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Abstract. We give an axiomatic description of point-affine quadrangles as obtained by
deleting a point star from a generalized quadrangle. We define a completion and observe that
isomorphisms can be extended to isomorphisms between completions.
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1. Introduction

We consider incidence structures Q = (P, L, F ) where P and L are disjoint
sets and F ⊆ P ×L is the incidence relation. The elements of P and L are called
points and lines respectively, the elements of F are called flags. The (incidence
geometrical) distance will be denoted by d and we use the following notation:

Di(x) := {y ∈ P ∪ L | d(x, y) = i} ,

Di :=
{

(x, y) ∈ (P ∪ L)2
∣∣ d(x, y) = i

}
.

Definition 1. An incidence structure Q = (P, L, F ) is called generalized
quadrangle if, and only if, the following axioms are satisfied:

(V1) |D1(x)| ≥ 3 for all x ∈ P ∪ L.

(V2) There are neither binangles nor triangles in Q.

(V3) The diameter of Q is 4, that is sup {d(x, y) | x, y ∈ P ∪ L} = 4.

The following properties are checked easily:

(�) Take any two elements x and y of P ∪ L. Then there exists an ordinary
quadrangle containing x and y.

(⊥) For each anti-flag (x, g) ∈ (P×L)\F there exists exactly one flag (y, h) ∈ F
such that (x, h) ∈ F and (y, g) ∈ F hold. We denote y and h by π(x, g)
and λ(x, g) respectively.
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2. Affine derivation of quadrangles

In this section we consider a generalized quadrangle Q = (P, L, F ) with
distance d and a chosen point p ∈ P . Our aim is to motivate the axioms in
Section 3 and to prepare for Theorem 2.

Definition 2. The affine derivation of Q in p is the incidence structure
Ap(Q) = (A, G, I), where A := D4(p), G := D3(p) and I is the restriction of F
to Ap(Q). We will denote the distance in Ap(Q) by δ, and put

∆i(x) := {y ∈ A ∪ G | δ(x, y) = i} ,

∆i :=
{

(x, y) ∈ (A ∪ G)2
∣∣ δ(x, y) = i

}
.

We call the elements of A and G affine points and affine lines respectively.
Example. The affine derivation of the smallest generalized quadrangle is

the graph of the cube.
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Note that there are points at distance 6 in this example. If Q is anti-regular
(for instance if Q is an orthogonal quadrangle over a field of characteristic
different from 2) then ApQ does not contain points at distance 6.

Remarks 1.

1. For any a ∈ A we have ∆1(a) = D1(a). That means, for every pair (a, g) ∈
(A × G) \ I there exists λ(a, g) ∈ G.

2. For g ∈ G there exists q ∈ D2(p) such that ∆1(g) ∪ {q} = D1(g), namely
q = π(p, g).

3. G = {a ∨ b | a, b ∈ A; d(a, b) = 2}, where a ∨ b is the joining line of a and
b.

(In fact, assertion 2 above gives us ∆1(g) ≥ 2 for all g ∈ G. So we have a1, a2 ∈ A
with g = a1 ∨ a2. The other direction follows from assertion 1.)

Now we consider the distances in A := Ap(Q). Let A also denote A ∪ G.
Lemma 1. We have δ ≥ d. More exactly:
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1. For (x, y) ∈ A2 ∩ (D2 \ ∆2) we have: (x, y) ∈ ∆6 and x, y ∈ G.

2. For (a, g) ∈ A2 ∩ (D3 \ ∆3) we have: (a, g) ∈ ∆5.

3. For (x, y) ∈ A2 ∩ (D4 \ ∆4) we have: (x, y) ∈ ∆6 and x, y ∈ A.

Proof. As incidence in A is induced from Q we have δ(x, y) ≥ d(x, y) for
all x, y ∈ A.

(1.) Let us take (x, y) ∈ A2 ∩ (D2 \ ∆2). Then we have x, y ∈ G by Re-
marks 1.3 and there exists z ∈ D1(x) ∩ D1(y) ∩ D2(p). With (�) we get a chain
(x, a, k, b, l, c, y) with a �= z �= c. By Remarks 1.2 we have {a, c} ⊆ A. Now if
b ∈ A then k, l ∈ A by Remarks 1.3. If b �∈ A we choose a′ ∈ D1(x) \ {a, z} such
that π(a′, l) ∈ A. This is possible by Remarks 1.2. So we have a chain of length
6 from x to y in A. Any shorter chain would give binangles or triangles in Q.

