On sewing neighbourly polytopes

T. Bisztriczky
Department of Mathematics and Statistics, University of Calgary, Calgary, Canada T2N
1N4, tbisztri@math.ucalgary.ca

Received: 28 June 1999; accepted: 10 January 2000.

Abstract

In 1982, I. Shemer introduced the sewing construction for neighbourly 2 m polytopes. We extend the sewing to simplicial neighbourly d-polytopes via a verification that is not dependent on the parity of the dimension. We present also descibable classes of 4-polyopes and 5 -polytopes generated by the construction.

Keywords: d-polytope, neighbourly, sewing, desciption
MSC 2000 classification: primary 52B11, secondary 52B12

Introduction

The increased use of polytopes, as models for problems in areas such as economics (see, for example, the correspondence between polytope pairs and equilibria of bimatrix games in [5]), operations research and theoretical chemistry, emphasises the importance of well-understood examples for which all the facets are explicitly described.

We examine the elegant sewing construction of Shemer from this point of view, and show that it is a practical tool for generating describable non-cyclic simplicial neighbourly polytopes in both even and odd dimensions. In a future paper, we consider these describable polytopes from the point of view of Hadwiger's Covering conjecture; cf. [1].

Our notation closely follows the ones in [2] and [3].
Let Y be a set of points in \mathbb{R}^{d}. Then conv Y and aff Y denote, respectively, the convex hull and the affine hull of Y. For sets $Y_{1}, Y_{2}, \ldots, Y_{k}$ let

$$
\left[Y_{1}, Y_{2}, \ldots, Y_{k}\right]=\operatorname{conv}\left(Y_{1} \cup Y_{2} \cup \cdots \cup Y_{k}\right)
$$

and

$$
\left\langle Y_{1}, Y_{2}, \ldots, Y_{k}\right\rangle=\operatorname{aff}\left(Y_{1} \cup Y_{2} \cup \cdots \cup Y_{k}\right) .
$$

For a point $y \in \mathbb{R}^{d}$, let $[y]=[\{y\}]$ and $\langle y\rangle=\langle\{y\}\rangle$.
Let $P \subset \mathbb{R}^{d}$ denote a (convex) d-polytope with $\mathcal{V}(P), \mathcal{F}(P)$ and $\mathcal{L}(P)$ denoting, respectively, the set of vertices, the set of facets and the face lattice of P. We recall that $\mathcal{L}(P)$ is the collection of all faces of P ordered by inclusion. Let $\mathcal{B}(P)=\mathcal{L}(P) \backslash\{P\}$. For $G \in \mathcal{B}(P)$, let $\mathcal{F}(G, P)=\{F \in \mathcal{F}(P) \mid G \subseteq F\}$.

Let $F \in \mathcal{F}(P)$ and $y \in \mathbb{R}^{d} \backslash\langle F\rangle$. Then y is beneath (beyond) F, with respect to P, if y and P are (are not) on the same side of the hyperplane $\langle F\rangle$.

Let $y \notin P$ and $P^{*}=[P, y]$. We recall from [2] the following relation between $\mathcal{B}(P)$ and $\mathcal{B}\left(P^{*}\right)$.

Lemma 1. Let $G \in B(P)$. Then

1. $G \in \mathcal{B}\left(P^{*}\right)$ if, and only if, y is beneath some $F \in \mathcal{F}(G, P)$, and
2. $G^{*}=[G, y] \in \mathcal{B}\left(P^{*}\right)$ if, and only if, either $y \in\langle G\rangle$ or y is beneath some F_{1} and beyond some F_{2} in $\mathcal{F}(G, P)$.

Moreover, each face of P^{*} is obtained in this manner.
Let $\left\{G_{1}, G_{2}, \ldots, G_{k}\right\} \subset \mathcal{B}(P)$ such that $G_{1} \subset G_{2} \subset \cdots \subset G_{k}$ and $\emptyset \neq G_{1}$. We set $\mathcal{T}=\left\{G_{i}\right\}_{i=1}^{k}$, and call it a tower in P. For the sake of convenience, let $\mathcal{F}_{i}=\mathcal{F}\left(G_{i}, P\right)$. Then $\mathcal{F}_{1} \supset \mathcal{F}_{2} \supset \cdots \supset \mathcal{F}_{k}$, and we set

