infty}$ in (0,1), satisfying the following conditions
(M1') $\lim _{n \rightarrow \infty} \alpha_{n}=0, \sum_{n=1}^{\infty} \alpha_{n}=\infty$;
(M2') $\sum_{n=1}^{\infty}\left|\alpha_{n+1}-\alpha_{n}\right|<\infty, \sum_{n=1}^{\infty}\left|\beta_{n+1}-\beta_{n}\right|<\infty ;$
(M3') for every fixed $n, \sum_{i=1}^{N} \eta_{i}^{(n)}=1$ and $\inf _{n} \eta_{i}^{(n)}>0$;
(M4') $0 \leq \max _{i}\left\{k_{i}\right\} \leq \beta_{n} \leq \beta<1$ for all $n \geq 0$;
(M5') $\sum_{n=0}^{\infty}\left|\eta_{i}^{(n+1)}-\eta_{i}^{(n)}\right|<\infty($ for $i=1,2, \cdots, N)$.
Let $\left\{x_{n}\right\}$ be defined by

$$
\left\{\begin{array}{l}
y_{n}=\beta_{n} x_{n}+\left(1-\beta_{n}\right) \sum_{i=1}^{N} \eta_{i}^{(n)} T_{i} x_{n} \tag{7}\\
x_{n+1}=\alpha_{n} \gamma f\left(x_{n}\right)+\left(I-\alpha_{n} B\right) y_{n}, n \geq 0
\end{array}\right.
$$

then $\left\{x_{n}\right\}$ converges strongly to the common fixed point q of $\left\{T_{1}, T_{2}, \cdots, T_{N}\right\}$, which solves the following variational inequality:

$$
\langle\gamma f q-B q, p-q\rangle \leq 0, \quad \forall p \in \Omega .
$$

Inspired by Marino et al. [1], in this paper, our purpose is to introduce a modified composite iterative algorithm (given in next section 3) to approximate a common fixed point of finite family of strict pseudo-contraction mappings, which solves some variational inequality. Our results improve and extend the results of Marino et al. [1], Kim and Xu [8],Marino and Xu [2], Yao et al. [14].

2 Preliminaries

Lemma 1. ([15]). Let $\left\{a_{n}\right\},\left\{b_{n}\right\},\left\{c_{n}\right\}$ be three nonnegative real sequences satisfying the following condition:

$$
a_{n+1} \leq\left(1-\lambda_{n}\right) a_{n}+b_{n}+c_{n}, \forall n \geq n_{0}
$$

where n_{0} is some nonnegative integer and $\left\{\lambda_{n}\right\} \subset(0,1)$ with $\Sigma_{n=0}^{\infty} \lambda_{n}=\infty$, $b_{n}=o\left(\lambda_{n}\right)$ and $\Sigma_{n=0}^{\infty} c_{n}<\infty$, then $\lim _{n \rightarrow \infty} a_{n}=0$.

Lemma 2. ([16]). Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be bounded sequences in a Banach space E and let $\left\{\beta_{n}\right\}$ be a sequence in $[0,1]$ with $0<\lim \inf \beta_{n} \leq \lim \sup \beta_{n}<1$. Suppose $x_{n+1}=\beta_{n} y_{n}+\left(1-\beta_{n}\right) x_{n}$ for all integers $n \geq 0$ and $\lim \sup _{n \rightarrow \infty}\left(\left\|y_{n+1}-y_{n}\right\|-\right.$ $\left.\left\|x_{n+1}-x_{n}\right\|\right) \leq 0$, then, $\lim _{n \rightarrow \infty}\left\|y_{n}-x_{n}\right\|=0$.

Lemma 3. ([17]). Let E be a real Banach space and $J: E \rightarrow 2^{E^{*}}$ be the normalized duality mapping, then for any $x, y \in E$ the following inequality holds:

$$
\|x+y\|^{2} \leq\|x\|^{2}+2\langle y, j(x+y)\rangle, \quad \forall j(x+y) \in J(x+y) .
$$

Especially, when $E=H$, then $J=I$, so from Lemma 3 we have that

$$
\|x+y\|^{2} \leq\|x\|^{2}+2\langle y, x+y\rangle, \quad \forall x, y \in H .
$$

Lemma 4. ([2]). Assume that A is a strong positive linear bounded operator on a Hilbert space H with coefficient $\bar{\gamma}>0$ and $0<\rho<\|A\|^{-1}$. Then $\|I-\rho A\| \leq 1-\rho \bar{\gamma}$.