(2.) Take (a, g) ∈ A2 ∩ (D3 \ ∆3), say a ∈ A and g ∈ G. So we have
π(a, g) �∈ A. From Remarks 1.2 we get the existence of an affine point b ∈ ∆1(h)
for a line h ∈ ∆1(a) such that λ(b, g) ∈ A and π(b, g) ∈ A. Then the chain
(a, h, b, λ(b, g), π(b, g), g) has length 5 in A.

(3.) Let (x, y) ∈ A2 ∩ (D4 \ ∆4). Then we have x, y ∈ A by Remarks 1.2
and D2(x) ∩ D2(y) ⊆ D2(p). Choose g ∈ ∆1(x) and h ∈ ∆1(y) \ {λ(y, g)}. By
Remarks 1.2 there exists a ∈ (∆1(g)∩A)\{x} with π(a, h) ∈ A. Thus the chain

(x, g, a, λ(a, h), π(a, h), h, y)

is a chain of length 6 in A. QED

We want to reconstruct the generalized quadrangle from its affine derivation.
To this end, we describe points of D2(p) in terms of A.

Definition 3. Let a pseudo-pencil be a maximal set H ⊆ G of lines with
δ(g, h) ∈ {0, 6} for all g, h ∈ H.

Lemma 2. For q ∈ D2(p) we have that Πq := D1(q)∩A is a pseudo-pencil.
Moreover, for every pseudo-pencil H there exists a point x ∈ D2(p) such that
H = D1(x) ∩ A. Thus the system of pseudo-pencils is a partition of G.

Proof. Take two distinct lines g and h in D1(q)∩A. By Lemma 1 we have
δ(g, h) = 6. Let l ∈ G \Πq, that means d(q, l) = 3. If π(q, l) ∈ A holds, we have
δ(λ(q, l), l) = 2 �= 6. If π(q, l) �∈ A, there exists by (�) and Remarks 1.2 a line
h ∈ Πq \ {λ(q, l)} with δ(h, l) = 4 �= 6.

Now let H be any pseudo-pencil and g �= h ∈ H. Lemma 1 yields d(g, h) = 2.
So we have that all lines of H meet in x := π(p, g) by Remarks 1.2 and thus we
have H = D1(x) ∩ A. QED

Our next aim is to describe the lines through p with δ. Let us regard the
following assertions about x, y ∈ D2(p).



24 B. Stroppel

A: x and y are not collinear in P.

B: x and y are collinear in P.

C: For all g ∈ Πx there exists an h ∈ Πy with δ(g, h) = 2.

D: For all g ∈ Πx and all h ∈ Πy we have δ(g, h) = 4.

Lemma 3. Let x, y ∈ D2(p) be distinct points. Then we have

A ⇐⇒ C and B ⇐⇒ D

Proof. Obviously we have implications

E: A ⇐⇒ ¬B and C =⇒ ¬D.

If x and y are collinear points, assertion D holds because there are no triangles in
Q. So we have B =⇒ D and C =⇒ A by E. In order to show A =⇒ C we choose
two not collinear points x, y ∈ D2(p), that is d(x, y) = 4 and we have d(g, y) = 3
for all lines g ∈ Πx. Absence of triangles in Q yields π(y, g) ∈ A. Thus we have
δ(g, λ(y, g)) = 2 and assertion C holds. Now E implies D =⇒ B. QED

Now we define an equivalence relation ∼ on the set of all pseudo-pencils in
A, as follows:

Πx ∼ Πy ⇐⇒ δ(g, h) �= 2 for all g ∈ Πx and all h ∈ Πy

We see that Πx ∼ Πy means d(x, y) ≤ 2. Thus the equivalence classes of ∼ are
exactly the sets D1(l) \ {p} for lines l ∈ D1(p).

