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Abstract. In 1982, I. Shemer introduced the sewing construction for neighbourly 2m-
polytopes. We extend the sewing to simplicial neighbourly d-polytopes via a verification that is
not dependent on the parity of the dimension. We present also descibable classes of 4-polyopes
and 5-polytopes generated by the construction.
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Introduction

The increased use of polytopes, as models for problems in areas such as
economics (see, for example, the correspondence between polytope pairs and
equilibria of bimatrix games in [5]), operations research and theoretical chem-
istry, emphasises the importance of well-understood examples for which all the
facets are explicitly described.

We examine the elegant sewing construction of Shemer from this point of
view, and show that it is a practical tool for generating describable non-cyclic
simplicial neighbourly polytopes in both even and odd dimensions. In a future
paper, we consider these describable polytopes from the point of view of Had-
wiger’s Covering conjecture; cf. [1].

Our notation closely follows the ones in [2] and [3].
Let Y be a set of points in R

d. Then conv Y and aff Y denote, respectively,
the convex hull and the affine hull of Y . For sets Y1, Y2, . . . , Yk let

[Y1, Y2, . . . , Yk] = conv (Y1 ∪ Y2 ∪ · · · ∪ Yk)

and
〈Y1, Y2, . . . , Yk〉 = aff (Y1 ∪ Y2 ∪ · · · ∪ Yk).

For a point y ∈ R
d, let [y] = [{y}] and 〈y〉 = 〈{y}〉.

Let P ⊂ R
d denote a (convex) d-polytope with V(P ), F(P ) and L(P ) de-

noting, respectively, the set of vertices, the set of facets and the face lattice of
P . We recall that L(P ) is the collection of all faces of P ordered by inclusion.
Let B(P ) = L(P )\{P}. For G ∈ B(P ), let F(G, P ) = {F ∈ F(P ) | G ⊆ F}.
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Let F ∈ F(P ) and y ∈ R
d\〈F 〉. Then y is beneath (beyond) F , with respect

to P , if y and P are (are not) on the same side of the hyperplane 〈F 〉.
Let y /∈ P and P ∗ = [P, y]. We recall from [2] the following relation between

B(P ) and B(P ∗).

Lemma 1. Let G ∈ B(P ). Then

1. G ∈ B(P ∗) if, and only if, y is beneath some F ∈ F(G, P ), and

2. G∗ = [G, y] ∈ B(P ∗) if, and only if, either y ∈ 〈G〉 or y is beneath some
F1 and beyond some F2 in F(G, P ).

Moreover, each face of P ∗ is obtained in this manner.
Let {G1, G2, . . . , Gk} ⊂ B(P ) such that G1 ⊂ G2 ⊂ · · · ⊂ Gk and ∅ �= G1.

We set T = {Gi}k
i=1, and call it a tower in P . For the sake of convenience, let

Fi = F(Gi, P ). Then F1 ⊃ F2 ⊃ · · · ⊃ Fk, and we set

C(T , P ) = (F1\F2\(· · · \Fk) · · · );

that is,

C(T , P ) =
{

(F1\F2) ∪ (F3\F4) ∪ · · · ∪ (Fk−1\Fk)
(F1\F2) ∪ · · · ∪ (Fk−2\Fk−1) ∪ Fk

if
k is even
k is odd.

For y ∈ R
d, we say that y lies exactly beyond C(T , P ), with respect to P ,

if y is beyond (beneath) each facet in C(T , P ) (F(P )\C(T , P )). Recalling that
F(P ) = F(∅, P ), it is convenient to let G0 = ∅, Gk+1 = P , F0 = F(P ) and
Fk+1 = ∅. Then, for suitable i, the following are equivalent:

• y lies exactly beyond C(T , P ).
• y is beyond (beneath) each F ∈ F2i+1\F2i+2(F2i\F2i+1).

}
(1)

We note from [4] that, given P and T , there is a point in R
d that lies exactly

beyond C(T , P ).
Let G ∈ B(P ). Then G is a universal face of P if [G, S] ∈ B(P ) for every

S ⊂ V(P ) with |S| ≤
[

1
2(d − 1 − dim G)

]
. Thus, each (d − 2)-face and each

facet of P is a universal face of P . We remark also that if the empty set ∅ is a
universal face of P then

[S] ∈ B(P ) for every S ⊂ V(P ) with |S| ≤
[

d
2

]
;

that is, P is a neighbourly d-polytope.
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Let Q ⊂ R
d denote a simplicial neighbourly d-polytope and m =

[
d
2

]
. Then

d ∈ {2m, 2m+1} and for 0 ≤ j ≤ m, the following are equivalent for a (2j−1)-
face G of Q:

• G is a universal (2j − 1)-face of Q.
• [G, S] ∈ B(Q) for every S ⊂ V(Q) with |S| ≤ m − j.
• [X] ∈ B(Q) for every X ⊂ V(Q) such that V(G) ⊂ X and |X| = m + j.