Lemma 5. (Marino and $X u$ [2]). Let H be a real Hilbert space. Let A be a strongly positive linear bounded self-adjoint operator with coefficient $\bar{\gamma}>0$. Let f be an α-contraction. Assume that $0<\gamma<\bar{\gamma} / \alpha$. Let $T: H \rightarrow H$ be a nonexpansive mapping. For $t \leq\|A\|^{-1}$, let x_{t} be the fixed point of the contraction $x_{t} \rightarrow \gamma f(x)+(I-t A) T x$. Then $\left\{x_{t}\right\}$ converges strongly as $t \rightarrow 0$ to a fixed point \bar{x} of T, which solves the variational inequality

$$
\langle\gamma f \bar{x}-B \bar{x}, z-\bar{x}\rangle \leq 0, \quad \forall z \in F(T)
$$

Lemma 6. (Acedo and $X u$ [7]). Let H be a real Hilbert space, K a closed convex subset of H. Given an integer $N \geq 1$, assume, for each $1 \leq i \leq N, T_{i}$: $K \rightarrow K$ is a k_{i}-strict pseudo-contraction for some $0 \leq k_{i}<1$. Assume $\left\{\eta_{i}\right\}_{i=1}^{N}$ is a positive sequence such that $\sum_{i=1}^{n} \eta_{i}=1$. Then $\sum_{i=1}^{n} \eta_{i} T_{i}$ is a k-strict pseudo-contraction, with $k=\max \left\{k_{i}: 1 \leq i \leq N\right\}$.

Lemma 7. (Acedo and $X u$ [7]). Let $\left\{T_{i}\right\}$ and $\left\{\eta_{i}\right\}$ be given as in Lemma 6. Suppose that $\left\{T_{i}\right\}$ has a common fixed point. Then $F\left(\sum_{i=1}^{N} \eta_{i} T_{i}\right)=\bigcap_{i=1}^{N} F\left(T_{i}\right)$.

Lemma 8. (Zhou [18]). Let $T: H \rightarrow H$ be a k-strict pseudo-contraction. Define $S: H \rightarrow H$ by $S x=\lambda x+(1-\lambda) T x$ for each $x \in H$. Then, as $\lambda \in[k, 1)$, S is non-expansive such that $F(S)=F(T)$.

A Banach space E is said to satisfy Opial's condition [19] if, for any $\left\{x_{n}\right\} \subset$ E with $x_{n} \rightharpoonup x$, the following inequality holds:

$$
\liminf _{n \rightarrow \infty}\left\|x_{n}-x\right\|<\liminf _{n \rightarrow \infty}\left\|x_{n}-y\right\|
$$

for all $y \in E$ with $y \neq x$. It is well-known that Hilbert spaces satisfies Opial's condition.

3 Main results

Theorem 1. Let H be a real Hilbert space and let T be a k-strict pseudocontraction on H for some $0 \leq k<1$ with $F(T) \neq \emptyset$ and f be an α-contraction. Let B be a strongly positive linear bounded self-adjoint operator with coefficient $\bar{\gamma}>0$. Assume that $0<\gamma<\bar{\gamma} / \alpha$. Given the initial guess $x_{0} \in H$ chosen arbitrarily and given sequences $\left\{\alpha_{n}\right\}_{n=0}^{\infty}$ and $\left\{\beta_{n}\right\}_{n=0}^{\infty}$ in (0,1), satisfying the following conditions
(i) $\lim _{n \rightarrow \infty} \alpha_{n}=0, \sum_{n=1}^{\infty} \alpha_{n}=\infty$.
(ii) $0<\lim \inf _{n \rightarrow \infty} \beta_{n} \leq \lim \sup _{n \rightarrow \infty} \beta_{n}<0$.

Let $\left\{x_{n}\right\}$ be defined by

$$
\left\{\begin{array}{l}
y_{n}=\beta_{n} x_{n}+\left(1-\beta_{n}\right) S x_{n}, \tag{8}\\
x_{n+1}=\alpha_{n} \gamma f\left(x_{n}\right)+\left(I-\alpha_{n} B\right) y_{n}, \quad n \geq 0,
\end{array}\right.
$$

where $S=\sigma I+(1-\sigma) T, k \leq \sigma<1$, then $\left\{x_{n}\right\}$ defined by Theorem 1 converges strongly to a fixed point q of T, which solves the following variational inequality:

$$
\langle\gamma f q-B q, p-q\rangle \leq 0, \quad \forall p \in F(T) .
$$

Proof.