In addition we consider the equivalence relation  whose equivalence classes
are the pseudo-pencils of A. Using both equivalence relations we can reconstruct
the quadrangle Q from its affine derivation A.

Proposition 1. We have Q ∼= (P̂ , L̂, F̂ ),where

P̂ := A ∪ G
� ∪ {p} and L̂ := G ∪ G

�
/
∼

The incidence F̂ is described as follows:

F̂ := I ∪ {([g]� , g) | g ∈ G} ∪
{

(x, [x]∼)
∣∣ x ∈ G

�
}
∪

{
(p, [x]∼)

∣∣ x ∈ G
�
}

,

where I ⊆ A × G is the incidence relation of A.
For the distance γ in (P̂ , L̂, F̂ ) we obtain from 3:
Corollary 1. If x, y ∈ D2(p) are two different points then we have γ(Πx, Πy)

= 6 − min {δ(g, h) | (g, h) ∈ Πx × Πy}.
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3. Axioms for point-affine quadrangles

Our aim is to give an axiomatic description of a point-affine quadrangle
A such that we can construct a generalized quadrangle Q with A being the
affine derivation of Q. A main motivation was the observation that several con-
structions of generalized quadrangles in fact start with building a point-affine
quadrangle. Prominent examples are elation generalized quadrangles, see Sec-
tion 5.

There is a more general notion of “affine quadrangle”, denoting incidence
structures obtained from a generalized quadrangle by deleting a geometric hy-
perplane. Pralle [6] gives an axiomatic characterization of this general class,
based on the notion of totally connected pairs of lines. Our approach, in con-
trast, is based on distances.

Definition 4. An incidence structure A = (A, G, I) with distance δ is called
a point-affine quadrangle if the following axioms hold.

(A1) For a ∈ A we have |∆1(a)| ≥ 3, for g ∈ G we have |∆1(g)| ≥ 2.

(A2) There are neither binangles nor triangles in A.

(A3) The diameter of A is 6.

(A4) We require that g  h ⇐⇒ δ(g, h) ∈ {0, 6} is an equivalence relation on
G and that each equivalence class of  contains at least 2 elements. The
equivalence class of g is denoted by [g]�, and the canonical map will be
denoted by α : g �→ [g]�.

(A5) On G
� ,

[x]� ∼ [y]� ⇐⇒ δ(g, h) �= 2 for all g ∈ [x]� and all h ∈ [y]�

defines an equivalence relation with at least 3 equivalence classes and at
least 2 elements in each class.

(A6) For g ∈ G we have that α|∆2(g) is a surjection onto { [x]� | [x]� �∼ [g]� }.

(A7) For a ∈ A we have that α|∆1(a) is a surjection onto G\∆3(a)
� .

(A8) Let β : G →
{

[x]∼
∣∣ x ∈ G

�
}

: g �→ [[g]�]∼. Then the restriction β|∆1(a) is
surjective for each a ∈ A.

Example. If Q is a generalized quadrangle then the affine derivation at any
point of Q is a point-affine quadrangle, see Section 2. In fact, we shall see that
there are no other examples, cf. Theorem 1 below.
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Remark 1. Note the analogy with affine planes (“line-affine triangles”),
where one would require (A1), absence of binangles, diameter 4, transitivity of
the relation δ(g, h) ∈ {0, 4} (parallelism of lines) and the corresponding variant
of (A7) (existence of parallels). As, for instance, the Pappos figure shows, we
have to require also that there are no pairs of points at distance 4 (existence of
joining lines).

Now we want to reverse affine derivation. To this end, we construct a com-
pletion C(A). Let

P := A ∪ G
� ∪ {∞} and L := G ∪ G

�
/
∼

and define incidence by

F = I ∪ {([g]� , g) | g ∈ G} ∪
{

(x, [x]∼)
∣∣ x ∈ G

�
}
∪

{
(∞, [x]∼)

∣∣ x ∈ G
�
}

.

This means that affine points are only incident with affine lines and to an affine
line we add exactly one new point. Moreover the point ∞ is incident only with
the new lines.

Let us denote the distance on C(A) = (P, L, F ) by γ.

Definition 5. The incidence structure C(A) = (P, L, F ) described above is
called the completion of the point-affine quadrangle A = (A, G, I).

