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Abstract. We construct a class of 3-manifolds Mq which are homeomorphic to the Brieskorn
homology spheres

∑
(2, 3, q), where (2, 3, q) are relatively prime. Also, we show that Mq is a

2-fold cyclic branched covering of S3 over a knot Kq which is inequivalent with torus knot
T (3, q) for q ≥ 7. Moreover, we show that two inequivalent Heegaard splittings of

∑
(2, 3, q)

of genus 2 associated with T (3, q) and Kq are equivalent after single stabilization.
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1. Introduction

In [1] and [12], they independently showed that the Brieskorn homology
sphere

∑
(2, 3, 7) admits two inequivalent Heegaard splittings of genus 2 as-

sociated with the torus knot T (3, 7) and K7 (Figure 3.2, q = 7), which are
inequivalent knot types but yield the 2-fold cyclic branched covering spaces
homeomorphic to

∑
(2, 3, 7).

Then we have the following natural question via Reidemeister and Singer’s
stable equivalence theorem of Heegaard splittings ([9] and [11]). What is the
minimum number of stabilizations necessary to yield a stable equivalence of
two inequivalent Heegaard splittings of a 3-manifold M which is a 2-fold cyclic
branched covering associated with two different knots?

In this paper, we construct a class of 3-manifolds Mq which are homeomor-
phic to the Brieskorn homology sphere

∑
(2, 3, q), where (2, 3, q) are relatively

prime ([7]). Also, we show that Mq is a 2-fold cyclic branched covering of S3

over a knot Kq which is inequivalent with torus knot T (3, q) for q ≥ 7. More-
over, we show that two inequivalent Heegaard splittings of

∑
(2, 3, q) of genus 2

∗This paper was supported by Korea Research Foundation 1998, Project No. 1998-015-
D00008



54 Y. H. Im, S. H. Kim

associated with T (3, q) and Kq are equivalent after single stabilization by using
crystallizations of Mq.

Among various representations of 3-manifolds, M. Pezzana and his group in-
troduced a method utilizing a 4-colored regular graph known as a crystallization.
Since crystallizations are totally combinatorial, they have many advantages. In
particular, they are quite convenient means to see interplay between links L and
2-fold cyclic branched coverings of S3 over L if links L have bridge presentations
([4]).

In [3], Ferry and Gagliardi introduced polyhedral cut and glue moves or
moves of type A of crystallizations representing 3-manifolds so that we can
transform one crystallization to the other if both represent homeomorphic 3-
manifolds, like Singer moves in Heegaard diagrams and Kirby moves in framed
links.

Recently in [12], they introduced LCG moves (≡ linear cut and glue moves)
of crystallizations, 4-colored 4-regular graphs representing 3-manifolds, from a
point of view of them as extended Heegaard diagrams. In fact, LCG moves
are particular kinds of moves of type A which transform crystallizations via
replacements of 2-residues, i. e., meridians in extended Heegaard diagrams.

Also, they showed that LCG moves are considered as crystallization the-
oretical versions of geometric T -transformations in Heegaard diagrams of 3-
manifolds.

We will approach the problem with Ferri’s algorithm to construct 2-fold
cyclic branched coverings of S3 over links and LCG moves as tools.

2. Preliminaries

Throughout this paper, all spaces and maps are piecewise linear (PL) in
the sense of [10]. Manifolds are always assumed to be closed, connected and
orientable. For basic graph theory, we refer to [5].

An edge-coloration on graph Γ = (V (Γ), E(Γ)) is map r : E(Γ) → ∆ =
{0, 1, 2, 3} such that r(e) �= r(f) for each pair e, f of adjacent edges. The pair
(Γ, r) is a 4-colored graph if r is regular of degree 4.

For each ∆′ ⊂ ∆, we set Γ∆′ = (V (Γ), r−1(∆′)); each connected compo-
nent of Γ∆′ is called a ∆′-residue. An k-residue is a ∆′-residue such that the
cardinality of ∆′ is k. For each i ∈ ∆, we set ı̂ = ∆ − {i}. (Γ, r) is said to be
contracted if Γı̂ is connected for each i ∈ ∆. A contracted graph representing a
closed 3-manifold M3 is said to be a crystallization of M ; every closed connected
3-manifold admits a crystallization ([6] and [8]).