Step 1. Prove $\left\{x_{n}\right\}$ is bounded. Since $\alpha_{n} \rightarrow 0$ as $n \rightarrow \infty$, without loss of generality,we may assume that $\alpha_{n}<\|B\|^{-1}$ for all $n \geq 0$. From Lemma 4, we know that $\left\|I-\alpha_{n} B\right\| \leq 1-\alpha_{n} \bar{\gamma}$. For all $p \in F(T)$, since S is a non-expansive mapping and $F(S)=F(T)$ by Lemma 8 , we have

$$
\left\|y_{n}-p\right\|^{2}=\left\|\beta_{n}\left(x_{n}-p\right)+\left(1-\beta_{n}\right)\left(S x_{n}-p\right)\right\|^{2} \leq\left\|x_{n}-p\right\|^{2},
$$

and

$$
\begin{aligned}
\left\|x_{n+1}-p\right\| & =\left\|\alpha_{n}\left(\gamma f\left(x_{n}\right)-B p\right)+\left(I-\alpha_{n} B\right)\left(y_{n}-p\right)\right\| \\
& \leq \alpha_{n}\left\|\gamma f\left(x_{n}\right)-B p\right\|+\left(1-\alpha_{n} \bar{\gamma}\right)\left\|x_{n}-p\right\| \\
& \leq \alpha_{n} \gamma \alpha\left\|x_{n}-p\right\|+\alpha_{n}\|\gamma f(p)-B p\|+\left(1-\alpha_{n} \bar{\gamma}\right)\left\|x_{n}-p\right\| \\
& \leq\left(1-\alpha_{n}(\bar{\gamma}-\gamma \alpha)\right)\left\|x_{n}-p\right\|+\alpha_{n}\|\gamma f(p)-B p\| \\
& \leq \max \left\{\left\|x_{0}-p\right\|, \frac{\|\gamma f(p)-B p\|}{\bar{\gamma}-\gamma \alpha}\right\} .
\end{aligned}
$$

Therefore, $\left\{x_{n}\right\}$ is bounded, so is $\left\{y_{n}\right\}$.
Step 2. Prove $\left\|x_{n+1}-x_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$.
Set $\gamma_{n}=1-\beta_{n}$ and $v_{n}=\frac{x_{n+1}-x_{n}+\gamma_{n} x_{n}}{\gamma_{n}}=\frac{\alpha_{n}\left(\gamma f\left(x_{n}\right)-B y_{n}\right)}{1-\beta_{n}}+S x_{n}$, then

$$
\begin{align*}
\left\|v_{n+1}-v_{n}\right\| & \leq \frac{\alpha_{n}}{1-\beta_{n}} M+\frac{\alpha_{n+1}}{1-\beta_{n+1}} M+\left\|S x_{n+1}-S x_{n}\right\| \\
& \leq \frac{\alpha_{n}}{1-\beta_{n}} M+\frac{\alpha_{n+1}}{1-\beta_{n+1}} M+\left\|x_{n+1}-x_{n}\right\| \tag{9}
\end{align*}
$$

where M is a constant satisfying $\left\|\gamma f\left(x_{n}\right)-B y_{n}\right\| \leq M$ for $n \geq 1$. It follows from (9), $\lim _{\sup _{n \rightarrow \infty}\left\{\left\|v_{n+1}-v_{n}\right\|-\left\|x_{n+1}-x_{n}\right\|\right\}=0 \text {, which implies that }}$ $\lim _{n \rightarrow \infty}\left\|v_{n}-x_{n}\right\|=0$ by Lemma 2. From the definition of v_{n} we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=0 \tag{10}
\end{equation*}
$$

Step 3. Prove $\left\|T x_{n}-x_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$. In fact, from (8) and (10) we have

$$
\lim _{n \rightarrow \infty}\left\|x_{n+1}-y_{n}\right\|=0, \quad \lim _{n \rightarrow \infty}\left\|x_{n}-y_{n}\right\|=0
$$

Hence

$$
\lim _{n \rightarrow \infty}\left\|S x_{n}-x_{n}\right\|=\lim _{n \rightarrow \infty} \frac{1}{1-\beta_{n}}\left\|x_{n}-y_{n}\right\|=0
$$

which implies that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|S x_{n}-x_{n}\right\|=\lim _{n \rightarrow \infty}(1-\sigma)\left\|T x_{n}-x_{n}\right\|=0 . \tag{11}
\end{equation*}
$$