$$
\mathcal{C}(\mathcal{T}, P)=\left(\mathcal{F}_{1} \backslash \mathcal{F}_{2} \backslash\left(\cdots \backslash \mathcal{F}_{k}\right) \cdots\right)
$$

that is,

$$
\mathcal{C}(\mathcal{T}, P)=\left\{\begin{array}{lll}
\left(\mathcal{F}_{1} \backslash \mathcal{F}_{2}\right) \cup\left(\mathcal{F}_{3} \backslash \mathcal{F}_{4}\right) \cup \cdots \cup\left(\mathcal{F}_{k-1} \backslash \mathcal{F}_{k}\right) \\
\left(\mathcal{F}_{1} \backslash \mathcal{F}_{2}\right) \cup \cdots \cup\left(\mathcal{F}_{k-2} \backslash \mathcal{F}_{k-1}\right) \cup \mathcal{F}_{k} & \quad \text { if } & k \text { is even } \\
& k \text { is odd }
\end{array}\right.
$$

For $y \in \mathbb{R}^{d}$, we say that y lies exactly beyond $\mathcal{C}(\mathcal{T}, P)$, with respect to P, if y is beyond (beneath) each facet in $\mathcal{C}(\mathcal{T}, P)(\mathcal{F}(P) \backslash \mathcal{C}(\mathcal{T}, P))$. Recalling that $\mathcal{F}(P)=\mathcal{F}(\emptyset, P)$, it is convenient to let $G_{0}=\emptyset, G_{k+1}=P, \mathcal{F}_{0}=\mathcal{F}(P)$ and $\mathcal{F}_{k+1}=\emptyset$. Then, for suitable i, the following are equivalent:

- $\quad y$ lies exactly beyond $\mathcal{C}(\mathcal{T}, P)$.

We note from [4] that, given P and \mathcal{T}, there is a point in \mathbb{R}^{d} that lies exactly beyond $\mathcal{C}(\mathcal{T}, P)$.

Let $G \in \mathcal{B}(P)$. Then G is a universal face of P if $[G, S] \in \mathcal{B}(P)$ for every $S \subset \mathcal{V}(P)$ with $|S| \leq\left[\frac{1}{2}(d-1-\operatorname{dim} G)\right]$. Thus, each $(d-2)$-face and each facet of P is a universal face of P. We remark also that if the empty set \emptyset is a universal face of P then

$$
[S] \in \mathcal{B}(P) \quad \text { for every } \quad S \subset \mathcal{V}(P) \quad \text { with } \quad|S| \leq\left[\frac{d}{2}\right]
$$

that is, P is a neighbourly d-polytope.

Let $Q \subset \mathbb{R}^{d}$ denote a simplicial neighbourly d-polytope and $m=\left[\frac{d}{2}\right]$. Then $d \in\{2 m, 2 m+1\}$ and for $0 \leq j \leq m$, the following are equivalent for a $(2 j-1)$ face G of Q :

- $\quad G$ is a universal $(2 j-1)$-face of Q.
- $[G, S] \in \mathcal{B}(Q)$ for every $S \subset \mathcal{V}(Q)$ with $|S| \leq m-j$.
- $[X] \in \mathcal{B}(Q)$ for every $X \subset \mathcal{V}(Q)$ such that $\mathcal{V}(G) \subset X$ and $|X|=m+j$. $\}$

Finally, let $\mathcal{T} \subset \mathcal{F}(Q)$ be a tower. Then \mathcal{T} is a universal tower if $\mathcal{T}=$ $\left\{G_{j}\right\}_{j=1}^{m}$, each G_{j} is a universal face of Q and $\left|\mathcal{V}\left(G_{j}\right)\right|=2 j$. Now if \mathcal{T} is a universal tower in $Q, x^{*} \in \mathbb{R}^{d}$ lies exactly beyond $\mathcal{C}(\mathcal{T}, Q)$ and $Q^{*}=\left[Q, x^{*}\right]$ then we say that Q^{*} is obtained by sewing x^{*} onto Q.

With the preceding notation, we cite from [2] the Sewing Theorem of Shemer:
Theorem 1. Let Q be a neighbourly 2m-polytope and $Q^{*}=\left[Q, x^{*}\right]$ be obtained by sewing x^{*} onto Q through the universal tower $\left\{G_{j}\right\}_{j=1}^{m}, m \geq 2$.