Given a 4-colored graph (Γ, r), a subgraph θ of Γ formed by two vertices
X, Y joined by h edges (1 ≤ h ≤ 3) with colors c1, . . . , ch ∈ ∆ will be called a
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Figure 1. Linear (Polyhedral) cut and glue move

dipole of type h iff X and Y belong to distinct components of Γ∆−{c1,...,ch}. If
h = 1 or h = 3, the dipole is said to be degenerate.

Cancelling a dipole θ of type h means (a) in Γ∆−{c1,...,ch} replacing the
components containing X and Y by their connected sum with respect to these
vertices, (b) leaving the edges of colors c1, . . . , ch not adjacent with X and Y .
Adding θ means the converse process.

Move I is defined as the addition or cancellation of a non-degenerate dipole.
Move II is defined as the addition or cancellation of a dipole of type 1.
Two crystallizations are said to be (I,II)-equivalent iff they can be joined by

a finite sequence of moves I and/or II.
In [3], a generalization of move II, called move A or polyhedral cut and glue,

is defined in which the degenerate dipole is substituted by a more complicated
subgraph. See Fig. 1 for an example.

A handlebody Hg is a tubular neighbourhood of a graph, i. e., the topolog-
ical product of a (small) disk with a graph. A Heegaard splitting of a closed
connected 3-manifold M is a pair (Hg, H̄g) of handlebodies of genus g if M3 =
Hg ∪ H̄g and Hg ∩ H̄g = ∂Hg = ∂H̄g is a closed orientable surface of genus g.
The genus of the splitting is the genus of the surface ∂Hg.

Two Heegaard splittings (Hg, H̄g) and (H ′
g, H̄

′
g) of a 3-manifold M are said

to be equivalent if there is a (orientation preserving) homeomorphism φ : Hg ∪
H̄g → H ′

g ∪ H̄ ′
g with φ(Hg) = H ′

g, φ(H̄g) = H̄ ′
g.

A stabilization of the Heegaard splitting (Hg, H̄g) of M is the Heegaard
splitting of M obtained by taking the connected sum (Hg, H̄g) #n(T1, T̄1), where
(T1, T̄1) is the Heegaard splitting of S3 of genus 1. It is well-known that every
closed 3-manifold M has a Heegaard splitting and any two Heegaard splittings
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(Hg, H̄g) and (H ′
g, H̄

′
g) of a 3-manifold M are stably equivalent.

Now we introduce LCG moves and their relations with geometric T-trans-
formations. An intermediary 3-gem Γ̄ gets involved in a move from one crystal-
lization Γ to the other Γ′. A passage from Γ (resp. Γ̄) to Γ̄ (resp. Γ′) is said to
be a cut (resp. glue). And we employ the term “linear” in our version of crys-
tallization moves to point out that two subgraphs of the δ̄ 3-residues involved
in gluing are linear trees, where δ is some fixed color in ∆ = {0, 1, 2, 3}.

In LCG moves, the intermediary 3-gem Γ̄ is characterized by its 3-residues
as follows. The 3-gem Γ̄ has two δ̄ 3-residues Γ1 and Γ2 whereas for the other
colors c, Γ̄ has single c̄ 3-residue. In order to describe a LCG move from Γ to
Γ′ through Γ̄ we introduce one more concept of a ‘linearly extended 1-dipole’
determined by δ edges lying between two linear trees, which may be thought of
as a kind of generalization of the standard 1-dipole of type δ. Thus Γ (resp. Γ′)
is obtained from Γ̄ by eliminating a linearly extended 1-dipole between a pair
(m1, m2) (resp. (n1, n2)) of αβ-2residues such that mi (resp. ni) belongs to Γ1

(resp. Γ2). See Figure 1 and 2.

Figure 2. Inserting or eliminating linear extended 1-dipole

As in Figure 1, it is very convenient to understand LCG move using auxiliary
lines l in Γ. A line l in 3-gem is said to be a (i, j; k) if a line l cutting {i, j}-
residue meets at least one k-colored edges, and the line in Figure 1 is a (0, 1; 2).
In this paper all auxiliary lines l in 4-colored graphs Γ are presented by thick
lines.