Step 4. Let $q=\lim _{t \rightarrow 0^{+}} x_{t}$, where x_{t} is the fixed point (for $t \in\left(0,\|B\|^{-1}\right)$ of contraction $x \mapsto t x+(I-t B) S x$. From Lemma 5 and Lemma $8, q \in$ $F(S)=F(T)$, and

$$
\begin{equation*}
\langle\gamma f(q)-B q, p-q\rangle \leq 0, \quad \forall p \in F(T) \tag{12}
\end{equation*}
$$

Claim $\lim \sup _{n \rightarrow \infty}\left\langle\gamma f(q)-B q, x_{n}-q\right\rangle \leq 0$. Take the subsequence $\left\{x_{n_{j}}\right\}$ of $\left\{x_{n}\right\}$ such that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\langle\gamma f(q)-B q, x_{n}-q\right\rangle=\lim _{j \rightarrow \infty}\left\langle\gamma f(q)-B q, x_{n_{j}}-q\right\rangle . \tag{13}
\end{equation*}
$$

Since $\left\{x_{n_{j}}\right\}$ is bounded, so there exists a subsequence of $\left\{x_{n_{j}}\right\}$ such that it converges weakly to a point $p \in K$. Without loss generality, let $\left\{x_{n_{j}}\right\}$ denote it and $x_{n_{j}} \rightharpoonup p$. By (11) and Opial's condition, $p \in F(S)=F(T)$. Thus from (12) and (13) we have that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\langle\gamma f(q)-B q, x_{n}-q\right\rangle \leq 0 \tag{14}
\end{equation*}
$$

Step 5. Prove that $\left\{x_{n}\right\}$ converges strongly to q. It follows from Lemma 3 and (8) that

$$
\begin{aligned}
\left\|x_{n+1}-q\right\|^{2}= & \left\|\alpha_{n}\left(\gamma f\left(x_{n}\right)-B q\right)+\left(I-\alpha_{n} B\right)\left(y_{n}-q\right)\right\|^{2} \\
\leq & \left(1-\bar{\gamma} \alpha_{n}\right)^{2}\left\|y_{n}-q\right\|^{2}+2 \alpha_{n}\left\langle\gamma f\left(x_{n}\right)-B p, x_{n+1}-q\right\rangle \\
= & \left(1-\bar{\gamma} \alpha_{n}\right)^{2}\left\|x_{n}-q\right\|^{2} \\
& +2 \alpha_{n}\left\langle\gamma f\left(x_{n}\right)-\gamma f(q)+\gamma f(q)-B q, x_{n+1}-q\right\rangle \\
\leq & \left(1-\bar{\gamma} \alpha_{n}\right)^{2}\left\|x_{n}-q\right\|^{2}+2 \alpha_{n} \alpha \gamma\left\|x_{n}-q\right\|\left\|x_{n+1}-q\right\| \\
& +2 \alpha_{n}\left\langle\gamma f(q)-B q, x_{n+1}-q\right\rangle \\
\leq & \left(1-\bar{\gamma} \alpha_{n}\right)^{2}\left\|x_{n}-q\right\|^{2}+\alpha_{n} \alpha \gamma\left(\left\|x_{n}-q\right\|^{2}+\left\|x_{n+1}-q\right\|^{2}\right)+ \\
& +2 \alpha_{n}\left\langle\gamma f(q)-B q, x_{n+1}-q\right\rangle,
\end{aligned}
$$

which yields that

$$
\begin{align*}
\| x_{n+1} & -q\left\|^{2} \leq\left(1-\alpha_{n} \frac{2 \bar{\gamma}-2 \alpha \gamma}{1-\alpha_{n} \alpha \gamma}\right)\right\| x_{n}-q \|^{2} \\
& +\frac{\alpha_{n}^{2} \bar{\gamma}^{2}}{1-\alpha_{n} \alpha \gamma}\left\|x_{n}-q\right\|^{2}+\frac{2 \alpha_{n}}{1-\alpha_{n} \alpha \gamma}\left\langle\gamma f(q)-B q, x_{n+1}-q\right\rangle \tag{15}
\end{align*}
$$

By boundness of $\left\{x_{n}\right\}$ and the condition (i) and Lemma $1,\left\{x_{n}\right\}$ converges strongly to q. This completes the proof of Theorem 1.

QED

Next, we give strong convergence theorems for a finite family of strict pseudocontractions.

