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Introduction

Let F : M → FM be a product preserving bundle functor and letA = F (R)
be its Weil algebra, [3].

If λ : A → R is a linear map and Φ is an affinor on an n-manifold M , then
we have (trΦ)(λ) : F (M) → R, where trΦ : M → R is the trace of Φ and ( )(λ)

is the (λ)-lift of functions to F in the sense of [2].
Clearly, for a given linear map λ : A→ R the correspondence Φ → (trΦ)(λ) is

a linear natural operator T (1,1)
|Mn

� T (0,0)F transforming affinors into functions
on F in the sense of [3]. Similarly, for a given linear map λ : A → R the
correspondence Φ → d(trΦ)(λ) is a linear natural operator T (1,1)

|Mn
� T (0,1)F

transforming affinors into 1-forms on F .
In this short note we prove

Theorem 1. Let F and A be as above.

1. Every linear natural operator T (1,1)
|Mn

� T (0,0)F is of the form Φ → (trΦ)(λ)

for a linear map λ : A→ R.

2. Every linear natural operator T (1,1)
|Mn

� T (0,1)F is of the form Φ → d(trΦ)(λ)

for a linear map λ : A→ R.

3. For p ≥ 2 every linear natural operator T (1,1)
|Mn

� T (0,p)F is 0.
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Problem of finding all natural operators of some type on affinors is very
difficult. Classifications of base extending natural operators on affinors are un-
known. The author knows only the paper of Debecki, cf. [1], where the natural
operators T (1,1)

Mn
� T (p,q) for p = q = 0, 1, 2 and (p, q) = (0, 1) are classified.

Recently Debecki obtained a classification for p = q = 3. It seems that classi-
fications of natural operators on affinors would be very useful because affinors
play important role in differential geometry.

Throughout this note the usual coordinates on Rn are denoted by x1, . . . ,
xn and ∂i = ∂

∂xi , i = 1, . . . , n.
All manifolds and maps are assumed to be of class C∞.

1. A reducibility lemma

The crucial point in our consideration is the following general lemma.
Lemma 1. Let L : T (1,1)|Mn � HF be a linear natural operator, where

F : Mn → FM is a natural bundle and H : Mdim(F (Rn)) → VB ⊂ FM is a
natural vector bundle. If L(x1∂1 ⊗ dx1) = 0, then L = 0.

Proof. At first we prove that

L((x1)p∂1 ⊗ dx1) = 0 over 0 ∈ Rn (1)

for p = 0, 1, 2, . . ..
We consider three cases:

1. p = 0. Applying the invariance of L with respect to the translation
(x1 − 1, x2, . . . , xn) from the assumption L(x1∂1 ⊗ dx1) = 0 it follows that
L((x1 − 1)∂1 ⊗ dx1) = 0. Then L(∂1 ⊗ dx1) = 0 because of the linearity of
L.

2. p = 1. The equality (1) for p = 1 is the assumption.

3. p ≥ 2. Applying the invariance of L with respect to the local diffeo-
morphism (x1 + (x1)p, x2, . . . , xn)−1 from the assumption it follows that
L((x1 +(x1)p)∂1⊗dx1) = 0 over 0 ∈ Rn. Then we have (1) because of the
same reasons as in case 1.

Next we prove that if n ≥ 2, then

L((x1)px2∂1 ⊗ dx1) = 0 over 0 ∈ Rn (2)

for p = 0, 1, 2, . . ..
Let p ∈ {0, 1, 2, . . .}.
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We shall use (1). We have L(∂1 ⊗ dx1) = 0 over 0 ∈ Rn. Then by the
invariance of L with respect to the diffeomorphism (x1 − x2, x2, . . . , xn) we
derive that L(∂1 ⊗ (dx1 + dx2)) = 0 over 0 ∈ Rn. Then

L(∂1 ⊗ dx2) = 0 over 0 ∈ Rn. (3)

There is a diffeomorphism ϕ : R → R such that ϕ× idRn−1 sends the germ
of ∂1 at 0 into the germ of ∂1 + (x1)p∂1 at 0. Then using the invariance of L
with respect to ϕ× idRn−1 from (3) we obtain that L((∂1 + (x1)p∂1)⊗ dx2) = 0
over 0 ∈ Rn. Then

L((x1)p∂1 ⊗ dx2) = 0 over 0 ∈ Rn. (4)

On the other hand by the invariance of L with respect to the diffeomorphisms
(x1 − τx2, x2, . . . , xn), τ �= 0 from (1) for p + 1 instead of p we have L((x1 +
τx2)p+1∂1 ⊗ (dx1 + τdx2)) = 0 over 0 ∈ Rn. The left hand side of this equality
is a polynomial in τ . Considering the coefficients at τ1 of this polynomial we
get

(p+ 1)L((x1)px2∂1 ⊗ dx1) + L((x1)p+1∂1 ⊗ dx2) = 0 over 0 ∈ Rn.

Then we have (2) because of (4) for p+ 1 instead of p.
We continue the proof of the lemma. By the linearity of L and the base-

extending version of Peetre theorem (see Th. 19.9 in [3]) it is sufficient to verify
that

L(xα∂i ⊗ dxj) = 0 over 0 ∈ Rn (5)

for any α = (α1, . . . , αn) ∈ (N ∪ {0})n and i, j = 1, . . . , n.
Because of (1) we can assume that n ≥ 2. Using the invariance of L with

respect to the diffeomorphisms permuting the coordinates we can assume that
either i = j = 1 or i = 1 and j = 2.