Now we explain how LCG moves are related to geometric T transformations.
It is known that Γ yields the natural Heegaard splitting M3(Γ) = Hαβ∪h(Γ)Hγδ.
Similarly Γ′ yields a natural Heegaard splitting M3(Γ′) = H ′

αβ ∪h(Γ′) H ′
γδ. From

the 3-residues of Γ̄, we also have a Heegaard splitting M3(Γ̄) = H̄αβ ∪h(Γ̄) H̄γδ
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naturally associated with Γ̄. The handlebody H̄γδ is analogously constructed
from the β̄ and ᾱ 3-residues of Γ̄ and hence has a system of extended meridian
disks corresponding to a set Mγδ of all γδ 3-residues of Γ̄ but for the handlebody
H̄αβ , there are two choices of systems of extended meridian disks such that each
choice yields an equivalence of two Heegaard splittings M3(Γ) with M3(Γ̄) and
that of M3(Γ′)with M3(Γ̄) respectively. Hence we may view a LCG move from
Γ to Γ′ through Γ̄ as an equivalence of two Heegaard splittings M3(Γ) and
M3(Γ′) which is induced by a geometric T-transformation replacing one system
of meridian disks of H̄αβ arising from M̄αβ\{m1, m2} by the other arising from
M̄αβ\{n1, n2}, where M̄αβ is a set of all αβ 2-residues of Γ̄.

According to relations between the pairs (m1, m2) and (n1, n2), we may
classify LCG moves and identify those inducing geometric T-transformations of
elementary Nielsen types. For more details, see [12].

3. The construction of 3-manifolds Mq

In this section, we will construct a class of 3-manifolds Mq which are home-
omorphic to the Brieskorn homology spheres

∑
(2, 3, q), where (2, 3, q) are rela-

tively prime. First, we show that LCG moves between crystallizations are equiv-
alent to well-known crystallization moves.

Theorem 1. Let M , M ′ be closed 3-manifolds and (Γ, r), (Γ′, r′) two crys-
tallizations of them. Then the following statements are equivalent:
(1) M is homeomorphic with M ′,
(2) (Γ, r) and (Γ′, r′) are equivalence by Move I and II,
(3) (Γ, r) and (Γ′, r′) are equivalence by Move A, and
(4) (Γ, r) and (Γ′, r′) are equivalence by LCG moves.

Proof. It is already known that the statements (1), (2), and (3) are equiv-
alent ([3]). So we will show that (4) ⇒ (3) and (2) ⇒ (4) hold.
(4) ⇒ (3) is clear since a LCG move is a special case of a Move A.
(2) ⇒ (4): Move II can be regarded as a LCG move since a dipole of type 1 is
a linearly extended 1-dipole.
Cancelling of a 2-dipole corresponds to a LCG move accomplished by (1) iso-
lating a vertex of a 2-dipole by means of a linear cut and (2) doing a linear
gluing. Figure 3.1 illustrates, as an example, how the move of Figure 3.1 can
be obtained by such an operation. In Figure 3.1, small and capital letters are
assumed to be joined by the remaining color 3 among 4 colors. A line l in Fig-
ure 3.1 is used to obtain a 3-gem Γ̄ by a linear cut, where l is (0, 1; 2). Then
by linear glue along edges {Bx} and {bX} with the same color, we obtain the
crystallization in Figure 3.1. Therefore, a Move I is a LCG move. QED
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Figure 3. Move I, II and LCG Move

Throughout this paper, we assume that a crystallization move is one of the
statements in Theorem 1.

Now we construct a class of 3-manifolds Mq which are consequently the same
as the Brieskorn homology spheres

∑
(2, 3, q) where (2, 3, q) are relatively prime,

and we describe the method to obtain crystallizations of 3-manifolds Mq which
are 2-fold cyclic branched coverings of S3 over knots Kq.

Figure 4. Crystallization of Mq

Let C1, C2, C3 be circles on the plane having 2q, 2q, 10 vertices, respectively.
Draw 5 parallel arcs joining each pair of vertices on C1 and C3, 5 parallel arcs
joining each pair of vertices on C2 and C3, and 2q − 5 parallel arcs joining each
pair of vertices on C1 and C2.
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As in Figure 4, label the vertices of C3 by c1, . . ., c10, the vertices of C1

(resp. C2) by a1, . . . , a2q (resp. b1, . . . , b2q) counter-clockwise so that a2q (resp.
b2q) is joined with c1 (resp. c6).