1. Q^{*} is a neighbourly $2 m$-polytope with $\mathcal{V}\left(Q^{*}\right)=\mathcal{V}(Q) \cup\left\{x^{*}\right\}$.
2. If $0 \leq j \leq m$ is even then G_{j} is a universal face of Q^{*}.
3. If $x \in \mathcal{V}\left(G_{j}\right) \backslash \mathcal{V}\left(G_{j-1}\right)$ for some $1 \leq j \leq m$ then $\left[G_{j-1}, x, x^{*}\right]$ is a universal face of Q^{*}.

1. Extension and application

Let $Q \subset \mathbb{R}^{d}$ denote a simplicial neighbourly d-polytope with $\mathcal{V}(Q)=\left\{x_{1}, x_{2}\right.$, $\left.\ldots, x_{n-1}\right\}, n \geq d+3$ and $m=\left[\frac{d}{2}\right] \geq 2$. Let $\mathcal{T}=\left\{G_{j}\right\}_{j=1}^{m}$ be a universal tower in Q with

$$
G_{j}=\left\{x_{1}, x_{2}, \ldots, x_{2 j}\right\} \quad \text { for } \quad j=1, \ldots, m .
$$

Let $G_{0}=\emptyset, G_{m+1}=Q$ and $\mathcal{F}_{j}=\mathcal{F}\left(G_{j}, Q\right)$. Then $\mathcal{F}_{0}=\mathcal{F}(Q), \mathcal{F}_{m+1}=\emptyset$ and as Q is neighbourly, G_{0} is a universal face of Q. Let

$$
\mathcal{C}=\mathcal{C}(\mathcal{T}, Q)=\mathcal{F}_{1} \backslash\left(\mathcal{F}_{2} \backslash\left(\ldots \mathcal{F}_{m}\right) \ldots\right),
$$

$x_{n} \in \mathbb{R}^{d}$ lie exactly beyond \mathcal{C} with respect to Q, and set $Q_{n}=\left[Q, x_{n}\right]=$ $\left[x_{1}, x_{2}, \ldots, x_{n-1}, x_{n}\right]$.

In the extension of Theorem 1 , we use only $1,(1)$ and (2). To start: we have from (1) that $x_{n} \notin\langle\tilde{F}\rangle$ for any $\tilde{F} \in \mathcal{F}_{0}$, and x_{n} is beneath each $F \in \mathcal{F}_{0} \backslash \mathcal{F}_{1}$. Since each vertex of Q is contained in some such F, it follows from 1 that $\mathcal{V}\left(Q_{n}\right)=\left\{x_{1}, \ldots, x_{n-1}, x_{n}\right\}$ and Q_{n} is simplicial.

Theorem 2 (The Sewing Theorem). Let $Q \subset \mathbb{R}^{d}$ be a simplicial neighbourly d-polytope with $V(Q)=\left\{x_{1}, x_{2}, \ldots, x_{n-1}\right\}$ and the universal tower $\mathcal{T}=$ $\left\{G_{j}\right\}_{j=1}^{m}$ as described above, $n \geq d+3$ and $m=[d / 2] \geq 2$. Let $Q_{n}=\left[Q, x_{n}\right]$ be obtained by sewing x_{n} onto Q through \mathcal{T}.

1. Q_{n} is a simplicial neighbourly d-polytope with $\mathcal{V}\left(Q_{n}\right)=\mathcal{V}(Q) \cup\left\{x_{n}\right\}$.
2. Let $0 \leq j \leq m$ be even. Then G_{j} is a universal face of Q_{n}.
3. Let $G_{j}^{\prime}=\left[G_{j-1}, x, x_{n}\right]$ for some $x \in\left\{x_{2 j-1}, x_{2 j}\right\}$ and $1 \leq j \leq m$. Then G_{j}^{\prime} is a universal face of Q_{n}.

Proof. (1) Let $X \subset \mathcal{V}\left(Q_{n}\right),|X|=m$. We need to show that $[X] \in \mathcal{B}\left(Q_{n}\right)$. We apply (1) if $[X] \in \mathcal{B}(Q)$, and (2) if $[X]=\left[X^{\prime}, x_{n}\right]$ and $\left[X^{\prime}\right] \in \mathcal{B}(Q)$.
Case 1. $x_{n} \notin X$.
Then $[X] \in \mathcal{B}(Q)$ by (2). Let $u=\left[\frac{m-1}{2}\right]$ and

$$
Y=\left\{x_{1}, x_{2}, x_{5}, x_{6}, \ldots, x_{4 u+1}, x_{4 u+2}\right\} .
$$

Then $|Y|=2 u+2, Y \subset G_{2 u+1} \subseteq G_{m}$ and either $Y=X$ and m is even or $Y \neq X$ and there is a smallest integer i such that $0 \leq i \leq u$ and $\left\{x_{4 i+1}, x_{4 i+2}\right\} \not \subset X$.