(2)
Finally, let T ⊂ F(Q) be a tower. Then T is a universal tower if T =

{Gj}m
j=1, each Gj is a universal face of Q and |V(Gj)| = 2j. Now if T is a

universal tower in Q, x∗ ∈ R
d lies exactly beyond C(T , Q) and Q∗ = [Q, x∗]

then we say that Q∗ is obtained by sewing x∗ onto Q.
With the preceding notation, we cite from [2] the Sewing Theorem of Shemer:

Theorem 1. Let Q be a neighbourly 2m-polytope and Q∗ = [Q, x∗] be ob-
tained by sewing x∗ onto Q through the universal tower {Gj}m

j=1, m ≥ 2.

1. Q∗ is a neighbourly 2m-polytope with V(Q∗) = V(Q) ∪ {x∗}.

2. If 0 ≤ j ≤ m is even then Gj is a universal face of Q∗.

3. If x ∈ V(Gj)\V(Gj−1) for some 1 ≤ j ≤ m then [Gj−1, x, x∗] is a universal
face of Q∗.

1. Extension and application

Let Q ⊂ R
d denote a simplicial neighbourly d-polytope with V(Q) = {x1, x2,

. . . , xn−1}, n ≥ d + 3 and m =
[

d
2

]
≥ 2. Let T = {Gj}m

j=1 be a universal tower
in Q with

Gj = {x1, x2, . . . , x2j} for j = 1, . . . , m.

Let G0 = ∅, Gm+1 = Q and Fj = F(Gj , Q). Then F0 = F(Q), Fm+1 = ∅ and
as Q is neighbourly, G0 is a universal face of Q. Let

C = C(T , Q) = F1\(F2\(. . .Fm) . . .),

xn ∈ R
d lie exactly beyond C with respect to Q, and set Qn = [Q, xn] =

[x1, x2, . . . , xn−1, xn].
In the extension of Theorem 1, we use only 1, (1) and (2). To start: we have

from (1) that xn /∈ 〈F̃ 〉 for any F̃ ∈ F0, and xn is beneath each F ∈ F0\F1.
Since each vertex of Q is contained in some such F , it follows from 1 that
V(Qn) = {x1, . . . , xn−1, xn} and Qn is simplicial.



76 T. Bisztriczky

Theorem 2 (The Sewing Theorem). Let Q ⊂ R
d be a simplicial neigh-

bourly d-polytope with V (Q) = {x1, x2, . . . , xn−1} and the universal tower T =
{Gj}m

j=1 as described above, n ≥ d + 3 and m = [d/2] ≥ 2. Let Qn = [Q, xn] be
obtained by sewing xn onto Q through T .

1. Qn is a simplicial neighbourly d-polytope with V(Qn) = V(Q) ∪ {xn}.

2. Let 0 ≤ j ≤ m be even. Then Gj is a universal face of Qn.

3. Let G′
j = [Gj−1, x, xn] for some x ∈ {x2j−1, x2j} and 1 ≤ j ≤ m. Then G′

j

is a universal face of Qn.

Proof. (1) Let X ⊂ V(Qn), |X| = m. We need to show that [X] ∈ B(Qn).
We apply (1) if [X] ∈ B(Q), and (2) if [X] = [X ′, xn] and [X ′] ∈ B(Q).

Case 1. xn /∈ X.
Then [X] ∈ B(Q) by (2). Let u =

[
m−1

2

]
and

Y = {x1, x2, x5, x6, . . . , x4u+1, x4u+2}.

Then |Y | = 2u+2, Y ⊂ G2u+1 ⊆ Gm and either Y = X and m is even or Y �= X
and there is a smallest integer i such that 0 ≤ i ≤ u and {x4i+1, x4i+2} �⊂ X.

In case of the former, there is an F ∈ Fm such that X ⊂ F . Since m is
even and F ∈ Fm\Fm+1, xn is beneath F by (1). In case of the latter, let
U = X ∪ V(G2i). Then

|U | = |X| + |V(G2i)| − |X ∩ V(G2i)

≤ m + 4i −
∣∣∣∣∣
i−1⋃
k=0

{x4k+1, x4k+2}
∣∣∣∣∣ = m + 2i.