Consider two cases:

1. i = j = 1. If α2 = · · · = αn = 0, then by (1) for p = α1 we get L(xα∂1 ⊗
dx1) = 0 over 0 ∈ Rn. So, we can assume that (α2, . . . , αn) �= 0. Then
by the invariance of L with respect to the local diffeomorphisms (x1, x2 +
(x2)α2 · · · (xn)αn , x3, . . . , xn)−1 from (2) for p = α1 we derive that

L((x1)α1(x2 + (x2)α2 · · · (xn)αn)∂1 ⊗ dx1) = 0 over 0 ∈ Rn.

Then L(xα∂1 ⊗ dx1) = 0 over 0 ∈ Rn.

2. i = 1, j = 2. We consider two subcases:
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a. Assume n ≥ 3 and (α3, . . . , αn) �= 0. Then from the case 1 we have (in
particular) that L(x3∂1 ⊗ dx1) = 0 over 0 ∈ Rn. Then using the in-
variance of L with respect to the diffeomorphisms (x1−x2, x2, . . . , xn)
we obtain L(x3∂1 ⊗ (dx1 + dx2)) = 0 over 0 ∈ Rn. Consequently
L(x3∂1 ⊗ dx2) = 0 over 0 ∈ Rn.
There is a diffeomorphism ϕ : R → R such that ϕ × idRn−1 sends
the germ of ∂1 at 0 into the germ of ∂1 + (x1)α1∂1 at 0. Using the
invariance of L with respect to ϕ × idRn−1 from L(x3∂1 ⊗ dx2) = 0
over 0 ∈ Rn we derive that L(x3(∂1 + (x1)α1∂1) ⊗ dx2) = 0 over
0 ∈ Rn. Then

L((x1)α1x3∂1 ⊗ dx2) = 0 over 0 ∈ Rn. (6)

There is a diffeomorphism ψ : R → R such that idR × ψ × idRn−2

sends the germ of dx2 at 0 into the germ of dx2 + (x2)α2dx2 at 0.
Using the invariance of L with respect to idR × ψ × idRn−2 from (6)
we deduce that L((x1)α1x3∂1 ⊗ (dx2 + (x2)α2dx2)) = 0 over 0 ∈ Rn.
Then

L((x1)α1(x2)α2x3∂1 ⊗ dx2) = 0 over 0 ∈ Rn. (7)

Then using the invariance of L with respect to the local diffeomor-
phism (x1, x2, x3+(x3)α3 · · · (xn)αn , x4, . . . , xn)−1 from (7) we deduce
that L((x1)α1(x2)α2(x3+(x3)α3 · · · (xn)αn)∂1⊗dx2) = 0 over 0 ∈ Rn.
Hence L(xα∂1 ⊗ dx2) = 0 over 0 ∈ Rn.

b. n = 2 or α3 = · · · = αn = 0. By (4), L((x1)α1∂1 ⊗ dx2) = 0 over 0 ∈
Rn. Now, using the invariance of L with respect to idR ×ψ× idRn−2

(as above) we deduce that L((x1)α1∂1 ⊗ (dx2 + (x2)α2dx2)) = 0 over
0 ∈ Rn. Then L((x1)α1(x2)α2∂1 ⊗ dx2) = 0 over 0 ∈ Rn.

QED

2. The proof of Theorem 1

We are now in position to prove the theorem. Let F and A be as in the
Introduction. Let a1, . . . , ak ∈ A be a basis of A, and let a∗1, . . . , a∗k be the dual
basis.

1. Consider a linear natural operator L : T (1,1)
|Mn

� T (0,0)F . Since the (xi)(a
∗
ν)

for i = 1, . . . , n and ν = 1, . . . , k form a coordinate system on F (Rn)
(see [2]), we can write L(x1∂1 ⊗ dx1) = f((xi)(a

∗
ν)) for some f : RN → R,

with N = {1, . . . , n} × {1, . . . , k}. By the invariance of L with respect to
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the diffeomorphisms (x1, tx2, . . . , txn), t �= 0, we deduce that L(x1∂1 ⊗
dx1) = f((x1)(a

∗
ν)) for some f : R{1,...,k} → R. Now, by the linearity and

the invariance of L with respect to the diffeomorphisms (tx1, x2, . . . , xn),
t �= 0, f is homogeneous of weight 1. Then by the homogeneous function
theorem, cf. [3], f is linear. Hence L(x1∂1 ⊗ dx1) = (x1)(λ) = (tr(x1∂1 ⊗
dx1))(λ) for some linear λ : A→ R. Applying Lemma we end the proof of
part 1.

2. Consider a linear natural operator L : T (1,1)
|Mn

� T (0,1)F . We can write

L(x1∂1⊗dx1) =
∑n

j=1

∑k
µ=1 fjµ((xi)(a

∗
ν))d(xj)(a

∗
µ) for some functions fjµ :

R{1,...,n}×{1,...,k} → R. By the linearity and the invariance of L with re-
spect to the homotheties (tx1, tx2, . . . , txn), t �= 0, we deduce that the
functions fjµ are constants. Now, by the invariance of L with respect to
the diffeomorphisms (x1, tx2, . . . , txn), t �= 0, we deduce that fjµ = 0 for
j = 2, . . . , n. Hence L(x1∂1 ⊗ dx1) = d(x1)(λ) = d(tr(x1∂1 ⊗ dx1))(λ) for
some linear λ : A→ R. Applying Lemma we end the proof of part 2.

3. Consider a linear natural operator L : T (1,1)
|Mn

� T (0,p)F , where p ≥ 2.
Similarly as above, from the linearity and the invariance of L with respect
to the homotheties it follows that L(x1∂1 ⊗ dx1) = 0. Applying Lemma
we finish the proof.
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