Let V be the set of vertices and C be the set of edges in the interiors of Ci

(i = 1, 2, 3) joining vertices by the reflections with respect to the axes a1aq+1

and b1bq+1 on Ci (i = 1, 2), and by the reflection with respect to the axis c5c10

(resp. c1c6) on C3 if q ≡ 1(resp. ≡ 2)( mod 3).

Let C be the set of edges in the exteriors of Ci (i = 1, 2, 3). Call α the
involution on V which interchanges the end points of the edges of C, leaving
fixed the points of the axes; call β the involution on V which interchanges the
end points of the edges of C.

Label all edges on Ci (i = 1, 2, 3) alternatively with colors 0, 1, starting
arbitrary; label all edges of D with color 2; draw a further set D′ of edges, each
connecting a pair of points of V which correspond under the involution αβα and
label the elements of D′ with color 3.

The graph Γ obtained by the above construction is a 4 colored regular graph.
It follows from [2] that such a graph is the crystallization of a 3-manifold,
denoted by Mq, which is a 2-fold cyclic branched covering space of S3 over a
knot Kq, where Kq is a knot with 3-bridge presentation so that a1aq+1, b1bq+1

and c5c10 (or c1c6) are overbridges, and the edges of C ∪ D are underbridges.

Theorem 2. The manifold Mq is the 2-fold cyclic branched covering of S3

over the knot Kq.

Remark 1. For q = 5, the knot K5 is exactly the torus knot T (3, 5).

Now we show that the knot Kq and the torus knot T (3, q) are inequivalent
knot types so that their 2-fold cyclic branched covering of S3 have inequivalent
Heegaard splittings of genus 2.

Theorem 3. For q ≥ 7, the knot Kq and the torus knot T (3, q) are inequiv-
alent knot types.

Proof. It is well-known that the genus of the torus knot T (3, q) is q − 1.
Let F be a Seifert surface with boundary Kq. Then F has the genus g(F ) =
(1 − d + b)/2, where d is the number of Seifert circles and b is the number of
crossings. From the construction of Kq, we obtain b = 2(q − 1) + 4. Consider
the knot diagram of Kq on S2 and the underbridge L with end points aq+1 and
bq+1. Then it is not hard to see that edges of L belong to 7 different Seifert
circles. This implies d = 7. Therefore, g(F ) = q − 2 and the genus of the knot
Kq is at most q − 2. As a result, the knot Kq and the torus knot T (3, q) are
inequivalent knot types. QED
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4. The stabilization of Heegaard splittings

In this section, we show that two inequivalent Heegaard splittings of genus
2 of Mq and the Brieskorn homology sphere

∑
(2, 3, q) associated with T (3, q)

and Kq are equivalent after single stabilization.
Consider crystallizations of Mq and the Brieskorn homology sphere

∑
(2, 3, q)

by Ferri’s algorithm to construct 2-fold cyclic branched coverings of S3. Note
that these crystallizations correspond to Heegaard splittings of genus 2 ([2]).

By the fact that all Heegaard splittings of a 3-manifold M are stably equiv-
alent, we claim:

Theorem 4. Two inequivalent Heegaard splittings of Mq and the Brieskorn
homology sphere

∑
(2, 3, q) are equivalent after single stabilization for q ≥ 7.

Proof. By Ferri’s algorithm to construct crystallizations of 2-fold cyclic
branched covering of S3, we obtain crystallizations corresponding to Heegaard
splittings of genus 2 of

∑
(2, 3, q) and Mq (first figures in Figure 5 and 8). The

second figure in Figure 5 (resp. Figure 8) is obtained by adding a dipole of type
2, that corresponds to a single stabilization of Heegaard splitting. Figure 7 (resp.
Figure 11) is obtained from Figure 6 (resp. Figure 9 and Figure 10) by a finite
sequence of polyhedral cut and glue moves to decrease the number of vertices of
crystallization, so that we have isomorphic two crystallizations (second figures in
Figure 7 and 11). As a consequence, we have equivalent two Heegaard splittings
of genus 3. In the figures, the same numbers and letters are joined by 3-colored
edges, and we execute polyhedral cut and glue moves along the thick lines.

Figure 5.

QED

Corollary 1. Mq and the Brieskorn homology sphere
∑

(2, 3, q) are home-
omorphic.
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Figure 6.

Figure 7.

Figure 8.
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Figure 9.

Figure 10.

Figure 11.
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