Theorem 2. Let H be a real Hilbert space and for $i=1,2, \ldots, N$, let T_{i} be a k_{i}-strict pseudo-contraction on H for some $0 \leq k_{i}<1$ with $\bigcap_{i=1}^{N} F\left(T_{i}\right) \neq \emptyset$ and f be an α-contraction. Let B be a strongly positive linear bounded selfadjoint operator with coefficient $\bar{\gamma}>0$. Assume that $0<\gamma<\bar{\gamma} / \alpha, \eta_{i} \in(0,1)$ and $\sum_{i=1}^{N} \eta_{i}=1$. Given the initial guess $x_{0} \in H$ chosen arbitrarily and given sequences $\left\{\alpha_{n}\right\}_{n=0}^{\infty}$ and $\left\{\beta_{n}\right\}_{n=0}^{\infty}$ in (0,1), satisfying the following conditions
(i) $\lim _{n \rightarrow \infty} \alpha_{n}=0, \sum_{n=1}^{\infty} \alpha_{n}=\infty$;
(ii) $0<\liminf _{n \rightarrow \infty} \beta_{n} \leq \limsup \sup _{n \rightarrow \infty} \beta_{n}<1$.

Let $\left\{x_{n}\right\}$ be defined by

$$
\left\{\begin{array}{l}
y_{n}=\beta_{n} x_{n}+\left(1-\beta_{n}\right) S x_{n} \tag{16}\\
x_{n+1}=\alpha_{n} \gamma f\left(x_{n}\right)+\left(I-\alpha_{n} B\right) y_{n}, \quad n \geq 0
\end{array}\right.
$$

where $S=\sigma I+(1-\sigma) \sum_{i=1}^{N} \eta_{i} T_{i}, k=\max \left\{k_{i}: 1 \leq i \leq N\right\} \leq \sigma<1$, then $\left\{x_{n}\right\}$ converges strongly to a common fixed point q of $\left\{T_{1}, T_{2}, \ldots, T_{N}\right\}$, which solves the following variational inequality:

$$
\langle\gamma f q-B q, p-q\rangle \leq 0, \quad \forall p \in \cap_{i=1}^{N} F\left(T_{i}\right)
$$

Proof. Since $\sum_{i=1}^{N} \eta_{i} T_{i}$ is a k-strict pseudo-contraction mapping, by Theorem 1 we know Theorem 2 is true. This completes the proof of Theorem 2.

Theorem 3. Let H be a real Hilbert space and for $i=1,2, \ldots, N$, let T_{i} be a k_{i}-strict pseudo-contraction on H for some $0 \leq k_{i}<1$ with $\bigcap_{i=1}^{N} F\left(T_{i}\right) \neq \emptyset$ and f be an α-contraction. Let B be a strongly positive linear bounded selfadjoint operator with coefficient $\bar{\gamma}>0$. Assume that $0<\gamma<\bar{\gamma} / \alpha$. Given the initial guess $x_{0} \in H$ chosen arbitrarily and given sequences $\left\{\alpha_{n}\right\}_{n=0}^{\infty},\left\{\eta_{i}^{(n)}\right\}_{n=0}^{\infty}$ and $\left\{\beta_{n}\right\}_{n=0}^{\infty}$ in $(0,1)$, satisfying the following conditions
(i) $\lim _{n \rightarrow \infty} \alpha_{n}=0, \sum_{n=1}^{\infty} \alpha_{n}=\infty$;
(ii) $0<\liminf _{n \rightarrow \infty} \beta_{n} \leq \limsup \sup _{n \rightarrow \infty} \beta_{n}<0$;
(iii) $\sum_{i=1}^{N} \eta_{i}^{(n)}=1, \inf _{n} \eta_{i}^{(n)}>0, \lim _{n \rightarrow \infty}\left|\eta_{i}^{(n+1)}-\eta_{i}^{(n)}\right|=0$ for $i=1,2, \ldots, N$.

Let $\left\{x_{n}\right\}$ be defined by

$$
\left\{\begin{array}{l}
y_{n}=\beta_{n} x_{n}+\left(1-\beta_{n}\right) S_{n} x_{n} \tag{17}\\
x_{n+1}=\alpha_{n} \gamma f\left(x_{n}\right)+\left(I-\alpha_{n} B\right) y_{n}, \quad n \geq 0
\end{array}\right.
$$

where $S_{n}=\sigma I+(1-\sigma) \sum_{i=1}^{N} \eta_{i}^{(n)} T_{i}, k=\max \left\{k_{i}: 1 \leq i \leq N\right\} \leq \sigma<1$, then $\left\{x_{n}\right\}$ converges strongly to a common fixed point q of $\left\{T_{1}, T_{2}, \cdots, T_{N}\right\}$, which solves the following variational inequality:

$$
\langle\gamma f q-B q, p-q\rangle \leq 0, \quad \forall p \in \cap_{i=1}^{N} F\left(T_{i}\right)
$$

Proof. For each n, let $H_{n}=\sum_{i=1}^{N} \eta_{i}^{(n)} T_{i}$, then H_{n} is a k-strict pseudocontraction by Lemma $6, k=\max \left\{k_{i}: 1 \leq i \leq N\right\}$. Moreover, $S_{n}=\sigma I+(1-$ $\sigma) H_{n}$ is a non-expansive mapping and $F\left(S_{n}\right)=F\left(H_{n}\right)=\cap_{i=1}^{N} F\left(T_{i}\right)$ by Lemma 8.