Since G2i is a universal face of Q, it follows by (2) that [U ] ∈ B(Q). Thus, there
is an F ∈ F(Q) such that X ∪ G2i ⊂ F and G2i+1 �⊂ F . Then F ∈ F2i\F2i+1,
and xn is beneath F by (1).

Case 2. xn ∈ X.
Let X ′ = X\{xn}. Then [X] = [X ′, xn], [X ′] ∈ B(Q) ∩ B(Qn) from above,

and there is an F ∈ F(Q) such that X ′ ⊂ F and xn is beneath F .
Let w =

[
m−2

2

]
and

Z = {x3, x4, x7, x8, . . . , x2w+3, x2w+4}.

Then |Z| = 2w + 2, Z ⊂ G2w+2 ⊆ Gm and either Z = X ′ and m is odd or
Z �= X ′ and there is a smallest i such that 0 ≤ i ≤ w and {x2i+3, x2i+4} �⊂ X ′.
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In case of the former, there is an F ′ ∈ Fm\Fm+1 such that X ′ ⊂ F ′. Since
m is odd, xn is beyond F ′ by (1). In case of the latter, let W = X ′ ∪ V(G2i+1).
Then

|W | ≤ (m − 1) + (4i + 2) − 2i = m + (2i + 1),

[W ] ∈ B(Q) by (2), and there is an F ′ ∈ F2i+1\F2i+2 such that X ′ ⊂ F . Again,
xn is beyond F ′ by (1).

(2)Since Qn is neighbourly; G0 is a universal of Qn, and we may assume that
the assertion is true for j−2. Let j ≥ 2, V (Gj) ⊂ X ⊂ V (Qn) and |X| = m+ j.
By (2), we need to show that [X] ∈ B(Qn).

Case 1. xn /∈ X.
Let X ′ = X\{x2j−1, x2j}. Then |X ′| = m + j − 2, V(Gj−2) ⊂ V(Gj−1) ⊂ X ′

and [X ′] ∈ B(Q)∩B(Qn) by (2) and the induction. By 1, there is an F ′ ∈ F(Q)
such that X ′ ⊂ F ′ and xn is beneath F ′. Since F ′ ∈ Fj−1 and xn is beyond each
facet in Fj−1\Fj when j is even, we have that F ′ ∈ Fj ; that is X ⊂ F ′.

Case 2. xn ∈ X.
From above, [X\{xn}] ∈ B(Q) ∩ B(Qn−1) and there is an F ∈ F(Q) such

that X\{xn} ⊂ F and xn is beneath F .
Let X̃ = X\{x2j−3, x2j−2, xn}. Then [X̃] ∈ B(Q) ∩ B(Qn), [X̃, xn] ∈ B(Qn)

by the induction and there is an F̃ ∈ Fj−2 such that X̃ ⊂ F̃ and xn is beyond
F̃ . Now (1) and j even imply that F̃ ∈ Fj−1; that is X\{xn} ⊂ F̃ .

(3) Let V(G′
j) = V(Gj−1) ∪ {x, xn} ⊂ X ⊂ V(Qn), |X| = m + j and X ′ =

X\{xn}.

Case 1. j is odd.
Let X ′′ = X ′\{x} and note that Gj−1 is a universal face of both Q and Qn.

Thus,
[X ′′] ⊂ [X ′] ∈ B(Q) ∩ B(Qn), [X ′′, xn] ∈ B(Qn)

and there is an F ′ (F ′′) in Fj−1 such that X ′ ⊂ F ′ (X ′′ ⊂ F ′′) and xn is
beneath F ′ (beyond F ′′). Now (1) and j odd imply that F ′′ ∈ Fj . Then X ′ ⊂
X ′′ ∪ {x2j−1, x2j} ⊂ F ′′, and [X] = [X ′, xn] ∈ B(Qn) by 1.

Case 2. j is even.
Let X̃ = X ′\{x2j−3, x2j−2} and {x2j−1, x2j} = {x, x̄}. Then V(Gj−2) ⊂

X̃ ∪ {xn}, V(Gj) ⊂ X ′ ∪ {x̄}, |X̃ ∪ {xn}| = m + j − 2, |X ′ ∪ {x̄}| = m + j, and
it follows by (2) and 2 that

[X̃] ⊂ [X ′] ⊂ [X ′, x̄] ∈ B(Q) ∩ B(Qn)
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and [X̃, xn] ∈ B(Qn).
Thus, there is an F ′ (F̃ ) in F(Q) such that X ′ ⊂ F ′ (X̃ ⊂ F̃ ) and xn is

beneath F ′ (beyond F̃ ). Now F̃ ∈ Fj−2, (1) and j even imply that F̃ ∈ Fj−1;
that is, X ′ ⊂ F̃ . QED