Remark 2. Let Q be a generalized quadrangle. Then Proposition 1 says
that Q ∼= C(Ap(Q)) holds for each point p ∈ Q. Thus completion reverses
derivation.

Theorem 1. The completion C(A) = (P, L, F ) of a point-affine quadrangle
is a generalized quadrangle.

Proof. (V1) For a ∈ A we have |Γ1(a)| ≥ 3 by (A1). For x := [g]� ∈ P \ A
we have |Γ1(x)| ≥ 3 by (A4) and [x]∼ ∈ Γ1(x). Axiom (A5) ensures |Γ1(∞)| ≥ 3.
Let g ∈ G. By (A1) and [g]� ∈ Γ1(g) we have |Γ1(g)| ≥ 3. Let l ∈ L \ G. By
(A5) we get at least two elements in ∆1(l), and ∞ ∈ Γ1(l) yields |Γ1(l)| ≥ 3.

(V2) We have neither binangles nor triangles in A by (A2). In C(A) \ A the
point ∞ is the only one which meets more than one line of L\G. If there would
be a triangle with two distinct collinear points x, y ∈ P \ A, we would have
δ(g, h) = 4 for all (g, h) ∈ Πx×Πy by definition of collinearity. So we cannot get
any triangle. If there would be a binangle with points x ∈ P \A and a ∈ A, this
would mean that x = [a]�. But (a, g) ∈ I and (a, h) ∈ I for two lines g, h ∈ Πx

means that δ(g, h) = 0 and thus there exists no binangle.
(V3) First we show γ(x, y) ≤ 4 for all x, y ∈ C(A).

(i) Let us consider the point ∞. For x ∈ A the chain (x, g, [g]� , [[g]�]∼ ,∞) has
length 4 and γ(x,∞) ≤ 4 holds. For x ∈ G

� we have γ(x,∞) = 2 by definition
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of F . For x ∈ G we have the chain (x, [x]� , [[x]�]∼ ,∞) and so γ(x,∞) ≤ 3. For
x ∈ L \ G we have γ(x,∞) = 1 again by definition of F .
(ii) Let p ∈ G

� . For x ∈ G
� we have the chain (x, [x]∼ ,∞, [p]∼ , p), that is γ(x, p) ≤

4. For x ∈ L\G we have the chain (x,∞, [p]∼ , p), that is γ(x, p) ≤ 3. For x ∈ G
either we have [x]� ∼ p and γ(x, p) ≤ 3 or there exists a line in ∆2(x) incident
with p by (A6). So we have γ(x, p) ≤ 3 again. For x ∈ A choose a line g ∈ ∆1(x)
and get γ(x, p) ≤ 4 with the same argument as above.
(iii) Let a ∈ A. For x ∈ ∆6(a) choose g ∈ ∆1(x) and get δ(a, g) ≤ 5. If δ(a, g) = 5
holds, we get a line l ∈ ∆1(a) with [l]� = [g]� by (A7). Thus we have γ(x, a) ≤ 4.
For x ∈ G and δ(a, x) > 4 we have again by (A7) a line l ∈ ∆1(a) with [l]� = [x]�
and so γ(x, a) ≤ 3 holds. For x ∈ L \ G the axiom (A8) yields a line in ∆1(a)
which meets x, and we have γ(x, a) ≤ 3.
(iv) It remains to look at distances between lines. Let g ∈ G. For x ∈ ∆6(g)
we have [x]� = [g]�, that is γ(x, g) ≤ 2. For x ∈ L \ G we have the chain
(x,∞, [[g]�]∼ , [g]� , g) and so γ(x, g) ≤ 4 holds. For two new lines l, h ∈ L \ G
we have γ(l, h) ≤ 2 because of (∞, x) ∈ F for all x ∈ L \ G.

Finally, we observe that (A × Γ1(∞)) ∩ F = ∅ and so γ(x,∞) > 2 for all
x ∈ A. Thus we have Γ4(∞) �= ∅ and (V3) is proved. QED

4. Isomorphisms

Definition 6. Let Q = (P, L, F ) and Q′ = (P ′, L′, F ′) be incidence struc-
tures with distance functions d and d′, respectively. A bijection ϕ : P ∪ L →
P ′ ∪ L′ is called an isomorphism (from Q onto Q′) if we have Pϕ = P ′ and
Fϕ = F ′.