Step 1. Let $p \in \cap_{i=1}^{N} F\left(T_{i}\right)$, from (17), we have

$$
\left\|y_{n}-p\right\|^{2}=\left\|\beta_{n}\left(x_{n}-p\right)+\left(1-\beta_{n}\right)\left(S_{n} x_{n}-p\right)\right\|^{2} \leq\left\|x_{n}-p\right\|^{2}
$$

and

$$
\begin{aligned}
\left\|x_{n+1}-p\right\| & =\left\|\alpha_{n}\left(\gamma f\left(x_{n}\right)-B p\right)+\left(I-\alpha_{n} B\right)\left(y_{n}-p\right)\right\| \\
& \leq \alpha_{n}\left\|\gamma f\left(x_{n}\right)-B p\right\|+\left(1-\alpha_{n} \bar{\gamma}\right)\left\|x_{n}-p\right\| \\
& \leq \alpha_{n} \gamma \alpha\left\|x_{n}-p\right\|+\alpha_{n}\|\gamma f(p)-B p\|+\left(1-\alpha_{n} \bar{\gamma}\right)\left\|x_{n}-p\right\| \\
& \leq\left(1-\alpha_{n}(\bar{\gamma}-\gamma \alpha)\right)\left\|x_{n}-p\right\|+\alpha_{n}\|\gamma f(p)-B p\| \\
& \leq \max \left\{\left\|x_{0}-p\right\|, \frac{\|\gamma f(p)-B p\|}{\bar{\gamma}-\gamma \alpha}\right\} .
\end{aligned}
$$

Therefore, $\left\{x_{n}\right\}$ is bounded, so is $\left\{y_{n}\right\}$.
Step 2. Prove $\left\|x_{n+1}-x_{n}\right\| \rightarrow 0$. Let

$$
\gamma_{n}=1-\beta_{n}, v_{n}=\frac{x_{n+1}-x_{n}+\gamma_{n} x_{n}}{\gamma_{n}}=\frac{\alpha_{n}\left(\gamma f\left(x_{n}\right)-B y_{n}\right)}{\gamma_{n}}+S_{n} x_{n}
$$

Let M_{3} be a constant such that

$$
\left\{\left\|\gamma f\left(x_{n}\right)-B y_{n}\right\|,\left\|T_{1} x_{n}\right\|,\left\|T_{2} x_{n}\right\|, \cdots,\left\|T_{N} x_{n}\right\|\right\} \leq M_{3}
$$

for $n \geq 0$. By $S_{n}=\sigma I+(1-\sigma) \sum_{i=1}^{N} \eta_{i}^{(n)} T_{i}$, we have

$$
S_{n+1} x_{n}-S_{n} x_{n}=(1-\sigma) \sum_{i=1}^{N}\left(\eta_{i}^{(n+1)}-\eta_{i}^{(n)}\right) T_{i} x_{n}
$$

Then

$$
\left\|S_{n+1} x_{n+1}-S_{n} x_{n}\right\| \leq\left\|x_{n+1}-x_{n}\right\|+M_{3} \sum_{i=1}^{N}\left|\eta_{i}^{(n+1)}-\eta_{i}^{(n)}\right|
$$

Furthermore,

$$
\left\|v_{n+1}-v_{n}\right\| \leq \frac{\alpha_{n} M_{3}}{\gamma_{n}}+\frac{\alpha_{n+1} M_{3}}{\gamma_{n+1}}+\left\|x_{n+1}-x_{n}\right\|+M_{3} \sum_{i=1}^{N}\left|\eta_{i}^{(n+1)}-\eta_{i}^{(n)}\right|
$$

which implies that $\limsup _{n \rightarrow \infty}\left\{\left\|v_{n+1}-v_{n}\right\|-\left\|x_{n+1}-x_{n}\right\|\right\}=0$. Using Lemma 2, we obtain $\lim _{n \rightarrow \infty}\left\|v_{n}-x_{n}\right\|=0$, this shows that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=0 \tag{18}
\end{equation*}
$$