In case of the former, there is an $F \in \mathcal{F}_{m}$ such that $X \subset F$. Since m is even and $F \in \mathcal{F}_{m} \backslash \mathcal{F}_{m+1}, x_{n}$ is beneath F by (1). In case of the latter, let $U=X \cup \mathcal{V}\left(G_{2 i}\right)$. Then

$$
\begin{aligned}
|U| & =|X|+\left|\mathcal{V}\left(G_{2 i}\right)\right|-\mid X \cap \mathcal{V}\left(G_{2 i}\right) \\
& \leq m+4 i-\left|\bigcup_{k=0}^{i-1}\left\{x_{4 k+1}, x_{4 k+2}\right\}\right|=m+2 i .
\end{aligned}
$$

Since $G_{2 i}$ is a universal face of Q, it follows by (2) that $[U] \in \mathcal{B}(Q)$. Thus, there is an $F \in \mathcal{F}(Q)$ such that $X \cup G_{2 i} \subset F$ and $G_{2 i+1} \not \subset F$. Then $F \in \mathcal{F}_{2 i} \backslash \mathcal{F}_{2 i+1}$, and x_{n} is beneath F by (1).

Case 2. $x_{n} \in X$.
Let $X^{\prime}=X \backslash\left\{x_{n}\right\}$. Then $[X]=\left[X^{\prime}, x_{n}\right],\left[X^{\prime}\right] \in \mathcal{B}(Q) \cap \mathcal{B}\left(Q_{n}\right)$ from above, and there is an $F \in \mathcal{F}(Q)$ such that $X^{\prime} \subset F$ and x_{n} is beneath F.

Let $w=\left[\frac{m-2}{2}\right]$ and

$$
Z=\left\{x_{3}, x_{4}, x_{7}, x_{8}, \ldots, x_{2 w+3}, x_{2 w+4}\right\} .
$$

Then $|Z|=2 w+2, Z \subset G_{2 w+2} \subseteq G_{m}$ and either $Z=X^{\prime}$ and m is odd or $Z \neq X^{\prime}$ and there is a smallest i such that $0 \leq i \leq w$ and $\left\{x_{2 i+3}, x_{2 i+4}\right\} \not \subset X^{\prime}$.

In case of the former, there is an $F^{\prime} \in \mathcal{F}_{m} \backslash \mathcal{F}_{m+1}$ such that $X^{\prime} \subset F^{\prime}$. Since m is odd, x_{n} is beyond F^{\prime} by (1). In case of the latter, let $W=X^{\prime} \cup \mathcal{V}\left(G_{2 i+1}\right)$. Then

$$
|W| \leq(m-1)+(4 i+2)-2 i=m+(2 i+1),
$$

$[W] \in \mathcal{B}(Q)$ by (2), and there is an $F^{\prime} \in \mathcal{F}_{2 i+1} \backslash \mathcal{F}_{2 i+2}$ such that $X^{\prime} \subset F$. Again, x_{n} is beyond F^{\prime} by (1).
(2)Since Q_{n} is neighbourly; G_{0} is a universal of Q_{n}, and we may assume that the assertion is true for $j-2$. Let $j \geq 2, V\left(G_{j}\right) \subset X \subset V\left(Q_{n}\right)$ and $|X|=m+j$. By (2), we need to show that $[X] \in B\left(Q_{n}\right)$.

Case 1. $x_{n} \notin X$.
Let $X^{\prime}=X \backslash\left\{x_{2 j-1}, x_{2 j}\right\}$. Then $\left|X^{\prime}\right|=m+j-2, \mathcal{V}\left(G_{j-2}\right) \subset \mathcal{V}\left(G_{j-1}\right) \subset X^{\prime}$ and $\left[X^{\prime}\right] \in \mathcal{B}(Q) \cap \mathcal{B}\left(Q_{n}\right)$ by (2) and the induction. By 1 , there is an $F^{\prime} \in \mathcal{F}(Q)$ such that $X^{\prime} \subset F^{\prime}$ and x_{n} is beneath F^{\prime}. Since $F^{\prime} \in \mathcal{F}_{j-1}$ and x_{n} is beyond each facet in $\mathcal{F}_{j-1} \backslash \mathcal{F}_{j}$ when j is even, we have that $F^{\prime} \in \mathcal{F}_{j}$; that is $X \subset F^{\prime}$.