Remark 3. A surjection ϕ : Q → Q′ is an isomorphism if, and only if, we
have Pϕ ⊆ P ′ and d(x, y) = d′(xϕ, yϕ) for all x, y ∈ Q.

From Definition 3 and Corollary 1 we infer:

Lemma 4. Each isomorphism ϕ : A �→ A′ between point-affine quadran-
gles maps pseudo-pencils to pseudo-pencils, and for Πx, Πy ∈ C(A) we have:
γ′((Πx)ϕ, (Πy)ϕ) = γ(Πx, Πy), where γ and γ′ are the distances in C(A) and
C(A′) respectively.

Now let A and A′ be point-affine quadrangles and let ϕ be an isomorphism
from A onto A′. Then we can define an extension Φ from C(A) onto C(A′) of
ϕ as follows. Let Φ|A = ϕ and ([g]�)

Φ := [gϕ]�, ([x]∼)Φ :=
[
xΦ

]
∼, ∞Φ := ∞′.

Then Φ is an isomorphism from C(A) onto C(A′).
Proposition 1 gives isomorphisms from Q1 onto C(Ap1(Q1)) and from

C(Ap2(Q2)) onto Q2 that induce the identity on A1 and A2, respectively. Com-
bining these with Φ, we obtain:
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Theorem 2. Let A1 = Ap1(Q1) and A2 = Ap2(Q2) be affine derivations of
generalized quadrangles and let ϕ : A1 → A2 be an isomorphism. Then there
exists an isomorphism ϕ̂ : Q1 → Q2 with ϕ̂|A1 = ϕ and pϕ̂

1 = p2.
Corollary 2. For each generalized quadrangle Q and any two points p, q ∈

Q we have Ap(Q) ∼= Aq(Q) if, and only if, there exists α ∈ AutQ with pα = q.
Proof. Apply Theorem 2 to find α and use Remark 3 to conclude D4(p)α =

D4(q) and D3(p)α = D3(q) from pα = q. QED

5. Elation generalized quadrangles

In [4] Kantor constructs finite elation quadrangles as group coset geometries.
This construction was extended to the infinite case in [2], [5]. See Remarks 2
below for more remarks on the literature. We give an alternative proof of these
results, which serves as an example how the axioms for point-affine quadrangles
can be verified. Note also the analogies with the treatment of affine translation
planes by André [1].

Proposition 2. Let E be a group and F a family of subgroups. To each
T ∈ F , let a subgroup T ∗ be associated such that the following conditions are
satisfied: For all T, S, V ∈ F we have

(i) {1} < T < T ∗ < E,

(ii) T �= S implies E = T ∗S(= ST ∗) and T ∗ ∩ S = {1},

(iii) T �= S �= V �= T implies TS ∩ V = {1},

(iv) E = T ∗ ∪
⋃

S∈F ST .

Then A := (E,
⋃

T∈F E/T,∈) is a point-affine quadrangle and C(A) is an elation
quadrangle with elation group E and elation center ∞.

Before we start with the proof of Proposition 2, we note the following
Lemma 5. Under the assumptions of Proposition 2, one also has for all

T, V ∈ F :

(v) T �= V implies E =
⋃

S∈F TSV .

Proof. Consider T, V ∈ F . For any x ∈ E = V ∗ ∪
⋃

S∈F SV we then have
x ∈ V ∗ or x ∈

⋃
S∈F SV . For x ∈ V ∗ we pick t ∈ T \{1}, then (ii) yields tx �∈ V ∗,

and tx ∈
⋃

S∈F SV follows. Thus x ∈
⋃

S∈F TSV holds for all x ∈ E. QED

Remark 4. Assertions (i)–(v) hold in each elation quadrangle. However,
assertion (iv) is independent of (i), (ii), (iii), (v), see [3].
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Proof of Proposition. We remark that the line Tx determines T ∈ F ,
in view of

Tx = Sy ⇐⇒ T = S and yx−1 ∈ T.