Again from (17) and (18), we have

$$
\lim _{n \rightarrow \infty}\left\|x_{n+1}-y_{n}\right\|=0, \quad \lim _{n \rightarrow \infty}\left\|y_{n}-x_{n}\right\|=0
$$

Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|S_{n} x_{n}-x_{n}\right\|=\lim _{n \rightarrow \infty} \frac{1}{1-\beta_{n}}\left\|y_{n}-x_{n}\right\|=0 \tag{19}
\end{equation*}
$$

Step 3. Prove

$$
\limsup _{n \rightarrow \infty}\left\langle\gamma f q-B q, x_{n}-q\right\rangle \leq 0, \quad q \in \cap_{i=1}^{N} F\left(T_{i}\right)
$$

where q is the unique solution of the following variational inequality

$$
\begin{equation*}
\langle\gamma f q-B q, p-q\rangle \leq 0, \quad \forall p \in \cap_{i=1}^{N} F\left(T_{i}\right) \tag{20}
\end{equation*}
$$

Take a subsequence $\left\{x_{n_{j}}\right\}$ of $\left\{x_{n}\right\}$ such that

$$
\limsup _{n \rightarrow \infty}\left\langle\gamma f q-B q, x_{n}-q\right\rangle=\lim _{n \rightarrow \infty}\left\langle\gamma f q-B q, x_{n_{j}}-q\right\rangle
$$

For each i, since $\eta_{i}^{(n)}$ is bounded, there exists a subsequence of $\eta_{i}^{\left(n_{j}\right)}$ is still denoted by $\eta_{i}^{\left(n_{j}\right)}$ such that $\eta_{i}^{\left(n_{j}\right)} \rightarrow \eta_{i} \in(0,1]$ as $j \rightarrow \infty$. At the
same time, since $\left\{x_{n_{j}}\right\}$ is bounded, there exists a subsequence of $\left\{x_{n_{j}}\right\}$ is still denoted by $\left\{x_{n_{j}}\right\}$ such that $x_{n_{j}} \rightharpoonup z$ as $j \rightarrow \infty$. Define mapping $S=\sigma I+(1-\sigma) \sum_{i=1}^{N} \eta_{i} T_{i}$, then S is also non-expansive mapping and $F(S)=F\left(S_{n}\right)=\cap_{i=1}^{N} F\left(T_{i}\right)$ by Lemma 7 and 8 . Moreover, for all $x \in C$,

$$
\begin{equation*}
\left\|S_{n_{j}} x-S x\right\| \leq \sum_{i=1}^{N}\left|\eta_{i}^{\left(n_{j}\right)}-\eta_{i}\right|\left\|T_{i} x\right\| \rightarrow 0 \quad \text { as } \quad j \rightarrow \infty \tag{21}
\end{equation*}
$$

We claim $z \in F(S)$. If not so, i.e. $z \neq S z$. Then using the Opial's condition, from (19) and (21) we obtain

$$
\begin{align*}
\liminf _{j \rightarrow \infty}\left\|x_{n_{j}}-z\right\| & <\underset{j \rightarrow \infty}{\liminf }\left\|x_{n_{j}}-S z\right\| \\
& \leq \liminf _{j \rightarrow \infty}\left(\left\|x_{n_{j}}-S_{n_{j}} x_{n_{j}}\right\|+\left\|S_{n_{j}} x_{n_{j}}-S_{n_{j}} z\right\|+\left\|S_{n_{j}} z-S z\right\|\right) \\
& \leq \liminf _{j \rightarrow \infty}\left\|x_{n_{j}}-z\right\| . \tag{22}
\end{align*}
$$

This is a contradiction. So $z \in F(S)=\cap_{i=1}^{N} F\left(T_{i}\right)$. It follows from (20) that

$$
\begin{align*}
\limsup _{n \rightarrow \infty}\langle\gamma f q & \left.-B q, x_{n}-q\right\rangle \\
& =\lim _{j \rightarrow \infty}\left\langle\gamma f q-B q, x_{n_{j}}-q\right\rangle=\langle\gamma f q-B q, z-q\rangle \leq 0 . \tag{23}
\end{align*}
$$

Step 4. Prove $\left\{x_{n}\right\}$ converge strongly to q, where q is the unique solution of the following variational inequality

$$
\langle\gamma f q-B q, p-q\rangle \leq 0, \quad \forall p \in \cap_{i=1}^{N} F\left(T_{i}\right) .
$$

Reasoning as in Step 5 of Theorem 1, we obtain $\left\{x_{n}\right\}$ converges strongly to q. This completes the proof of Theorem 2.