Case 2. $x_{n} \in X$.
From above, $\left[X \backslash\left\{x_{n}\right\}\right] \in \mathcal{B}(Q) \cap \mathcal{B}\left(Q_{n-1}\right)$ and there is an $F \in \mathcal{F}(Q)$ such that $X \backslash\left\{x_{n}\right\} \subset F$ and x_{n} is beneath F.

Let $\tilde{X}=X \backslash\left\{x_{2 j-3}, x_{2 j-2}, x_{n}\right\}$. Then $[\tilde{X}] \in \mathcal{B}(Q) \cap \mathcal{B}\left(Q_{n}\right),\left[\tilde{X}, x_{n}\right] \in \mathcal{B}\left(Q_{n}\right)$ by the induction and there is an $\tilde{F} \in \mathcal{F}_{j-2}$ such that $\tilde{X} \subset \tilde{F}$ and x_{n} is beyond \tilde{F}. Now (1) and j even imply that $\tilde{F} \in \mathcal{F}_{j-1}$; that is $X \backslash\left\{x_{n}\right\} \subset \tilde{F}$.
(3) Let $\mathcal{V}\left(G_{j}^{\prime}\right)=\mathcal{V}\left(G_{j-1}\right) \cup\left\{x, x_{n}\right\} \subset X \subset \mathcal{V}\left(Q_{n}\right),|X|=m+j$ and $X^{\prime}=$ $X \backslash\left\{x_{n}\right\}$.

Case 1. j is odd.
Let $X^{\prime \prime}=X^{\prime} \backslash\{x\}$ and note that G_{j-1} is a universal face of both Q and Q_{n}. Thus,

$$
\left[X^{\prime \prime}\right] \subset\left[X^{\prime}\right] \in \mathcal{B}(Q) \cap \mathcal{B}\left(Q_{n}\right),\left[X^{\prime \prime}, x_{n}\right] \in \mathcal{B}\left(Q_{n}\right)
$$

and there is an $F^{\prime}\left(F^{\prime \prime}\right)$ in \mathcal{F}_{j-1} such that $X^{\prime} \subset F^{\prime}\left(X^{\prime \prime} \subset F^{\prime \prime}\right)$ and x_{n} is beneath F^{\prime} (beyond $F^{\prime \prime}$). Now (1) and j odd imply that $F^{\prime \prime} \in \mathcal{F}_{j}$. Then $X^{\prime} \subset$ $X^{\prime \prime} \cup\left\{x_{2 j-1}, x_{2 j}\right\} \subset F^{\prime \prime}$, and $[X]=\left[X^{\prime}, x_{n}\right] \in \mathcal{B}\left(Q_{n}\right)$ by 1 .

Case 2. j is even.
Let $\tilde{X}=X^{\prime} \backslash\left\{x_{2 j-3}, x_{2 j-2}\right\}_{\tilde{x}}$ and $\left\{x_{2 j-1}, x_{2 j}\right\}=\{x, \bar{x}\}$. Then $\mathcal{V}\left(G_{j-2}\right) \subset$ $\tilde{X} \cup\left\{x_{n}\right\}, \mathcal{V}\left(G_{j}\right) \subset X^{\prime} \cup\{\bar{x}\},\left|\tilde{X} \cup\left\{x_{n}\right\}\right|=m+j-2,\left|X^{\prime} \cup\{\bar{x}\}\right|=m+j$, and it follows by (2) and 2 that

$$
[\tilde{X}] \subset\left[X^{\prime}\right] \subset\left[X^{\prime}, \bar{x}\right] \in \mathcal{B}(Q) \cap \mathcal{B}\left(Q_{n}\right)
$$

and $\left[\tilde{X}, x_{n}\right] \in B\left(Q_{n}\right)$.
Thus, there is an $F^{\prime}(\tilde{F})$ in $\mathcal{F}(Q)$ such that $X^{\prime} \subset F^{\prime}(\tilde{X} \subset \tilde{F})$ and x_{n} is beneath F^{\prime} (beyond \tilde{F}). Now $\tilde{F} \in \mathcal{F}_{j-2},(1)$ and j even imply that $\tilde{F} \in \mathcal{F}_{j-1}$; that is, $X^{\prime} \subset \tilde{F}$.