In order to complete the verification of the sewing construction in R
d, we

need to demonstrate a simplicial neighbourly d-polytope with a universal tower.
Let m =

[
d
2

]
≥ 2, v = 2m + 3 and Qv(d) ⊂ R

d denote a cyclic d-polytope
with the ordered vertices x1 < x2 < · · · < xv. Then Gale’s Evenness Condition
yields explicitly the facets of Qv(d). From the explicit list of facets, it is easy to
check that Qv(d) is neighbourly with

{[x1, x2, . . . , x2j ]}m
j=1

as a universal tower.
Let us now use Theorem 2 to generate a describable class of d-polytopes.
With the preceding Qv(d) and the reverse ordering on the vertices, we note

that

T = {[xv+1−2j , . . . , xv−1, xv]}m
j=1

is also a universal tower. Let xv+1 ∈ R
d lie exactly beyond C(T , Qv(d)). Then

Qv+1(d) = [Qv(d), xv+1] is a simplicial neighbourly d-polytope, and with x =
xv+2−2j in 3,

{[xv+2−2j , . . . , xv, xv+1]}m
j=1

is a universal tower.
Repeating this particular sewing, we obtain a class of simplicial non-cyclic

neighbourly d-polytopes {Qn(d)}n≥2m+4 such that

Qn(d) = [x1, x2, . . . , xn]

with a universal tower {[xn+1−2j , . . . , xn−1, xn]}m
j=1.

In the case m = 2 and n ≥ 8, Qn(4) and Qn(5) are particularly easy to
describe:

• F(Qn(4)) = A ∪


 n⋃

j=7

Bj


 ∪


 n⋃

j=8

Cj


 ∪


 n⋃

j=9

Dj


 ∪ Yn ∪ Zn
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where

A = {[x1, x2, x3, x4], [x1, x2, x4, x5], [x1, x2, x5, x6], [x2, x3, x4, x5],
[x2, x3, x5, x6], [x3, x4, x5, x6], [x1, x2, x3, x7], [x1, x3, x4, x7], [x1, x4, x5, x7]},

Bj = {[xj−3, xj−2, xj−1, xj ]},

Cj = {[x1, x2, xj−2, xj ], [x2, x3, xj−2, xj ], [x3, x4, xj−2, xj ], [x1, x5, xj−2, xj ]},

Dj = {[xi, xi+2, xj−2, xj ] | i = 4, . . . , j − 5},

Yn = {[xi, xi+2, xn−1, xn] | i = 4, . . . , n − 4},

and

Zn = {[x1, x2, xn−1, xn], [x2, x3, xn−1, xn], [x3, x4, xn−1, xn], [x1, x5, xn−1, xn]}.

• F(Qn(5)) = A ∪


 n⋃

j=7

Bj


 ∪


 n⋃

j=8

Cj


 ∪


 n⋃

j=9

Dj


 ∪ Yn ∪ Zn

where

A = {[x1, x2, x3, x4, x5], [x1, x2, x3, x5, x6], [x1, x3, x4, x5, x6],
[x1, x2, x3, x4, x7], [x1, x2, x4, x5, x7], [x2, x3, x4, x5, x7]},

Bj = {[x1, xj−3, xj−2, xj−1, xj ], [x3, xj−3, xj−2, xj−1, xj ]},

Cj = {[x1, x2, x3, xj−2, xj ], [x1, x3, x4, xj−2, xj ], [x1, x2, x5, xj−2, xj ],
[x2, x3, x5, xj−2, xj ]},

Dj = {[x1, xi, xi+2, xj−2, xj ], [x3, xi, xi+2, xj−2, xj ] | i = 4, . . . , j − 5}

Yn = {[x1, xi, xi+2, xn−1, xn], [x3, xi, xi+2, xn−1, xn] | i = 4, . . . , n − 4}
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and

Zn = {[x1, x2, x3, xn−1, xn], [x1, x3, x4, xn−1, xn], [x1, x2, x5, xn−1, xn],
[x2, x3, x5, xn−1, xn]}.

Finally, we remark that |F(Qn(4))| = n(n−3)
2 , |F(Qn(5))| = (n − 3)(n − 4)

and, with Y7 = ∅ in the case n = 7, the preceding formulae also yield the set of
facets of the cyclic polytopes Q7(4) and Q7(5).
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