Remark 1. Since a non-expansive mapping is a 0 -strict pseudo-contraction mapping, our results are suitable to non-expansive mappings. In addition, our results remove the condition $\sum_{n=0}^{\infty}\left|\alpha_{n+1}-\alpha_{n}\right|<\infty$ imposed on parameter $\left\{\alpha_{n}\right\}$ in $[1,2,7,8]$. We remove also the condition $\sum_{n=0}^{\infty}\left|\beta_{n+1}-\beta_{n}\right|<\infty$ imposed on parameter $\left\{\beta_{n}\right\}$ in [1].

Remark 2. The advantages of these results in the present paper are that fewer restrictions are imposed on the parameters $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ and $\left\{\eta_{i}^{(n)}\right\}$. All of the results obtained in this paper can be viewed as a supplement to the results obtained in [1, 2, 7, 8, 14]

References

[1] G. Marino, V. Colao, X.Qin, S. Kang: Strong convergence of the modified Mann iterative method for strict pseudo-contractions, Computers and Mathematics with Applications, 57 (2009), 455-465.
[2] G. Marino, H.K. Xu: A general iterative method for non-expansive mappings in Hilbert spaces, J. Math. Anal. Appl. 318 (2006), 43-52.
[3] W.R. Mann: Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953), 506-510.
[4] S. Reich: Weak convergence theorems for nonexpansive mappings in Banach spaces, J. Math. Anal. Appl. 67 (1979), 274-276.
[5] J. GarciaFalset, W. Kaczor, T. Kuczumow, S. Reich: Weak convergence theorems for asymptotically non-expansive mappings and semigroups, Nonlinear Anal. 43 (2001), 377-401.
[6] A. Genel, J. Lindenstrauss: An example concerning fixed points, Israel J. Math. 22 (1975), 81-86.
[7] G.L. Acedo, H.K. Xu: Iterative methods for strict pseudo-contractions in Hilbert spaces, Nonlinear Anal. 67 (2007), 2258-2271.
[8] T.H. Kim, H.K. Xu: Strong convergence of modified Mann iterations, Nonlinear Anal. 61 (2005), 51-60.
[9] G. Marino, H.K. Xu: Weak and strong convergence theorems for strict pseudocontractions in Hilbert spaces, J. Math. Anal. Appl. 329 (2007), 336-346.
[10] C. Martinez-Yanes, H.K. Xu : Strong convergence of the $C Q$ method for fixed point iteration processes, Nonlinear Anal. 64 (2006), 2400-2411.
[11] K. Nakajo, W. Takahashi, : Strong convergence theorems for non-expansive mappings and non-expansive semigroups, J. Math. Anal. Appl. 279 (2003), 372-379.
[12] X. Qin, Y. Su: Approximation of a zero point of accretive operator in Banach spaces, J. Math. Anal. Appl. 329 (2007), 415-424.
[13] M. Shang, Y. Su, X. Qin: Strong convergence theorems for a finite family of nonexpansive mappings, Fixed Point Theory Appl. 2007 (2007) 9, doi:10.1155/2007/76971. Article ID 76971.
[14] Y.Yao, R. Chen, J.C. Yao: Strong convergence and certain control conditions for modified Mann iteration, Nonlinear Anal. 68 (2008), 1687-1693.
[15] X. WANG: Fixed point iteration for local strictly pseudo-contractive mappings, Proc. Amer. Math. Soc. 113 (1991), 727-731.
[16] T. Suzuki: Strong convergence of Krasnoselskii and Manns type sequences for oneparameter non-expansive semigroups without Bochner integrals, J. Math. Anal. and Appl. 305 (2005), 227-239.
[17] S.S. Chang: Some problems and results in the study of nonlinear analysis, Nonlinear Anal. 30 (1997), 4197-4208.
[18] H. Zhou: Convergence theorems of fixed points for $k-$ strict pseudo-contractions in Hilbert spaces, Nonlinear Anal. 69 (2008), 456-462.
[19] Z. Opial: Weak convergence of sequence of successive approximations for non-expansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591-597.

[^0]: ${ }^{\mathrm{i}}$ This work is supported by the Scientific Research Foundation from Yunnan Province Education Committee (08Y0338), the Natural Science Foundation of Yunnan Province (2010ZC152).
 http://siba-ese.unisalento.it/ (C) 2011 Università del Salento