In order to complete the verification of the sewing construction in \mathbb{R}^{d}, we need to demonstrate a simplicial neighbourly d-polytope with a universal tower.

Let $m=\left[\frac{d}{2}\right] \geq 2, v=2 m+3$ and $Q_{v}(d) \subset \mathbb{R}^{d}$ denote a cyclic d-polytope with the ordered vertices $x_{1}<x_{2}<\cdots<x_{v}$. Then Gale's Evenness Condition yields explicitly the facets of $Q_{v}(d)$. From the explicit list of facets, it is easy to check that $Q_{v}(d)$ is neighbourly with

$$
\left\{\left[x_{1}, x_{2}, \ldots, x_{2 j}\right]\right\}_{j=1}^{m}
$$

as a universal tower.
Let us now use Theorem 2 to generate a describable class of d-polytopes.
With the preceding $Q_{v}(d)$ and the reverse ordering on the vertices, we note that

$$
\mathcal{T}=\left\{\left[x_{v+1-2 j}, \ldots, x_{v-1}, x_{v}\right]\right\}_{j=1}^{m}
$$

is also a universal tower. Let $x_{v+1} \in \mathbb{R}^{d}$ lie exactly beyond $\mathcal{C}\left(\mathcal{T}, Q_{v}(d)\right)$. Then $Q_{v+1}(d)=\left[Q_{v}(d), x_{v+1}\right]$ is a simplicial neighbourly d-polytope, and with $x=$ $x_{v+2-2 j}$ in 3,

$$
\left\{\left[x_{v+2-2 j}, \ldots, x_{v}, x_{v+1}\right]\right\}_{j=1}^{m}
$$

is a universal tower.
Repeating this particular sewing, we obtain a class of simplicial non-cyclic neighbourly d-polytopes $\left\{Q_{n}(d)\right\}_{n \geq 2 m+4}$ such that

$$
Q_{n}(d)=\left[x_{1}, x_{2}, \ldots, x_{n}\right]
$$

with a universal tower $\left\{\left[x_{n+1-2 j}, \ldots, x_{n-1}, x_{n}\right]\right\}_{j=1}^{m}$.
In the case $m=2$ and $n \geq 8, Q_{n}(4)$ and $Q_{n}(5)$ are particularly easy to describe:

$$
\text { - } \mathcal{F}\left(Q_{n}(4)\right)=A \cup\left(\bigcup_{j=7}^{n} B_{j}\right) \cup\left(\bigcup_{j=8}^{n} C_{j}\right) \cup\left(\bigcup_{j=9}^{n} D_{j}\right) \cup Y_{n} \cup Z_{n}
$$

where

$$
\begin{aligned}
& A=\left\{\left[x_{1}, x_{2}, x_{3}, x_{4}\right],\left[x_{1}, x_{2}, x_{4}, x_{5}\right],\left[x_{1}, x_{2}, x_{5}, x_{6}\right],\left[x_{2}, x_{3}, x_{4}, x_{5}\right]\right. \\
& \left.\quad\left[x_{2}, x_{3}, x_{5}, x_{6}\right],\left[x_{3}, x_{4}, x_{5}, x_{6}\right],\left[x_{1}, x_{2}, x_{3}, x_{7}\right],\left[x_{1}, x_{3}, x_{4}, x_{7}\right],\left[x_{1}, x_{4}, x_{5}, x_{7}\right]\right\} \\
& B_{j}=\left\{\left[x_{j-3}, x_{j-2}, x_{j-1}, x_{j}\right]\right\} \\
& C_{j}=\left\{\left[x_{1}, x_{2}, x_{j-2}, x_{j}\right],\left[x_{2}, x_{3}, x_{j-2}, x_{j}\right],\left[x_{3}, x_{4}, x_{j-2}, x_{j}\right],\left[x_{1}, x_{5}, x_{j-2}, x_{j}\right]\right\} \\
& D_{j}=\left\{\left[x_{i}, x_{i+2}, x_{j-2}, x_{j}\right] \mid i=4, \ldots, j-5\right\} \\
& Y_{n}=\left\{\left[x_{i}, x_{i+2}, x_{n-1}, x_{n}\right] \mid i=4, \ldots, n-4\right\}
\end{aligned}
$$

and
$\mathbb{Z}_{n}=\left\{\left[x_{1}, x_{2}, x_{n-1}, x_{n}\right],\left[x_{2}, x_{3}, x_{n-1}, x_{n}\right],\left[x_{3}, x_{4}, x_{n-1}, x_{n}\right],\left[x_{1}, x_{5}, x_{n-1}, x_{n}\right]\right\}$.