Multiplication (from the right) with a ∈ E induces an automorphism of the
incidence structure. Therefore, it suffices to describe distances from 1. For x ∈ E
we have:

δ(1, x)




= 0
≤ 2
≤ 4
≤ 6




⇐⇒




x = 1
x ∈

⋃
V ∈F V

x ∈
⋃

S,V ∈F SV

x ∈
⋃

T,S,V ∈F TSV

δ(1, Tx)




= 1
≤ 3
≤ 5


 ⇐⇒




x ∈ T
x ∈

⋃
S∈F TS

x ∈
⋃

S,V ∈F TSV

(A1) We have ∆1(1) = F . From (iv) and (i) we deduce |F| ≥ 2. If we
have |F| = 2, then (v) and (ii) yield E = TV = T ∗V and so T = T ∗, which
contradicts (i). For T ∈ F the inequality |∆1(T )| = |T | ≥ 2 is a consequence of
T �= {1}.

(A2) If there is a 2-gon with lines T and S, then there exists x ∈ E\{1} with
x ∈ T ∩S ⊆ T ∗∩S, contradicting (ii). If there is a 3-gon with lines S, T, V x, we
have V t = V x = V s for some t ∈ T and s ∈ V t∩S ⊆ V T ∩S, which contradicts
(iii).

(A3) For any x ∈ E we have x ∈
⋃

S∈F TSV by (v) and therefore δ(1, x) ≤ 6.
The same argument shows that δ(1, Tx) ≤ 5 for all T ∈ F . The proof of (A4)
will also show that there exist lines at distance 6.

(A4) Here we will show

δ(Tx, Sy) ∈ {0, 6} ⇐⇒ T = S and xy−1 ∈ T ∗.

First we choose x = 1, so we must prove

δ(T, Sy) ∈ {0, 6} ⇐⇒ T = S and y ∈ T ∗.

Starting from T = S and y ∈ T ∗, we obtain δ(T, Sy) = δ(T, Ty) = 0 if y ∈ T .
For y ∈ T ∗ \T we have T ∩Ty = ∅ and therefore δ(T, Ty) ≥ 4. But δ(T, Ty) = 4
is equivalent to the existence of some z ∈ Ty ⊆ T ∗ and some V ∈ F \ {T} such
that V z ∩ T �= ∅. So we take u ∈ V z ∩ T and get uz−1 ∈ V ∩ Tz−1 ⊆ V ∩ T ∗.
This yields z = u ∈ T and Ty = Tz = T , a contradiction. We have thus proved
that y ∈ T ∗ implies δ(T, Ty) ∈ {0, 6}.

Now we assume δ(T, Sy) = 6. For T �= S we would have E =
⋃

V ∈F SV T
by (v) and for each y ∈ E there exist s ∈ S, t ∈ T, v ∈ V such that y = s−1vt.
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Thus we have vt ∈ Sy and (Sy, vt, V t, t, T ) is a chain of length 4 from Sy to
T . So we have S = T . Moreover δ(T, Ty) ≥ 6 implies δ(1, T y) ≥ 5, that is
y ∈ E \

⋃
S∈F TS ⊆ T ∗ by (iv).

To show transitivity we take TxSy and SyV z and obtain first T = S = V .
Without loss of generality we take x = 1 and get y ∈ T ∗ and there exists w ∈ E
such that y, z ∈ T ∗w, that is T ∗w = T ∗y = T ∗ and therefore we have z ∈ T ∗. We
have shown [T ]� = T ∗/T and [Tx]� = (T ∗/T )x = {Ttx | t ∈ T ∗}. The inequality
[T ]� �= {T} follows from T ∗ > T .

(A5) We claim
(T ∗/T )x ∼ (S∗/S)y ⇐⇒ T = S

By definition (T ∗/T )x ∼ (S∗/S)y means

∀t∗ ∈ T ∗∀s∗ ∈ S∗ : δ(Tt∗x, Ss∗y) �= 2 (1)

that is, we have Tt∗x = Ss∗y or Tt∗x ∩ Ss∗y = ∅.
For T �= S we have TS∗ = E � xy−1, that is xy−1 ∈ Ts∗ for some s∗ ∈ S∗,

which implies s∗y ∈ Tx ∩ Ss∗y. This means that (1) is false, and (T ∗/T )x �∼
(S∗/S)y. For T = S we have Tu ∩ Tv = ∅ whenever Tu �= Tv and so the
corresponding pseudo-pencils are collinear. This establishes the claim. It follows
that ∼ is an equivalence relation with |F| ≥ 3 equivalence classes and |E/T ∗| ≥ 2
elements in each equivalence class.