$$
\text { - } \mathcal{F}\left(Q_{n}(5)\right)=A \cup\left(\bigcup_{j=7}^{n} B_{j}\right) \cup\left(\bigcup_{j=8}^{n} C_{j}\right) \cup\left(\bigcup_{j=9}^{n} D_{j}\right) \cup Y_{n} \cup Z_{n}
$$

where

$$
\begin{aligned}
& A=\left\{\left[x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right],\left[x_{1}, x_{2}, x_{3}, x_{5}, x_{6}\right],\left[x_{1}, x_{3}, x_{4}, x_{5}, x_{6}\right]\right. \\
& \left.\quad\left[x_{1}, x_{2}, x_{3}, x_{4}, x_{7}\right],\left[x_{1}, x_{2}, x_{4}, x_{5}, x_{7}\right],\left[x_{2}, x_{3}, x_{4}, x_{5}, x_{7}\right]\right\} \\
& B_{j}=\left\{\left[x_{1}, x_{j-3}, x_{j-2}, x_{j-1}, x_{j}\right],\left[x_{3}, x_{j-3}, x_{j-2}, x_{j-1}, x_{j}\right]\right\}, \\
& C_{j}=\left\{\left[x_{1}, x_{2}, x_{3}, x_{j-2}, x_{j}\right],\left[x_{1}, x_{3}, x_{4}, x_{j-2}, x_{j}\right],\left[x_{1}, x_{2}, x_{5}, x_{j-2}, x_{j}\right],\right. \\
& \left.\quad\left[x_{2}, x_{3}, x_{5}, x_{j-2}, x_{j}\right]\right\}, \\
& D_{j}=\left\{\left[x_{1}, x_{i}, x_{i+2}, x_{j-2}, x_{j}\right],\left[x_{3}, x_{i}, x_{i+2}, x_{j-2}, x_{j}\right] \mid i=4, \ldots, j-5\right\} \\
& Y_{n}=\left\{\left[x_{1}, x_{i}, x_{i+2}, x_{n-1}, x_{n}\right],\left[x_{3}, x_{i}, x_{i+2}, x_{n-1}, x_{n}\right] \mid i=4, \ldots, n-4\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
& Z_{n}=\left\{\left[x_{1}, x_{2}, x_{3}, x_{n-1}, x_{n}\right],\left[x_{1}, x_{3}, x_{4}, x_{n-1}, x_{n}\right],\left[x_{1}, x_{2}, x_{5}, x_{n-1}, x_{n}\right],\right. \\
& \left.\quad\left[x_{2}, x_{3}, x_{5}, x_{n-1}, x_{n}\right]\right\} .
\end{aligned}
$$

Finally, we remark that $\left|\mathcal{F}\left(Q_{n}(4)\right)\right|=\frac{n(n-3)}{2},\left|\mathcal{F}\left(Q_{n}(5)\right)\right|=(n-3)(n-4)$ and, with $Y_{7}=\emptyset$ in the case $n=7$, the preceding formulae also yield the set of facets of the cyclic polytopes $Q_{7}(4)$ and $Q_{7}(5)$.

References

[1] K. Bezdek, T. Bisztriczky: A proof of Hadwiger's Covering Conjecture for dual cyclic polytopes, Geom. Ded., 68 (1997), 29-41.
[2] B. Grünbaum: Convex Polytopes, Wiley, N.Y., 1967.
[3] I. Shemer: Neighborly polytopes, Isr. J. Math., 43 (1982), 291-314.
[4] I. Shemer: Techniques for investigating neighborly polytopes, Annals of Disc. Math., 20 (1984), 283-292.
[5] B. von Stengel: Computing equilibria for two-person games, Handbook of Game Theory, Vol. 3, R.S. Aumann and S. Hart (eds.), North Holland, Amsterdam, 1988.