(A6) Let Sx be a given line and (T ∗/T )y �∼ (S∗/S)x, that is T �= S. Then
we have yx−1 ∈ E = T ∗S. Take t∗ ∈ T ∗, s ∈ S such that sx = t∗y ∈ Sx ∩ Tt∗y.
Thus we have Tt∗y ∈ ∆2(Sx) and Tt∗y ∈ [Ty]�.

(A7) Let a ∈ E be arbitrary. Consider lines Ty with δ(a, Ty) �= 3.
If δ(a, Ty) = 1 holds, we see that Ta = Ty ∈ ∆1(a) and TaTy. If δ(a, Ty) =

5, we have ∀S ∈ F : Sa∩Ty = ∅. So we see that ay−1 �∈
⋃

S∈F ST and therefore
ay−1 ∈ T ∗ by (iv). This is equivalent to a ∈ T ∗y and so Ta is the line with
Ta  Ty we searched for.

(A8) If [T ∗/T ]∼ and x ∈ E are given, then Tx is the pre-image we need.
QED

Remarks 2. In addition to conditions (i)–(iii) as in Proposition 2, Kan-
tor [4] assumes finiteness of the groups and equality of certain cardinalities.
Bader and Payne [2] and also Löwe [5] generalize this construction to infinite
elation generalized quadrangles. In both papers, cardinality conditions are for-
mulated, but it turns out that these are superfluous. Bader and Payne add an
axiom (K4) that says (in the notation from Proposition 2): ∀T ∈ F : T ∗ = B(T ),
where

B(T ) := T ∪
⋃ {

Tx
∣∣ x ∈ E and Tx ∩ S = ∅ for all S ∈ F \ {T}

}
.
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Löwe assumes Proposition 2 (iv) and characterizes T ∗ as complement L(T ) of
the set

⋃
S∈F\{T} T (S \ {1}).

Lemma 6. Let E be a group and F a family of subgroups which satisfies
(i) and (ii) of Proposition 2. Then we have B(T ) = L(T ) for each T ∈ F .

Proof. Let z ∈ L(T ). Then either z ∈ T ⊆ B(T ) holds, or z ∈ L(T ) \ T =
E \

(
T ∪

⋃
S �=T T (S \ {1}) = E \

⋃
S∈F TS. So we have for all S ∈ F that

z �∈ TS. This means z �∈ Ts and s �∈ Tz for all s ∈ S. Thus Tz ∩ S = ∅ holds
for all S ∈ F \ {T}. This conclusion implies z ∈ Tz ⊆ B(T ) and thus we have
L(T ) ⊆ B(T ).

Now consider z ∈ B(T ). Again we have two possibilities. First assume z ∈
T \ L(T ). Then there would exist S �= T such that z ∈ T (S \ {1}), say z = ts.
But then we have t−1z = s ∈ S \ {1} and t−1z ∈ T ∗ which contradicts (ii). Now
we take z ∈ B(T ) \ T . Then there exists x ∈ E such that z ∈ Tx and for all
S �= T we have Tx ∩ S = ∅. Let us suppose z = tx ∈ T (S \ {1}). Then tx = t0s
for some t0 ∈ T, s ∈ S \ {1}. This yields s = t−1

0 tx ∈ Tx ∩ S which contradicts
z ∈ B(T ). Thus we have for all S ∈ F \ {T} that z �∈ T (S \ {1}) holds which
implies z ∈ L(T ). QED

Lemma 6 implies that the additional axioms of [2] and [5] are equivalent.
In Proposition 2 we include Löwe’s additional axiom as assumption (iv). Note
that, in the infinite case, some axiom beyond Kantor’s original conditions is
needed, as the example in [3] shows.
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